1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
#!/usr/bin/env perl
package tiler;
use strict;
use warnings;
use Getopt::Long;
use File::Spec;
use FindBin;
use lib File::Spec->catdir($FindBin::Bin, 'lib');
use sexpr;
use expr_ops;
# Get unique items in tree
sub uniq {
my %h; grep !$h{$_}++, @_;
}
# shorthand for numeric sorts
sub sortn {
sort { $a <=> $b } @_;
}
sub register_spec {
my ($symbol) = @_;
my ($type, $name) = split /:/, $symbol;
if ($type eq 'reg' or $type eq 'num') {
return sprintf('register_require(%s)', uc $name) if defined $name;
return $type eq 'num' ? 'storage_fpr' : 'storage_gpr';
}
return 'storage_none';
}
sub symbol_name {
# remove annotation from symbol
my $copy = $_[0];
$copy =~ s/:\w+$//;
return $copy;
}
sub add_rule {
my ($name, $tree, $sym, $cost) = @_;
my $ctx = {
# lookup path for values
path => [],
# specifications of registers
spec => [],
# bitmap of referenced symbols (vs raw values)
refs => 0,
# number of arguments and refs
num => 0,
};
push @{$ctx->{'spec'}}, register_spec($sym);
my @rules = decompose($ctx, $tree, $sym, $cost);
my $head = $rules[$#rules];
$head->{name} = $name;
$head->{path} = join('', @{$ctx->{path}});
$head->{spec} = $ctx->{spec};
$head->{refs} = $ctx->{refs};
$head->{text} = sexpr_encode($tree);
return @rules;
}
sub new_rule {
# Build a new, fully decomposed rule
my ($pat, $sym, $cost) = @_;
return {
pat => $pat,
sym => $sym,
cost => $cost
};
}
# To generate unique symbols
my $pseudosym = 0;
sub decompose {
my ($ctx, $tree, $sym, $cost, @trace) = @_;
my $list = [];
my @rules;
# Recursively replace child nodes by pseudosymbols
for (my $i = 0; $i < @$tree; $i++) {
my $item = $tree->[$i];
if (ref $item eq 'ARRAY') {
# subtree, which has to be replaced with a symbol
my $newsym = sprintf("#%s", $pseudosym++);
# divide cost by two
$cost /= 2;
# add rule and subrules to the list
push @rules, decompose($ctx, $item, $newsym, $cost, @trace, $i);
push @$list, $newsym;
} elsif (substr($item, 0, 1) eq '$') {
# argument symbol
# add trace to path
push @{$ctx->{path}}, @trace, $i, '.';
$ctx->{num}++;
} else {
if ($i > 0) {
# value symbol
push @{$ctx->{path}}, @trace, $i, '.';
# this is a value symbol, so add it to the bitmap
$ctx->{refs} += (1 << $ctx->{num});
$ctx->{num}++;
push @{$ctx->{spec}}, register_spec($item);
} # else head
push @$list, symbol_name($item);
}
}
push @rules, new_rule($list, symbol_name($sym), $cost);
return @rules;
}
sub combine_rules {
my @rules = @_;
# Use a readable hash key separator
local $; = ",";
# %sets represents the symbols which can occur in combination (symsets)
# %trie is the table that holds all combinations of rules and symsets
my (%sets, %trie);
# Initialize the symsets with just their own symbols
$sets{$_->{sym}} = [$_->{sym}] for @rules;
my ($added, $deleted, $iterations);
do {
$iterations++;
# Generate a lookup table to translate symbols to the
# combinations (symsets) they appear in
my %lookup;
while (my ($k, $v) = each %sets) {
# Use a nested hash for set semantics
$lookup{$_}{$k} = 1 for @$v;
}
# Reset trie
%trie = ();
# Translate symbols in rule patterns to symsets and use these to
# build the combinations of matching rules
for (my $rule_nr = 0; $rule_nr < @rules; $rule_nr++) {
my $rule = $rules[$rule_nr];
# The head is significant because this represent the expression node we match
my ($head, $sym1, $sym2) = @{$rule->{pat}};
