1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
// Copyright 2006-2008 the V8 project authors. All rights reserved.
#include <stdlib.h>
#include "cctest.h"
#include "double-conversion/diy-fp.h"
#include "double-conversion/utils.h"
#include "double-conversion/ieee.h"
using namespace double_conversion;
TEST(Uint64Conversions) {
// Start by checking the byte-order.
uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
CHECK_EQ(3512700564088504e-318, Double(ordered).value());
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
CHECK_EQ(5e-324, Double(min_double64).value());
uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
CHECK_EQ(1.7976931348623157e308, Double(max_double64).value());
}
TEST(Uint32Conversions) {
// Start by checking the byte-order.
uint32_t ordered = 0x01234567;
CHECK_EQ(2.9988165487136453e-38f, Single(ordered).value());
uint32_t min_float32 = 0x00000001;
CHECK_EQ(1.4e-45f, Single(min_float32).value());
uint32_t max_float32 = 0x7f7fffff;
CHECK_EQ(3.4028234e38f, Single(max_float32).value());
}
TEST(Double_AsDiyFp) {
uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
DiyFp diy_fp = Double(ordered).AsDiyFp();
CHECK_EQ(0x12 - 0x3FF - 52, diy_fp.e());
// The 52 mantissa bits, plus the implicit 1 in bit 52 as a UINT64.
CHECK(UINT64_2PART_C(0x00134567, 89ABCDEF) == diy_fp.f()); // NOLINT
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
diy_fp = Double(min_double64).AsDiyFp();
CHECK_EQ(-0x3FF - 52 + 1, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK(1 == diy_fp.f()); // NOLINT
uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
diy_fp = Double(max_double64).AsDiyFp();
CHECK_EQ(0x7FE - 0x3FF - 52, diy_fp.e());
CHECK(UINT64_2PART_C(0x001fffff, ffffffff) == diy_fp.f()); // NOLINT
}
TEST(Single_AsDiyFp) {
uint32_t ordered = 0x01234567;
DiyFp diy_fp = Single(ordered).AsDiyFp();
CHECK_EQ(0x2 - 0x7F - 23, diy_fp.e());
// The 23 mantissa bits, plus the implicit 1 in bit 24 as a uint32_t.
CHECK_EQ(0xA34567, diy_fp.f());
uint32_t min_float32 = 0x00000001;
diy_fp = Single(min_float32).AsDiyFp();
CHECK_EQ(-0x7F - 23 + 1, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK_EQ(1, diy_fp.f());
uint32_t max_float32 = 0x7f7fffff;
diy_fp = Single(max_float32).AsDiyFp();
CHECK_EQ(0xFE - 0x7F - 23, diy_fp.e());
CHECK_EQ(0x00ffffff, diy_fp.f());
}
TEST(AsNormalizedDiyFp) {
uint64_t ordered = UINT64_2PART_C(0x01234567, 89ABCDEF);
DiyFp diy_fp = Double(ordered).AsNormalizedDiyFp();
CHECK_EQ(0x12 - 0x3FF - 52 - 11, diy_fp.e());
CHECK((UINT64_2PART_C(0x00134567, 89ABCDEF) << 11) ==
diy_fp.f()); // NOLINT
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
diy_fp = Double(min_double64).AsNormalizedDiyFp();
CHECK_EQ(-0x3FF - 52 + 1 - 63, diy_fp.e());
// This is a denormal; so no hidden bit.
