1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
! Copyright (C) 2005 Barbara Ercolano
!
! Version 2.02
module interpolation_mod
contains
subroutine sortUp(arr)
implicit none
real, dimension(:), intent(inout) :: arr
real, allocatable :: tmp(:)
real :: min
integer :: i, j
integer :: n ! size
n = size(arr)
allocate(tmp(n))
min = 1.e30
do i = 1, n
if (arr(i) < min) min = arr(i)
end do
tmp(1) = min
do j = 2, n
min = 1.e30
do i = 1, n
if (arr(i) < min .and. arr(i) > tmp(j-1)) min = arr(i)
end do
tmp(j) = min
end do
arr = tmp
deallocate(tmp)
end subroutine sortUp
! given an array xa of length n, and given a value x, this
! routine returns a value ns, such that x is located between
! xa(ns) and xa(ns+1)
! ns = 0 or ns=n is returned to indicate that x is out
! of range.
subroutine locate(xa,x,ns)
implicit none
integer, intent(out) :: ns
real, dimension(:), intent(in) :: xa ! input array
real, intent(in) :: x ! variable to be located
! local variables
integer :: n ! size of array xa
n = size(xa)
! first check if x is out of range
if ( x > xa(n) ) then
ns = n
return
end if
if ( x < xa(1) ) then
ns = 0
return
end if
! if not, then locate
! the command finds the location of the smallest positive value of xa-x
! x lies between this location and the previous one
! so subtract one, and then x lies between xa(ns) and xa(ns+1)
ns=max(minloc((xa-x),1,(xa-x).gt.0)-1,1)
end subroutine locate
! this routine will map y(x) onto x_new and return y_new(x_new)
! mapping is carried out by means of linear interpolation
subroutine linearMap(y, x, nx, y_new, x_new, nx_new)
implicit none
real, intent(out) :: y_new(*)
real, intent(in) :: y(*), x(*), x_new(*)
integer, intent(in) :: nx, nx_new
integer :: i, ii
do i = 1, nx_new
call locate(x(1:nx), x_new(i), ii)
if (ii==0) then
y_new(i) = y(1)
else if (ii==nx) then
y_new(i) = y(nx)
else
y_new(i) = y(ii) +(y(ii+1)-y(ii))*(x_new(i)-x(ii))/(x(ii+1)-x(ii))
end if
end do
end subroutine linearMap
! subroutine polint carries out polynomial interpoation
! or extrapolation. given arrays xa nd ya, each of length
! n, and given a value x, it returns a value y and an
! error estimate dy.
subroutine polint(xa, ya, x, y, dy)
implicit none
real, dimension(:), intent(in) :: xa, ya
real, intent(in) :: x
real, intent(out) :: y, dy
! local variables
integer :: i, m ! counters
integer :: n ! size of the arrays
integer :: ns = 1
real :: den, ho, hp, w
real, dimension(size(xa)) :: c, d
! locate the index ns closest to the table entry
call locate(xa, x, ns)
c = ya
d = ya
y = ya(ns)
ns = ns-1
n = size(xa)
! for each entry in the table, loop over the current
! c's and d's and update them
do m=1, n-1
do i = 1, n-m
ho = xa(i) - x
hp = xa(i+m) - x
w = c(i+1) - d(i)
den = ho - hp
if (den == 0) then
print*, "! polint: two input xa's &
& identical (to within roundoff)"
stop
end if
den = w/den
! update c and d
d(i) = hp*den
c(i) = ho*den
end do
! after each column in the table, decide the
! correction c or d to be added to the
! accumulating value of y.
if ( (2*ns) < (n-m) ) then
dy = c(ns+1)
else
dy = d(ns)
ns = ns-1
end if
y = y+dy
end do
end subroutine polint
! subroutine spline given arrays wa and ya each of length
! n and given yp1 and ypn for the first derivatives of
! the interpolating function at points 1 and n
! respectively, returns the array y2a of length n
! containing the second derivatives of the interpolating
! funtion at the tabulated points. to use the condition
! of natural spline (2nd derivatives = 0 at the end
! points) set yp1 and ypn to a value > or = to 1.e30.