if (defined $sym2) {
# iterate over all symbols in the symsets
for my $s_k1 (keys %{$lookup{$sym1}}) {
for my $s_k2 (keys %{$lookup{$sym2}}) {
# This rule could match all combinations of $s_k1 and $s_k2 that appear
# here because their matching symbols are contained in these symsets.
# Here we are interested in all the other rules that also match these
# symsets and the symbols these rules generate in combination. Thus,
# we generate a new table here.
$trie{$head, $s_k1, $s_k2}{$rule_nr} = $rule->{sym};
}
}
} elsif (defined $sym1) {
# Handle the one-item case
for my $s_k1 (keys %{$lookup{$sym1}}) {
$trie{$head, $s_k1, -1}{$rule_nr} = $rule->{sym};
}
} else {
$trie{$head, -1, -1}{$rule_nr} = $rule->{sym};
}
}
# Read the symsets from the generated table, generate a
# key to identify them and replace the old %sets table
my %new_sets;
for my $gen (values %trie) {
my @set = sort(uniq(values %$gen));
my $key = join(':', @set);
$new_sets{$key} = [@set];
}
# This loop converges the symsets to an unchanging and complete
# set of symsets. That seems to be because a symsets is always
# formed by the combination of other symsets that happen to be
# applicable to the same rules. The combined symset is still
# applicable to those rules (thus a symset is never lost, just
# embedded into a larger symset). When symsets stop changing that
# must be because they cannot be combined further, and thus the
# set is complete.
$deleted = 0;
for my $k (keys %sets) {
$deleted++ unless exists $new_sets{$k};
}
$added = scalar(keys %new_sets) - scalar(keys %sets) + $deleted;
# Continue with newly generated sets
%sets = %new_sets;
} while ($added || $deleted);
# Given that all possible symsets are known, we can now read
# the rulesets from the %trie as well.
my (%seen, @rulesets);
for my $symset (values %trie) {
my @rule_nrs = sortn(keys %$symset);
my $key = join $;, @rule_nrs;
push @rulesets, [@rule_nrs] unless $seen{$key}++;
}
return @rulesets;
}
sub set_key {
my @rule_nrs = @_;
return join ":", sortn(@rule_nrs);
}
# This script takes the tiler grammar file (x64.tiles)
# and produces tiler tables.
my $PREFIX = "MVM_JIT_";
my $VARNAME = "MVM_jit_tile_";
my $EXPR_HEADER_FILE = 'src/jit/expr.h';
my $DEBUG = 0;
my ($INFILE, $OUTFILE, $TESTING);