CHECK(UINT64_2PART_C(0x80000000, 00000000) == diy_fp.f()); // NOLINT
uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
diy_fp = Double(max_double64).AsNormalizedDiyFp();
CHECK_EQ(0x7FE - 0x3FF - 52 - 11, diy_fp.e());
CHECK((UINT64_2PART_C(0x001fffff, ffffffff) << 11) ==
diy_fp.f()); // NOLINT
}
TEST(Double_IsDenormal) {
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
CHECK(Double(min_double64).IsDenormal());
uint64_t bits = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
CHECK(Double(bits).IsDenormal());
bits = UINT64_2PART_C(0x00100000, 00000000);
CHECK(!Double(bits).IsDenormal());
}
TEST(Single_IsDenormal) {
uint32_t min_float32 = 0x00000001;
CHECK(Single(min_float32).IsDenormal());
uint32_t bits = 0x007FFFFF;
CHECK(Single(bits).IsDenormal());
bits = 0x00800000;
CHECK(!Single(bits).IsDenormal());
}
TEST(Double_IsSpecial) {
CHECK(Double(Double::Infinity()).IsSpecial());
CHECK(Double(-Double::Infinity()).IsSpecial());
CHECK(Double(Double::NaN()).IsSpecial());
uint64_t bits = UINT64_2PART_C(0xFFF12345, 00000000);
CHECK(Double(bits).IsSpecial());
// Denormals are not special:
CHECK(!Double(5e-324).IsSpecial());
CHECK(!Double(-5e-324).IsSpecial());
// And some random numbers:
CHECK(!Double(0.0).IsSpecial());
CHECK(!Double(-0.0).IsSpecial());
CHECK(!Double(1.0).IsSpecial());
CHECK(!Double(-1.0).IsSpecial());
CHECK(!Double(1000000.0).IsSpecial());
CHECK(!Double(-1000000.0).IsSpecial());
CHECK(!Double(1e23).IsSpecial());
CHECK(!Double(-1e23).IsSpecial());
CHECK(!Double(1.7976931348623157e308).IsSpecial());
CHECK(!Double(-1.7976931348623157e308).IsSpecial());
}
TEST(Single_IsSpecial) {
CHECK(Single(Single::Infinity()).IsSpecial());
CHECK(Single(-Single::Infinity()).IsSpecial());
CHECK(Single(Single::NaN()).IsSpecial());
uint32_t bits = 0xFFF12345;
CHECK(Single(bits).IsSpecial());
// Denormals are not special:
CHECK(!Single(1.4e-45f).IsSpecial());
CHECK(!Single(-1.4e-45f).IsSpecial());
// And some random numbers:
CHECK(!Single(0.0f).IsSpecial());
CHECK(!Single(-0.0f).IsSpecial());
CHECK(!Single(1.0f).IsSpecial());
CHECK(!Single(-1.0f).IsSpecial());
CHECK(!Single(1000000.0f).IsSpecial());
CHECK(!Single(-1000000.0f).IsSpecial());
CHECK(!Single(1e23f).IsSpecial());
CHECK(!Single(-1e23f).IsSpecial());
CHECK(!Single(1.18e-38f).IsSpecial());
CHECK(!Single(-1.18e-38f).IsSpecial());
}
TEST(Double_IsInfinite) {
CHECK(Double(Double::Infinity()).IsInfinite());
CHECK(Double(-Double::Infinity()).IsInfinite());
CHECK(!Double(Double::NaN()).IsInfinite());
CHECK(!Double(0.0).IsInfinite());
CHECK(!Double(-0.0).IsInfinite());
CHECK(!Double(1.0).IsInfinite());
CHECK(!Double(-1.0).IsInfinite());
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
CHECK(!Double(min_double64).IsInfinite());
}
TEST(Single_IsInfinite) {
CHECK(Single(Single::Infinity()).IsInfinite());
CHECK(Single(-Single::Infinity()).IsInfinite());
CHECK(!Single(Single::NaN()).IsInfinite());
CHECK(!Single(0.0f).IsInfinite());
CHECK(!Single(-0.0f).IsInfinite());
CHECK(!Single(1.0f).IsInfinite());
CHECK(!Single(-1.0f).IsInfinite());
uint32_t min_float32 = 0x00000001;
CHECK(!Single(min_float32).IsInfinite());
}
TEST(Double_IsNan) {
CHECK(Double(Double::NaN()).IsNan());
uint64_t other_nan = UINT64_2PART_C(0xFFFFFFFF, 00000001);
CHECK(Double(other_nan).IsNan());
CHECK(!Double(Double::Infinity()).IsNan());
CHECK(!Double(-Double::Infinity()).IsNan());
CHECK(!Double(0.0).IsNan());
CHECK(!Double(-0.0).IsNan());
CHECK(!Double(1.0).IsNan());
CHECK(!Double(-1.0).IsNan());
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
CHECK(!Double(min_double64).IsNan());
}
TEST(Single_IsNan) {
CHECK(Single(Single::NaN()).IsNan());
