File: continuum_mod.f90

package info (click to toggle)
mocassin 2.02.73.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 42,116 kB
  • sloc: f90: 18,400; makefile: 75
file content (655 lines) | stat: -rw-r--r-- 22,117 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
! Copyright (C) 2005 Barbara Ercolano
!
! Version 2.02
module continuum_mod
    use constants_mod
    use common_mod
    use interpolation_mod

    ! common variables
    real, parameter      :: hcRyd_k = 157893.94    ! constant: h*cRyd/k (Ryd at inf used) [K]
    real, parameter      :: hcRyd = 2.1799153e-11  ! constant: h*c*Ryd (Ryd at inf used) [erg]
    real, parameter      :: cRyd = 3.2898423e15    ! constant: c*Ryd (Ryd at inf used) [Hz]


    real(kind=8), allocatable, save :: inSpectrumErg(:) ! input specrum energy distribution [erg/(cm^2*s*Hz*sr)]
    real(kind=8), allocatable, save :: inSpectrumPhot(:) ! input specrum energy distribution [phot/(cm^2*s*Hz*sr)]
    real, allocatable, save :: inSpectrumProbDen(:,:)  ! probability density for input spectrum (nstars,nbins)

    real, save          :: normConstantErg = 0.    ! normalization constant (area beyond input spectrum)
    real, save          :: normConstantPhot= 0.    ! normalization constant (area beyond input spectrum)
    real                :: correctionPhot
    real,save           :: RStar

    integer, parameter  :: maxLim = 200000        ! max number of rows in the input spectrum file
    integer             :: nuP                     ! frequency pointer

    logical, save       :: lgF=.true.

    contains


    subroutine setContinuum()
        implicit none

        ! local variables

        character(len=50) :: filein          ! input file name
        character(len=1) :: junk             ! used in file reading

        integer :: err                       ! allocation error status
        integer :: i, j, k, iStar            ! counters
        integer :: ios                       ! I/O error status
        integer :: numLam
        integer :: star1
        integer, parameter :: sb99nuLim=1221

        integer,dimension(nbins) :: lamCount
        real    :: skip, time                ! stellar surface [e36 cm^2]
        real(kind=8),dimension(maxLim)    :: tmp1, tmp2

        real, dimension(maxLim) :: enArray  ! freq array as read from input spectrum file [Hz]
        real(kind=8), dimension(maxLim)  :: Hflux    ! flux array as read from input spectrum file [erg/cm^2/s/Hz/sr]


        print*, 'in setContinuum ', contShape

        ios = 0

        lamCount=0

        ! initialize arrays
        if (lgF) then
           allocate(inSpectrumErg(nbins), stat = err)
           if (err /= 0) then
              print*, "! setContinuum: can't allocate grid memory"
              stop
           end if
           allocate(inSpectrumPhot(nbins), stat = err)
           if (err /= 0) then
              print*, "setContinuum: can't allocate grid memory"
              stop
           end if
           lgF = .false.
        end if
        allocate(inSpectrumProbDen(0:nStars,nbins), stat = err)
        if (err /= 0) then
            print*, "setContinuum: can't allocate grid memory"
            stop
        end if

        inSpectrumProbDen = 0.

        ! find the Lyman limit
        call locate(nuArray, 1., lymanP)

        if (Ldiffuse >0.) then
           star1 = 0
        else
           star1 = 1
        end if

        do iStar=star1, nStars

           ! initialise arrays
           enArray           = 0.
           Hflux             = 0.
           inSpectrumErg     = 0.
           inSpectrumPhot    = 0.
           inSpectrumProbDen(iStar,:) = 0.

           filein = contShape(iStar)

           ! open file for reading
           close(12)
           open(unit = 12, file=filein,  action="read", status = 'old', position = 'rewind', iostat=err)

           if (err /= 0) then

              ! then maybe a set continuum has been chosen
              print*, 'contShape ', contShape(iStar)
              do i = 1, nbins
                 inSpectrumErg(i) = getFlux(nuArray(i), Tstellar(iStar), contShape(iStar))
                 inSpectrumPhot(i) = inSpectrumErg(i)/ (nuArray(i)*hcRyd)

              end do


           else
              print*, 'contShape,spID ', contShape(iStar), spID(iStar)
              select case(spID(iStar))
              case ('sb99')