sub generate_table {
# Compute possible combination tables and minimum cost tables from
# rulesets. Requires rules (pattern + symbol + cost) and rulesets
# (indices into rules).
my ($rules, $rulesets) = @_;
my (%candidates, %trans);
# map symbols to rulesets, rule set names to ruleset numbers
for (my $ruleset_nr = 0; $ruleset_nr < @$rulesets; $ruleset_nr++) {
my $ruleset = $rulesets->[$ruleset_nr];
for my $rule_nr (@$ruleset) {
$candidates{$rules->[$rule_nr]{sym}}{$ruleset_nr} = 1;
}
my $key = set_key(@$ruleset);
$trans{$key} = $ruleset_nr;
}
# build flat table first
my %flat;
for (my $rule_nr = 0; $rule_nr < @$rules; $rule_nr++) {
my $rule = $rules->[$rule_nr];
my ($head, $sym1, $sym2) = @{$rule->{pat}};
if (defined $sym2) {
for my $rs1 (keys %{$candidates{$sym1}}) {
for my $rs2 (keys %{$candidates{$sym2}}) {
$flat{$head,$rs1,$rs2}{$rule_nr} = 1;
}
}
} elsif (defined $sym1) {
for my $rs1 (keys %{$candidates{$sym1}}) {
$flat{$head,$rs1,-1}{$rule_nr} = 1;
}
} else {
$flat{$head,-1,-1}{$rule_nr} = 1;
}
}
# with the flat table, we can directly build the tiler table by expanding the keys
my %table;
while (my ($idx, $match) = each %flat) {
my ($head, $rs1, $rs2) = split $;, $idx;
my $key = set_key(keys %$match);
die "Cannot find key $key" unless defined $trans{$key};
$table{$head}{$rs1}{$rs2} = $trans{$key};
}
return %table;
}
sub compute_costs {
my ($rules, $rulesets, $table) = @_;
my %reversed;
for my $head (keys %$table) {
for my $rs1 (keys %{$table->{$head}}) {
for my $rs2 (keys %{$table->{$head}->{$rs1}}) {
my $rsy = $table->{$head}{$rs1}{$rs2};
push @{$reversed{$rsy}}, [$rs1, $rs2];
}
}
}
# converge at %min_cost.
#
# seed %rule_cost with the minimum-zero-order cost, %min_cost according to that
# compute first order cost using the seeded zero-order cost,
# compute minimum cost table again; while it remains changing,
# compute again with updated costs
my %rule_cost;
my %min_cost;
for (my $ruleset_nr = 0; $ruleset_nr < @$rulesets; $ruleset_nr++) {
for my $rule_nr (@{$rulesets->[$ruleset_nr]}) {
my $cost = $rules->[$rule_nr]{cost};
my $sym = $rules->[$rule_nr]{sym};
my $best = $min_cost{$ruleset_nr, $sym};
if (!defined($best) || $rule_cost{$ruleset_nr, $best} > $cost) {
$min_cost{$ruleset_nr, $sym} = $rule_nr;
}
$rule_cost{$ruleset_nr, $rule_nr} = $cost;
}
}
my $changed = 0;
do {
my %new_cost;
my %new_min;
for (my $ruleset_nr = 0; $ruleset_nr < @$rulesets; $ruleset_nr++) {
for my $rule_nr (@{$rulesets->[$ruleset_nr]}) {
my $cost = $rules->[$rule_nr]->{cost};
my ($head, $sym1, $sym2) = @{$rules->[$rule_nr]->{pat}};
# compute new cost of rule
for my $rsg (@{$reversed{$ruleset_nr}}) {
$cost += $rule_cost{$rsg->[0], $min_cost{$rsg->[0], $sym1}} if defined $sym1;
$cost += $rule_cost{$rsg->[1], $min_cost{$rsg->[1], $sym2}} if defined $sym2;
}
$cost /= scalar @{$reversed{$ruleset_nr}};
# determine new minimum cost rule
my $sym = $rules->[$rule_nr]->{sym};
my $best = $new_min{$ruleset_nr, $sym};
if (!defined ($best) || $new_cost{$ruleset_nr, $best} > $cost) {
$new_min{$ruleset_nr, $sym} = $rule_nr;
}
$new_cost{$ruleset_nr, $rule_nr} = $cost;
}
}
$changed = 0;
# nb, i assume we've converged after the *relative* cost of rules doesn't change,
# but i only compute whether the *top* rule hasn't changed, and that's actually
# not sufficient in some cases
for my $key (keys %min_cost) {
die "huh $key" if !defined $new_min{$key};
$changed++ if $min_cost{$key} != $new_min{$key};
}
%rule_cost = %new_cost;
%min_cost = %new_min;
} while($changed);
return %min_cost;
}
# Collect rules -> form list, table;
# list contains 'shallow' nodes, maps rulenr -> rule
# indirectly create rulenr -> terminal
GetOptions(