uint32_t other_nan = 0xFFFFF001;
CHECK(Single(other_nan).IsNan());
CHECK(!Single(Single::Infinity()).IsNan());
CHECK(!Single(-Single::Infinity()).IsNan());
CHECK(!Single(0.0f).IsNan());
CHECK(!Single(-0.0f).IsNan());
CHECK(!Single(1.0f).IsNan());
CHECK(!Single(-1.0f).IsNan());
uint32_t min_float32 = 0x00000001;
CHECK(!Single(min_float32).IsNan());
}
TEST(Double_Sign) {
CHECK_EQ(1, Double(1.0).Sign());
CHECK_EQ(1, Double(Double::Infinity()).Sign());
CHECK_EQ(-1, Double(-Double::Infinity()).Sign());
CHECK_EQ(1, Double(0.0).Sign());
CHECK_EQ(-1, Double(-0.0).Sign());
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
CHECK_EQ(1, Double(min_double64).Sign());
}
TEST(Single_Sign) {
CHECK_EQ(1, Single(1.0f).Sign());
CHECK_EQ(1, Single(Single::Infinity()).Sign());
CHECK_EQ(-1, Single(-Single::Infinity()).Sign());
CHECK_EQ(1, Single(0.0f).Sign());
CHECK_EQ(-1, Single(-0.0f).Sign());
uint32_t min_float32 = 0x00000001;
CHECK_EQ(1, Single(min_float32).Sign());
}
TEST(Double_NormalizedBoundaries) {
DiyFp boundary_plus;
DiyFp boundary_minus;
DiyFp diy_fp = Double(1.5).AsNormalizedDiyFp();
Double(1.5).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.5 does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
diy_fp = Double(1.0).AsNormalizedDiyFp();
Double(1.0).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.0 does have a significand of the form 2^p (for some p).
// Therefore its lower boundary is twice as close as the upper boundary.
CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f());
CHECK((1 << 9) == diy_fp.f() - boundary_minus.f()); // NOLINT
CHECK((1 << 10) == boundary_plus.f() - diy_fp.f()); // NOLINT
uint64_t min_double64 = UINT64_2PART_C(0x00000000, 00000001);
diy_fp = Double(min_double64).AsNormalizedDiyFp();
Double(min_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// min-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
// Denormals have their boundaries much closer.
CHECK((static_cast<uint64_t>(1) << 62) ==
diy_fp.f() - boundary_minus.f()); // NOLINT
uint64_t smallest_normal64 = UINT64_2PART_C(0x00100000, 00000000);
diy_fp = Double(smallest_normal64).AsNormalizedDiyFp();
Double(smallest_normal64).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// Even though the significand is of the form 2^p (for some p), its boundaries
// are at the same distance. (This is the only exception).
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
uint64_t largest_denormal64 = UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
diy_fp = Double(largest_denormal64).AsNormalizedDiyFp();
Double(largest_denormal64).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 11) == diy_fp.f() - boundary_minus.f()); // NOLINT
uint64_t max_double64 = UINT64_2PART_C(0x7fefffff, ffffffff);
diy_fp = Double(max_double64).AsNormalizedDiyFp();
Double(max_double64).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// max-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((1 << 10) == diy_fp.f() - boundary_minus.f()); // NOLINT
}
TEST(Single_NormalizedBoundaries) {
uint64_t kOne64 = 1;
DiyFp boundary_plus;
DiyFp boundary_minus;
DiyFp diy_fp = Single(1.5f).AsDiyFp();
diy_fp.Normalize();
Single(1.5f).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.5 does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
// Normalization shifts the significand by 8 bits. Add 32 bits for the bigger
// data-type, and remove 1 because boundaries are at half a ULP.
CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f());
diy_fp = Single(1.0f).AsDiyFp();
diy_fp.Normalize();
Single(1.0f).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// 1.0 does have a significand of the form 2^p (for some p).