                 ! Starburst99 input
                 ! NOTE: the file must be in the format of 5 columns
                 !       the first containing the time step
                 !       the second the lambda points (A)
                 !       and the fourth containing the stellar spectrum points
                 !       (erg/s/A/sr). The file must be in ascending
                 !       wavenegth order.
                 !       First 7 lines are comments
                 ! check if the end of the file has been reached
                 if (taskid==0) print*, '! setContinuum: reading STARBURST99 File at t= ',tStep(iStar)
                 do j = 1, 7
                    read(unit=12, fmt=*)
                 end do

                 do j = 1, maxLim

                    read(unit=12, fmt=*, iostat=ios) time
                    if (ios < 0) exit ! end of file reached

                    if (time == tStep(iStar)) then
                       backspace(12)
                       do k = 1, sb99nuLim
                          read(12, *) time, enArray(k), skip, Hflux(k)

                          ! change Log L(lambda) [erg/s/A] into L(nu) [erg/s/Hz]
                          tmp1(k) = (10.**(Hflux(k))*(1.e-8*enArray(k)**2))/c

                          ! change to Ryd
                          tmp2(k) = (c/(enArray(k)*1.e-8))/cRyd

                       end do
                       exit
                    end if

                 end do

                 close(12)

                 do i = 1,sb99nuLim

                    Hflux(i) = tmp1(sb99nuLim-i+1)
                    enArray(i) = real(tmp2(sb99nuLim-i+1))

                 end do

                 do j = 1, sb99nuLim

                    if (enArray(j) >= nuArray(1)-widflx(1)/2. .and.&
                         & enArray(j) < nuArray(1)+widflx(1)/2.) then
                       inSpectrumErg(1) = inSpectrumErg(1)+Hflux(j)
                       lamCount(1) = lamCount(1)+1
                    end if
                    do i = 2, nbins-1
                       if(enArray(j)>=(nuArray(i-1)+nuArray(i))/2. .and.&
                            & enArray(j)<(nuArray(i+1)+nuArray(i))/2.) then
                          inSpectrumErg(i) = inSpectrumErg(i)+Hflux(j)
                          lamCount(i) = lamCount(i)+1

                       end if
                    end do
                    if(enArray(j)>=nuArray(nbins)-widflx(nbins)/2. .and.&
                         & enArray(j) < nuArray(nbins)+widflx(nbins)/2.) then
                       inSpectrumErg(nbins) = inSpectrumErg(nbins)+Hflux(j)
                       lamCount(nbins) = lamCount(nbins)+1
                    end if

                 end do


                 do i = 1, nbins
                    if (lamCount(i)>0) then

                       inSpectrumErg(i) = inSpectrumErg(i)/real(lamCount(i))
                    end if

                    inSpectrumPhot(i) = inSpectrumErg(i)/ (nuArray(i)*hcRyd)
                 end do

                 do i = 2, nbins-1
                    if (inSpectrumErg(i) <= 0. .and. inSpectrumErg(i-1)>0.) then
                       do j = i+1, nbins
                          if (inSpectrumErg(j) > 0.) then
                             inSpectrumErg(i) = inSpectrumErg(i-1)-&
                                  & ( (nuArray(i)-nuArray(i-1))*&
                                  & (inSpectrumErg(i-1)-inSpectrumErg(j))/&
                                  & (nuArray(j)-nuArray(i-1)))
                             exit
                          end if
                       end do
                    end if

                 end do

              case ('rauch')
                 do j = 1, maxLim

                    ! check if the end of file has been reached
                    ! NOTE: the file must be in the format of two columns
                    !       the first containing the lambda points (A)
                    !       and the second containing the input spectrum points
                    !       (erg/cm^2/s/A/sr). The file must be in ascending
                    !       wavenegth order. See e.g. Thomas Rauch's tables
                    !       http://astro.uni-tuebingen.de/~rauch/

                    ! check if the end of the file has been reached
                    read(unit=12, fmt=*, iostat=ios) junk
                    if (ios < 0) exit ! end of file reached
                    if (junk.eq."*") cycle

                    backspace(12)
                    read(12, *) enArray(j), Hflux(j)

                    ! change Hflux(lambda) [erg/cm^"/s/A/sr] into Hflux(nu) [erg/cm^2/s/Hz]

                    tmp1(j) = (Hflux(j)*(1.e-8*enArray(j)**2))/c/4.