'debug' => \$DEBUG,
'testing' => \$TESTING,
'input=s' => \$INFILE,
'output=s' => \$OUTFILE,
'prefix=s' => \$PREFIX,
'header=s' => \$EXPR_HEADER_FILE,
);
my @rules;
my $input;
if ($TESTING) {
$input = \*DATA;
} else {
if (!defined $INFILE && @ARGV && -f $ARGV[0]) {
$INFILE = shift @ARGV;
}
die "Please provide an input file" unless defined $INFILE;
open $input, '<', $INFILE or die "Could not open $INFILE";
}
# Collect rules from the grammar
my $parser = sexpr->parser($input);
while (my $tree = $parser->parse) {
my $keyword = shift @$tree;
if ($keyword eq 'tile:') {
# (tile: name pattern symbol cost)
push @rules, add_rule(@$tree);
} elsif ($keyword eq 'define:') {
# (define: pattern symbol)
push @rules, add_rule(undef, @$tree, 0);
}
}
close $input;
my @rulesets = combine_rules(@rules);
if ($DEBUG) {
print "Rules:\n";
for (my $rule_nr = 0; $rule_nr < @rules; $rule_nr++) {
print "$rule_nr => ";
print sexpr_encode($rules[$rule_nr]{pat}), ": ", $rules[$rule_nr]{sym} , "\n";
}
print "Rulesets:\n";
for (my $ruleset_nr = 0; $ruleset_nr < @rulesets; $ruleset_nr++) {
print "$ruleset_nr => ";
for my $rule_nr (@{$rulesets[$ruleset_nr]}) {
print "$rule_nr, ";
}
print "\n";
}
}
my %table = generate_table(\@rules, \@rulesets);
my %min_cost = compute_costs(\@rules, \@rulesets, \%table);
# Tiling works by selecting *possible* rules bottom-up and picking
# the *optimum* rules top-down. So we need to know, starting from
# a rule and it's children's rulesets, how to select the best rules.
my @symbols = uniq(map { $_->{sym} } @rules);
my %symnum;
for (my $i = 0; $i < @symbols; $i++) {
$symnum{$symbols[$i]} = $i;
}
sub bits {
my $i = 0;
my $n = shift;
while ($n) {
$i++ if $n & 1;
$n >>= 1;
}
return $i;
}
# Write tables
if (defined $OUTFILE) {
open my $output, '>', $OUTFILE or die "Could not open $OUTFILE";
select $output;
}
local $\ = "\n";
print "/* FILE AUTOGENERATED BY $0. DO NOT EDIT. */";
print '/* Tile function declarations */';
for my $tile (grep $_, map $_->{name}, @rules) {
print "${PREFIX}TILE_DECL($tile);";
}
print '/* Tile template declarations */';
print "static const MVMJitTileTemplate ${VARNAME}templates[] = {";
for (my $rule_nr = 0; $rule_nr < @rules; $rule_nr++) {
my $rule = $rules[$rule_nr];
my ($head, $sym1, $sym2) = @{$rule->{pat}};
my $sn1 = defined $sym1 ? $symnum{$sym1} : -1;
my $sn2 = defined $sym2 ? $symnum{$sym2} : -1;
my ($func, $path, $text, $refs, $nval, $spec);
if (exists $rule->{name}) {
$func = defined $rule->{name} ? "${PREFIX}TILE_NAME($rule->{name})" : "NULL";
$path = sprintf('"%s"', $rule->{path});
$text = sprintf('"%s"', $rule->{text});
$refs = $rule->{refs};
$nval = bits($refs);
$spec = join(', ', map(uc "mvm_jit_".$_, @{$rule->{spec}}));
} else {
$func = $path = $text = "NULL";
$refs = 0;
$nval = 0;
$spec = 0;
}
print " { $func, $path,\n $text, $sn1, $sn2, $nval, $refs,\n { $spec } },";
}
print "};";
print '/* Tiler tables */';
print "static const MVMint32 ${VARNAME}select[][3] = {";
for (my $ruleset_nr = 0; $ruleset_nr < @rulesets; $ruleset_nr++) {
for (my $sym_nr = 0; $sym_nr < @symbols; $sym_nr++) {
my $rule = $min_cost{$ruleset_nr,$symbols[$sym_nr]};
next unless defined $rule;
print " { $ruleset_nr, $sym_nr, $rule },";
}
}
print "};";
print <<"COMMENT";
/* Each table item consists of 5 integers:
* 0..3 -> lookup key (nodenr, ruleset_1, ruleset_2)
* 4 -> next state
* 5 -> optimum rule if this were a root */
/* TODO - I think this table format can be, if we want it, much
* smaller - for our current table sizes, keys could fit in 32 bits.