// Therefore its lower boundary is twice as close as the upper boundary.
CHECK(boundary_plus.f() - diy_fp.f() > diy_fp.f() - boundary_minus.f());
CHECK((kOne64 << 38) == diy_fp.f() - boundary_minus.f()); // NOLINT
CHECK((kOne64 << 39) == boundary_plus.f() - diy_fp.f()); // NOLINT
uint32_t min_float32 = 0x00000001;
diy_fp = Single(min_float32).AsDiyFp();
diy_fp.Normalize();
Single(min_float32).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// min-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
// Denormals have their boundaries much closer.
CHECK((kOne64 << 62) == diy_fp.f() - boundary_minus.f()); // NOLINT
uint32_t smallest_normal32 = 0x00800000;
diy_fp = Single(smallest_normal32).AsDiyFp();
diy_fp.Normalize();
Single(smallest_normal32).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// Even though the significand is of the form 2^p (for some p), its boundaries
// are at the same distance. (This is the only exception).
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); // NOLINT
uint32_t largest_denormal32 = 0x007FFFFF;
diy_fp = Single(largest_denormal32).AsDiyFp();
diy_fp.Normalize();
Single(largest_denormal32).NormalizedBoundaries(&boundary_minus,
&boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((kOne64 << 40) == diy_fp.f() - boundary_minus.f()); // NOLINT
uint32_t max_float32 = 0x7f7fffff;
diy_fp = Single(max_float32).AsDiyFp();
diy_fp.Normalize();
Single(max_float32).NormalizedBoundaries(&boundary_minus, &boundary_plus);
CHECK_EQ(diy_fp.e(), boundary_minus.e());
CHECK_EQ(diy_fp.e(), boundary_plus.e());
// max-value does not have a significand of the form 2^p (for some p).
// Therefore its boundaries are at the same distance.
CHECK(diy_fp.f() - boundary_minus.f() == boundary_plus.f() - diy_fp.f());
CHECK((kOne64 << 39) == diy_fp.f() - boundary_minus.f()); // NOLINT
}
TEST(NextDouble) {
CHECK_EQ(4e-324, Double(0.0).NextDouble());
CHECK_EQ(0.0, Double(-0.0).NextDouble());
CHECK_EQ(-0.0, Double(-4e-324).NextDouble());
CHECK(Double(Double(-0.0).NextDouble()).Sign() > 0);
CHECK(Double(Double(-4e-324).NextDouble()).Sign() < 0);
Double d0(-4e-324);
Double d1(d0.NextDouble());
Double d2(d1.NextDouble());
CHECK_EQ(-0.0, d1.value());
CHECK(d1.Sign() < 0);
CHECK_EQ(0.0, d2.value());
CHECK(d2.Sign() > 0);
CHECK_EQ(4e-324, d2.NextDouble());
CHECK_EQ(-1.7976931348623157e308, Double(-Double::Infinity()).NextDouble());
CHECK_EQ(Double::Infinity(),
Double(UINT64_2PART_C(0x7fefffff, ffffffff)).NextDouble());
}
TEST(PreviousDouble) {
CHECK_EQ(0.0, Double(4e-324).PreviousDouble());
CHECK_EQ(-0.0, Double(0.0).PreviousDouble());
CHECK(Double(Double(0.0).PreviousDouble()).Sign() < 0);
CHECK_EQ(-4e-324, Double(-0.0).PreviousDouble());
Double d0(4e-324);
Double d1(d0.PreviousDouble());
Double d2(d1.PreviousDouble());
CHECK_EQ(0.0, d1.value());
CHECK(d1.Sign() > 0);
CHECK_EQ(-0.0, d2.value());
CHECK(d2.Sign() < 0);
CHECK_EQ(-4e-324, d2.PreviousDouble());
CHECK_EQ(1.7976931348623157e308, Double(Double::Infinity()).PreviousDouble());
CHECK_EQ(-Double::Infinity(),
Double(UINT64_2PART_C(0xffefffff, ffffffff)).PreviousDouble());
}
|