subroutine spline(xa, ya, yp1,ypn, y2a)
implicit none
real, dimension(:), intent(inout) :: xa, ya
real, intent(in) :: yp1, ypn
real, dimension(:), intent(out) :: y2a
! local variables
integer :: i, k ! counters
integer :: n ! size of the arrays
integer, parameter :: nmax=500! safety limit
real :: p, qn, sig, un
real, dimension(nmax) :: u
n = size(xa)
if (yp1 > .99e30) then
y2a(1) = 0.
u(1) = 0.
else
y2a(1) = -.5
if ((xa(2)-xa(1))==0.) then
print*, "! spline: bad xa input or x out of range [2,1] "
stop
end if
u(1) = (3./(xa(2)-xa(1)))* &
& ((ya(2)-ya(1))/(xa(2)-xa(1))-yp1)
end if
do i = 2, n-1
if ((xa(i+1)-xa(i-1))==0.) then
print*, "! spline: bad xa input or x out of range [i+1, i-1] ", (i+1), (i-1)
stop
end if
sig = (xa(i)-xa(i-1))/(xa(i+1)-xa(i-1))
p=sig*y2a(i-1)+2.
y2a(i)=(sig-1.)/p
if ((xa(i+1)-xa(i))==0.) then
print*, "! spline: bad xa input or x out of range [i+1, i] ", (i+1), (i)
stop
end if
if ((xa(i)-xa(i-1))==0.) then
print*, "! spline: bad xa input or x out of range [i, i-1] ", (i), (i-1)
stop
end if
u(i)= ya(i+1)
u(i)=u(i) - ya(i)
u(i) = u(i) / (xa(i+1)-xa(i))
u(i)= u(i) - (ya(i)-ya(i-1))/(xa(i)-xa(i-1))
u(i)=(6.*u(i)/(xa(i+1)-xa(i-1)) - sig*u(i-1))/p
end do
if (ypn > .99e30) then
qn=0.
un=0.
else
qn=0.5
if ((xa(n)-xa(n-1))==0.) then
print*, "! spline: bad xa input or x out of range [n, n-1] ", n, (n-1)
stop
end if
un=(3./(xa(n)-xa(n-1))) * &
& (ypn-(ya(n)-ya(n-1))/(xa(n)-xa(n-1)))
end if
y2a(n)=(un-qn*u(n-1))/(qn*y2a(n-1)+1.)
do k = (n-1), 1, -1
y2a(k) = y2a(k)*y2a(k+1)+u(k)
end do
end subroutine spline
! subroutine splint, given the arrays xa and ya each of
! length n and given the array y2a, which is the output
! from the subroutine spline, it returns a cubic spline
! interpolated value y for the given x
! NOTE: if x is out of range splint will return the limit
! values
subroutine splint(xa, ya, y2a, x, y)
real, dimension(:), intent(in) :: xa, ya, y2a
real, intent(in) :: x
real, intent(out) :: y
! local variables
integer :: klo, khi, i, n
integer, parameter :: imax = 1000
real :: a, b, h
n = size(xa)
! check if x is within range
if ( x <= xa(1) ) then
y = ya(1)
return
else if ( x >= xa(n) ) then
y = ya(n)
return
end if
klo = 1
khi = n
do i = 1, imax
if ( (khi-klo) <= 1) exit
k = (khi+klo)/2
if (xa(k) > x) then
khi=k
else
klo=k
end if
end do
h=xa(khi)-xa(klo)
if (h==0.) then
print*, "! splint: bad xa input or x out of range [khi, klow] ", khi, klo
stop
end if
a = (xa(khi) - x)/h
b = (x - xa(klo))/h
y = a*ya(klo)+b*ya(khi) + &
& ((a**3-a)*y2a(klo)+(b**3-b)*y2a(khi)) * &
& (h**2)/6.