* And we could add the terminals and minimum-cost table as
* intermediates. */
COMMENT
print "static MVMint32 ".$VARNAME."state[][6] = {";
for my $expr_op (@EXPR_OPS) {
my $head = lc($expr_op->[0]);
for my $rs1 (sortn keys %{$table{$head}}) {
for my $rs2 (sortn keys %{$table{$head}{$rs1}}) {
my $state = $table{$head}{$rs1}{$rs2};
my $best; $best ||= $min_cost{$state,$_} for qw(reg num void);
print sprintf(' { %s%s, %s, %s, %d, %d },',
$PREFIX, $expr_op->[0], $rs1, $rs2, $state, $best || -1);
}
}
}
print "};";
print <<"LOOKUP";
/* Lookup routines. Implemented here so that we may change it
* independently from tiler */
static MVMint32* ${VARNAME}state_lookup(MVMThreadContext *tc, MVMint32 node, MVMint32 c1, MVMint32 c2) {
MVMint32 top = (sizeof(${VARNAME}state)/sizeof(${VARNAME}state[0]));
MVMint32 bottom = 0;
MVMint32 mid = (top + bottom) / 2;
while (bottom < mid) {
if (${VARNAME}state[mid][0] < node) {
bottom = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}state[mid][0] > node) {
top = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}state[mid][1] < c1) {
bottom = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}state[mid][1] > c1) {
top = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}state[mid][2] < c2) {
bottom = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}state[mid][2] > c2) {
top = mid;
mid = (top + bottom) / 2;
} else {
break;
}
}
if (${VARNAME}state[mid][0] != node ||
${VARNAME}state[mid][1] != c1 ||
${VARNAME}state[mid][2] != c2)
return NULL;
return ${VARNAME}state[mid];
}
/* Same as above, maps tile state + nonterm -> child rule, used for
* downward propagation of optimal rules */
static MVMint32 ${VARNAME}select_lookup(MVMThreadContext *tc, MVMint32 ts, MVMint32 nt) {
MVMint32 top = (sizeof(${VARNAME}select)/sizeof(${VARNAME}select[0]));
MVMint32 bottom = 0;
MVMint32 mid = (top + bottom) / 2;
while (bottom < mid) {
if (${VARNAME}select[mid][0] < ts) {
bottom = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}select[mid][0] > ts) {
top = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}select[mid][1] < nt) {
bottom = mid;
mid = (top + bottom) / 2;
} else if (${VARNAME}select[mid][1] > nt) {
top = mid;
mid = (top + bottom) / 2;
} else {
break;
}
}
if (${VARNAME}select[mid][0] != ts ||
${VARNAME}select[mid][1] != nt)
return -1;
return ${VARNAME}select[mid][2];
}
LOOKUP
close STDOUT;
__DATA__
# Minimal grammar to test tiler table generator
(tile: a (stack) reg 1)
(tile: c (addr reg $ofs) reg 2)
(tile: d (const $val) reg 2)
(tile: e (load reg $size) reg 5)
(tile: g (add reg reg) reg 2)
(tile: h (add reg (const $val)) reg 3)
(tile: i (add reg (load reg $size)) reg 6)
|