                    ! change to Ryd
                    tmp2(j) = (c/(enArray(j)*1.e-8))/cRyd

                 end do

                 close(12)

                 do i = 1,j-1

                    Hflux(i) = tmp1(j-1-i+1)
                    enArray(i) = real(tmp2(j-1-i+1))

                 end do

                 numLam = j-1

                 do j = 1, numLam

                    if (enArray(j) >= nuArray(1)-widflx(1)/2. .and.&
                         & enArray(j) < nuArray(1)+widflx(1)/2.) then
                       inSpectrumErg(1) = inSpectrumErg(1)+Hflux(j)
                       lamCount(1) = lamCount(1)+1
                    end if
                    do i = 2, nbins-1
                       if(enArray(j)>=(nuArray(i-1)+nuArray(i))/2. .and.&
                            & enArray(j)<(nuArray(i+1)+nuArray(i))/2.) then
                          inSpectrumErg(i) = inSpectrumErg(i)+Hflux(j)
                          lamCount(i) = lamCount(i)+1
                       end if
                    end do
                    if(enArray(j)>=nuArray(nbins)-widflx(nbins)/2. .and.&
                         & enArray(j) < nuArray(nbins)+widflx(nbins)/2.) then
                       inSpectrumErg(nbins) = inSpectrumErg(nbins)+Hflux(j)
                       lamCount(nbins) = lamCount(nbins)+1
                    end if

                 end do

                 do i = 1, nbins
                    if (lamCount(i)>0) then
                       inSpectrumErg(i) = inSpectrumErg(i)/real(lamCount(i))
                    end if
                    inSpectrumPhot(i) = inSpectrumErg(i)/ (nuArray(i)*hcRyd)
                 end do

                 ! get physical flux
                 inSpectrumErg = fourPi*inSpectrumErg
                 inSpectrumPhot = fourPi*inSpectrumPhot

              case default

                 print*, '! setContinuum: unsupported spectrum ID', i, spID(i)
                 stop

              end select

           end if

          ! set the input spectrum probability density distribution
          call setProbDen(iStar)


       end do

       if (nStars==1) then
          if (LPhot > 0. ) then  ! calculate Lstar [e36 erg/s]

             if (contShape(1) == 'powerlaw') then
                print*, '! setContinuum: powerlaw do not allow Lphot. Please resubmit with Lstar.'
                stop
             end if

             RStar = sqrt(Lphot / (fourPi*normConstantPhot*cRyd))

              LStar(1) = fourPi*RStar*RStar*sigma*TStellar(1)**4

              deltaE(1)=Lstar(1)/nPhotons(1)

              if (taskid==0) then
                print*, "Q(H) = ", LPhot, " [e36 phot/s]"
                print*, "LStar= ", LStar(1), " [e36 erg/s]"
                print*, "RStar = ", RStar, " [e18 cm]"
                print*, "deltaE = ", deltaE, " [e36 erg/s]"
              endif

           else if (allocated(Lstar)) then ! calculate LPhot [e36 phot/s]

              deltaE(1)=Lstar(1)/nPhotons(1)

              if (contShape(1) /= 'powerlaw') then
                 RStar = sqrt(Lstar(1) / (fourPi*sigma*TStellar(1)**4))

                 LPhot = fourPi*RStar*RStar*normConstantPhot*cRyd

                 if (taskid==0) then
                   print*, "RStar = ", RStar, " [e18 cm]"
                   print*, "Q(H) = ", LPhot, " [e36 phot/s]"
                   print*, "LStar = ", LStar(1), " [e36erg/s]"
                 endif

              end if

              if (taskid==0) print*, "deltaE = ", deltaE(1), " [e36 erg/s]"

           end if


        end if

        if (Ldiffuse>0. .and. nPhotonsDiffuse>0 ) then
           deltaE(0) = Ldiffuse/nPhotonsDiffuse
        end if

        print*, 'out setContinuum'

      end subroutine setContinuum


    ! this function returns energy distribution [erg/(cm^2*s*Hz*sr)] for the
    ! continuum specified by contShape at the specified cell
    function getFlux(energy, temperature, cShape)

        real, intent(in) :: energy     ! energy [Ryd]
        real, intent(in) :: temperature! temperature [K]

        real :: constant               ! units constant
        real :: denominator            ! denominator
        real :: getFlux                ! erg/(cm^2*s*Hz*sr)

        character(len=50), intent(in) :: cShape


        ! calculate the input spectrum
        ! this is the Planck function divided by h (to avoid underflow)
        select case (cShape)
        case ("blackbody")
            constant = 0.5250229/hPlanck ! 2*fr1Ryd^3 / c^2 [erg/cm^2]

            ! Planck's law: B(T) = (2 h nu^3/c^2) / (exp(h nu / (k T)) - 1)
            ! transformaion of frequency into Ryd: nu = Ryd c nu [Ryd]

            if (hcRyd_k*energy/temperature > 86.) then
               ! Wien distribution
                getFlux = constant*energy*energy*energy*&
                     & exp(dble(-hcRyd_k*energy/temperature)) ! single precision maximum exponent is -87.3365479, double precision necessary to avoid FPEs
               return
            end if

            denominator = (exp(hcRyd_k*energy/temperature)-1.)