end subroutine splint
! this function performs a linear interpolation of a scalar quantity in a
! frequency dependent 3D grid. the interpolation coefficients t1, t2, t3 are
! are left to be calculated in the calling program, so that only a small
! number or arguments need to be passed to the procedure
function interpGrid(s3Dgrid, s4DGrid, s5Dgrid, xP, yP, zP, freqP, elem, ion, t1, t2, t3)
implicit none
integer, intent(in) :: xP, yP, zP ! x, y and z axes indeces
integer, intent(in), optional :: freqP ! frequency index
integer, intent(in), optional :: elem ! element index
integer, intent(in), optional :: ion ! ion index
real, intent(in), dimension(:,:,:),&
& optional :: s3Dgrid ! 3D scalar grid
real, intent(in), dimension(:,:,:,:),&
& optional :: s4Dgrid ! 4D scalar grid
real, intent(in), dimension(:,:,:,:,:),&
& optional :: s5Dgrid ! 5D scalar grid
real, intent(in) :: t1, t2, t3 ! interpolation coefficients
real :: interpGrid ! interpolated value
if ( present(freqP) .and. (.not.present(elem)) .and. (.not.present(ion)) ) then
if(.not.present(s4Dgrid)) then
print*, "! interpGrid: insanity occurred - arguments incompatible"
stop
end if
interpGrid = &
& ((1.-t1) * (1.-t2) * (1.-t3))* s4Dgrid(xP , yP , zP , freqP) + &
& ((t1 ) * (1.-t2) * (1.-t3))* s4Dgrid(xP+1, yP , zP , freqP) + &
& ((t1 ) * (t2 ) * (1.-t3))* s4Dgrid(xP+1, yP+1 , zP , freqP) + &
& ((1.-t1) * (t2 ) * (t3 ))* s4Dgrid(xP , yP+1 , zP+1 , freqP) + &
& ((1.-t1) * (t2 ) * (1.-t3))* s4Dgrid(xP , yP+1 , zP , freqP) + &
& ((t1 ) * (1.-t2) * (t3 ))* s4Dgrid(xP+1, yP , zP+1 , freqP) + &
& ((1.-t1) * (1.-t2) * (t3 ))* s4Dgrid(xP , yP , zP+1 , freqP) + &
& ((t1 ) * (t2 ) * (t3 ))* s4Dgrid(xP+1, yP+1 , zP+1 , freqP)
else if ((.not.present(freqP)) .and. present(elem) .and. present(ion) ) then
if(.not.present(s5Dgrid)) then
print*, "! interpGrid: insanity occurred - arguments incompatible"
stop
end if
interpGrid = &
& ((1.-t1) * (1.-t2) * (1.-t3))* s5Dgrid(xP , yP , zP , elem, ion) + &
& ((t1 ) * (1.-t2) * (1.-t3))* s5Dgrid(xP+1, yP , zP , elem, ion) + &
& ((t1 ) * (t2 ) * (1.-t3))* s5Dgrid(xP+1, yP+1 , zP , elem, ion) + &
& ((1.-t1) * (t2 ) * (t3 ))* s5Dgrid(xP , yP+1 , zP+1 , elem, ion) + &
& ((1.-t1) * (t2 ) * (1.-t3))* s5Dgrid(xP , yP+1 , zP , elem, ion) + &
& ((t1 ) * (1.-t2) * (t3 ))* s5Dgrid(xP+1, yP , zP+1 , elem, ion) + &
& ((1.-t1) * (1.-t2) * (t3 ))* s5Dgrid(xP , yP , zP+1 , elem, ion) + &
& ((t1 ) * (t2 ) * (t3 ))* s5Dgrid(xP+1, yP+1 , zP+1 , elem, ion)
else if ((.not.present(freqP)) .and. (.not.present(elem)) .and. (.not.present(ion)) ) then
if(.not.present(s3Dgrid)) then
print*, "! interpGrid: insanity occurred - arguments incompatible"
stop
end if
interpGrid = &
& ((1.-t1) * (1.-t2) * (1.-t3))* s3Dgrid(xP , yP , zP ) + &
& ((t1 ) * (1.-t2) * (1.-t3))* s3Dgrid(xP+1, yP , zP ) + &
& ((t1 ) * (t2 ) * (1.-t3))* s3Dgrid(xP+1, yP+1 , zP ) + &
& ((1.-t1) * (t2 ) * (t3 ))* s3Dgrid(xP , yP+1 , zP+1) + &
& ((1.-t1) * (t2 ) * (1.-t3))* s3Dgrid(xP , yP+1 , zP ) + &
& ((t1 ) * (1.-t2) * (t3 ))* s3Dgrid(xP+1, yP , zP+1) + &
& ((1.-t1) * (1.-t2) * (t3 ))* s3Dgrid(xP , yP , zP+1) + &
& ((t1 ) * (t2 ) * (t3 ))* s3Dgrid(xP+1, yP+1 , zP+1)
end if
end function interpGrid
end module interpolation_mod
|