            if (denominator <= 0.) then

               ! Rayleigh-Jeans distribution
               ! 2*fr1Ryd2*k/c^2 = 3.32154e-6
               getFlux = 3.32154e-6*energy*energy*temperature/hPlanck
               return
            end if

            getFlux = constant*energy*energy*energy/&
                    & denominator

            return

         case ("powerlaw")

            if (energy>=nuMin .and. energy <= nuMax) then
               getFlux = energy**(-pwlIndex)
            else
               getFlux = 0.
            end if
            return

        case default
            print*, "! getFlux: invalid continuum shape", cShape
            stop
        end select

    end function getFlux

    subroutine setProbDen(iS)
        implicit none

        ! local variables
        integer, intent(in) :: iS         ! central star index

        integer :: i                      ! counter

        real :: maxp

        double precision :: inSpSumErg(nbins)    ! partial input spectrum sum [erg/s]
        double precision :: inSpSumPhot(nbins)   ! partial input spectrum sum [phot/s]

        inSpSumPhot = 0.
        inSpSumErg = 0.

!        if (taskid==0) print*,'Ionising/illuminating spectrum:'

        do i = 1, nbins
!           if (taskid==0) print*, i, nuArray(i),  inSpectrumErg(i)
           inSpSumErg(i)  =  real(inSpectrumErg(i))
           inSpSumPhot(i) =  real(inSpectrumPhot(i))
        end do

        ! calculate normalization constants
        normConstantErg=0.
        do i = 1, nbins
            normConstantErg   = normConstantErg  + inSpSumErg(i)*widFlx(i)
        end do

        normConstantPhot=0.
        do i = lymanP, nbins
           normConstantPhot  = normConstantPhot + inSpSumPhot(i)*widFlx(i)
        end do

        ! normalise spectrum and calculate PDF
        inSpectrumProbDen(iS,1) = inSpSumErg(1)*widFlx(1)/normConstantErg
        do i = 2, nbins
           inSpectrumProbDen(iS,i) = inSpectrumProbDen(iS,i-1) + &
                & inSpSumErg(i)*widFlx(i)/normConstantErg
        end do
        maxp = 0.
        do i = 1, nbins
           if (inSpectrumProbDen(iS,i)>maxp) maxp = inSpectrumProbDen(iS,i)
        end do

        do i = 1, nbins
           if (inSpectrumProbDen(iS,i)>=maxp) inSpectrumProbDen(iS,i)=1.

        end do

        if (contShape(iS)=='blackbody') then
           normConstantErg = Pi*normConstantErg*hPlanck
           normConstantPhot = Pi*normConstantPhot*hPlanck
        end if

      end subroutine setProbDen

      subroutine setLdiffuse(grid)
        implicit none

        type(grid_type), intent(inout) :: grid(1:nGrids)

        real    :: norm, dV

        integer :: iloc, igrid, ix, iy, iz, ngridsloc

        if (emittingGrid>0) then
           nGridsloc=emittingGrid
        else
           nGridsloc=nGrids
        end if

        if (lgGas) then
           norm = 0.
           do igrid = 1, nGridsloc
              do ix = 1, grid(igrid)%nx
                 do iy = 1, grid(igrid)%ny
                    do iz = 1, grid(igrid)%nz
                       if (grid(igrid)%active(ix,iy,iz)>0) then
                          dV = getVolumeCon(grid(igrid),ix,iy,iz)
                          iloc = grid(igrid)%active(ix,iy,iz)
                          norm = norm+grid(igrid)%Hden(iloc)*dV
                       end if
                    end do
                 end do
              end do
           end do

           norm = Ldiffuse/norm

           do igrid = 1, nGridsloc
              do ix = 1, grid(igrid)%nx
                 do iy = 1, grid(igrid)%ny
                    do iz = 1, grid(igrid)%nz
                       if (grid(igrid)%active(ix,iy,iz)>0) then
                          dV = getVolumeCon(grid(igrid),ix,iy,iz)
                          iloc = grid(igrid)%active(ix,iy,iz)
                          grid(igrid)%LdiffuseLoc(iloc) = norm*grid(igrid)%Hden(iloc)*dV
                       end if
                    end do
                 end do
              end do
           end do

        else if (lgDust) then
           norm = 0.

           do igrid = 1, nGridsloc
              do ix = 1, grid(igrid)%nx
                 do iy = 1, grid(igrid)%ny
                    do iz = 1, grid(igrid)%nz
                       if (grid(igrid)%active(ix,iy,iz)>0) then
                          dV = getVolumeCon(grid(igrid),ix,iy,iz)
                          iloc = grid(igrid)%active(ix,iy,iz)
                          norm = norm+grid(igrid)%nDust(iloc)*dV
                       end if
                    end do
                 end do
              end do
           end do

           norm = Ldiffuse/norm
           do igrid = 1, nGridsloc
              do ix = 1, grid(igrid)%nx
                 do iy = 1, grid(igrid)%ny
                    do iz = 1, grid(igrid)%nz
                       if (grid(igrid)%active(ix,iy,iz)>0) then
                          dV = getVolumeCon(grid(igrid),ix,iy,iz)
                          iloc = grid(igrid)%active(ix,iy,iz)
                          grid(igrid)%LdiffuseLoc(iloc) = norm*grid(igrid)%nDust(iloc)*dV
                       end if
                    end do
                 end do
              end do
           end do
        else
           print*, 'setLdiffuse: insanity - no dust or gas!'
           stop
        end if

      end subroutine setLdiffuse

      ! this function returns the volume of a cell in [e45 cm^3]
      function getVolumeCon(grid,xP, yP, zP)
        implicit none

        type(grid_type),intent(in) :: grid              ! the grid

        integer, intent(in)        :: xP, yP, zP        ! cell indeces

        real                       :: getVolumeCon         ! volume of the cell [e45 cm^3]

        ! local variables

        real                       :: dx, &             ! cartesian axes increments
&                                      dy, &             ! in [cm]
&                                      dz                !

        if (lg1D) then
           if (nGrids>1) then
              print*, '! getVolumeCon: 1D option and multiple grids options are not compatible'
              stop
           end if

           if (xP == 1) then

              getVolumeCon = 4.*Pi* ( (grid%xAxis(xP+1)/1.e15)**3)/3.


           else if ( xP==grid%nx) then

              getVolumeCon = Pi* ( (3.*(grid%xAxis(xP)/1.e15)-(grid%xAxis(xP-1)/1.e15))**3 - &
                   & ((grid%xAxis(xP)/1.e15)+(grid%xAxis(xP-1)/1.e15))**3 ) / 6.

           else

              getVolumeCon = Pi* ( ((grid%xAxis(xP+1)/1.e15)+(grid%xAxis(xP)/1.e15))**3 - &
                   & ((grid%xAxis(xP-1)/1.e15)+(grid%xAxis(xP)/1.e15))**3 ) / 6.

           end if

           getVolumeCon = getVolumeCon/8.

        else

           if ( (xP>1) .and. (xP<grid%nx) ) then
              dx = abs(grid%xAxis(xP+1)-grid%xAxis(xP-1))/2.
           else if ( xP==1 ) then
              if (lgSymmetricXYZ) then
                 dx = abs(grid%xAxis(xP+1)-grid%xAxis(xP))/2.
              else
                 dx = abs(grid%xAxis(xP+1)-grid%xAxis(xP))
              end if
           else if ( xP==grid%nx ) then
              dx = abs(grid%xAxis(xP)  -grid%xAxis(xP-1))
           end if

           if ( (yP>1) .and. (yP<grid%ny) ) then
              dy = abs(grid%yAxis(yP+1)-grid%yAxis(yP-1))/2.
           else if ( yP==1 ) then
              if (lgSymmetricXYZ) then
                 dy = abs(grid%yAxis(yP+1)-grid%yAxis(yP))/2.
              else
                dy = abs(grid%yAxis(yP+1)-grid%yAxis(yP))
             end if
          else if ( yP==grid%ny ) then
             dy = abs(grid%yAxis(yP)  -grid%yAxis(yP-1))
          end if

          if ( (zP>1) .and. (zP<grid%nz) ) then
             dz = abs(grid%zAxis(zP+1)-grid%zAxis(zP-1))/2.
          else if ( zP==1 ) then
             if (lgSymmetricXYZ) then
                dz = abs(grid%zAxis(zP+1)-grid%zAxis(zP))/2.
             else
                dz = abs(grid%zAxis(zP+1)-grid%zAxis(zP))
             end if
          else if ( zP==grid%nz ) then
             dz = abs(grid%zAxis(zP)-grid%zAxis(zP-1))
          end if

          dx = dx/1.e15
          dy = dy/1.e15
          dz = dz/1.e15


          ! calculate the volume
          getVolumeCon = dx*dy*dz


       end if

    end function getVolumeCon


end module continuum_mod