1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
|
! Copyright (C) 2005 Barbara Ercolano
!
! Version 2.02
module ionization_mod
use common_mod ! common variables
use constants_mod ! physical constants
use xSec_mod ! x sections module
! common variables
real, allocatable :: contBoltz(:) ! Boltzman factors for the continuum array
real, allocatable :: FFOpacity(:) ! FF opacity
real, allocatable :: log10nuArray(:) ! log10(nu) at this cell
real, allocatable &
&:: density(:,:) ! abundance*ionDensity*HDen [cm^-3]
real, save :: log10Ne ! log10(Ne) at this cell
real, save :: log10Te ! log10(Te) at this cell
real, save :: sqrTeUsed ! sqr(Te) at this cell
real, save :: eDenFFSum=0. ! sum of heavy elements free electrons
contains
! main routine to drive ionization solution for all species
subroutine ionizationDriver(grid, ix, iy, iz)
implicit none
integer, intent(in) :: ix, iy, iz ! pointers to cell in the x,y,z grid
logical, save :: firstLg=.true. ! first time?
type(grid_type), intent(inout) :: grid
! local variables
integer :: err ! allocation error status
integer :: i, n ! counter
! check whether this cell is outside the nebula
if (grid%active(ix,iy,iz) <= 0) return
if (firstLg) then
allocate(density(nElements, nStages), stat=err)
if (err /= 0) then
print*, "! ionizationDriver: can't allocate grid memory"
stop
end if
end if
density=0.
! find the physical properties of this cell
ionDenUsed = grid%ionDen(grid%active(ix, iy, iz), :,:)
log10Ne = log10(grid%Ne(grid%active(ix, iy, iz)))
log10Te = log10(grid%Te(grid%active(ix, iy, iz)))
NeUsed = grid%Ne(grid%active(ix, iy, iz))
TeUsed = grid%Te(grid%active(ix, iy, iz))
sqrTeUsed = sqrt(TeUsed)
density = 0.
! find the ion number density [cm^-3] at this cell
do n = 1, nElements
do i= 1, min(n, nstages)
! check this element is present
if (.not.lgElementOn(n)) exit
if (grid%abFileIndex(ix,iy,iz)<=0) then
print*, '! ionizationDriver: abundance file index has value: ', grid%abFileIndex(ix,iy,iz)
print*, 'Cell: ', ix,iy,iz, grid%active(ix,iy,iz)
print*, 'Abundance file index array: ', grid%abFileIndex
stop
end if
density(n, i) = ionDenUsed(elementXref(n), i)*grid%elemAbun(grid%abFileIndex(ix,iy,iz),n)*&
& grid%Hden(grid%active(ix, iy, iz))
end do
end do
! initialize arrays if this is the first time the procedure is called
if (firstLg) then
allocate(log10nuArray(nbins), stat = err)
if (err /= 0) then
print*, "! ionizationDriver: can't allocate grid memory"
stop
end if
allocate(contBoltz(nbins), stat = err)
if (err /= 0) then
print*, "! ionizationDriver: can't allocate grid memory"
stop
end if
allocate(gauntFF(nbins), stat = err)
if (err /= 0) then
print*, "! ionizationDriver: can't allocate grid memory"
stop
end if
allocate(gauntFFHeII(nbins), stat = err)
if (err /= 0) then
print*, "! ionizationDriver: can't allocate grid memory"
stop
end if
allocate(FFOpacity(nbins), stat = err)
if (err /= 0) then
print*, "! ionizationDriver: can't allocate grid memory"
stop
end if
contBoltz = 0.
FFOpacity = 0.
gauntFF = 0.
gauntFFHeII = 0.
log10nuArray = log10(nuArray)
firstLg = .false.
end if
! re-evaluate gaunt factors and boltzmann factors
call BoltGaunt()
! (re)evauate the sum of heavy elements free electrons density
call eDenSum()
! reevaluate all opacities if new ionization
call addOpacity(grid%opacity(grid%active(ix, iy, iz), :))
end subroutine ionizationDriver
! this subroutine evaluates boltzmann factors for the continuum
! and related variables
subroutine BoltGaunt()
implicit none
! local variables
integer :: i ! counter
integer :: iflag ! status flag returned by getGauntFF
integer :: max ! upper nu limit given by 0 exp
real :: exponent ! exponenent
real, save :: TeOld1=-1., TeOld2=-1. ! te on last run of sub
! correction factors for induced recombination
! are also used as Boltzmann factors.
! check for temperature changes or for first evaluation
if ( (TeOld1 /= TeUsed) .or. (contBoltz(1) <= 0.) ) then
TeOld1 = TeUsed
do i = 1, nbins
exponent = (Te1Ryd / TeUsed) + nuArray(i)
if( exponent > 84.) exit
contBoltz(i) = exp(-exponent)
end do
! set max
max = i
! zero out the remainder
do i = max, nbins
contBoltz(i) = 0.
end do
end if
! find the Gaunt factors
! check if temperature has changed by much
if ( abs(1. - TeOld2/TeUsed) > 0.10 ) then
call getGauntFF(0., log10Te, log10nuArray, gauntFF, iflag)
! following is for ionized helium
call getGauntFF(0.30103, log10Te, log10nuArray, gauntFFHeII, iflag)
TeOld2 = TeUsed
end if
end subroutine BoltGaunt
! this subroutine computes the gaunt factors for any charge
! it generates thermally averaged free-free non-relativistic gaunt
! factor for a hydrogenic ion of charge z, with a maximum relative
! error of 0.007, (rms fitting error = 0.001) for tmps and freqs in
! intervals:
! 10^-4 <= U <= 10^1.5
! 10^-3 <= Gams <= 10^3~
! where U = h*nu/k*T and gams = Z^2 * Ryd / k*T. To obtain the stated
! accuracy the full number of significant figures must be retained.
!
! this subroutine uses a two-dimensional chebyshev epansion computed
! from expressions given bu Karzas and Latter (ApJSuppl., V.6, P.167,
! 1961) augmented by various limiting forms of energy-specific gaunt-
! factors.
! D.G.Hummer, Jila, May 1987. ApJ 327, 477
! modified with correct limits, J Ferguson, July 94
! modified for MOCASSIN by B Ercolano (Ercolano et al 2003, MNRAS 340, 1136)
subroutine getGauntFF(z, log10Te, xlf, g, iflag)
implicit none
integer, intent(out) :: iflag ! explanation given in each area
real, intent(in) :: log10Te ! log10(Te)
real, intent(in) :: z ! log10 of nuclear charge
real, dimension(:), intent(in) :: xlf ! array of log10(h*nu/Ryd)
real, dimension(size(xlf)), intent(out) :: g ! array of values of g
! local variables
integer :: i, ir, j
real, dimension(11) :: b
real, dimension(8) :: c
real :: con
real(kind=8), dimension(88) :: dd
real(kind=8), dimension(8, 11) :: d
real :: gamma2 ! gamma^2 (gams = Z^2 * Ryd / k*T)
real :: slope ! slope
real :: txg ! hummer variable related to gamma^2
real :: txu ! hummer variable related to U
real :: u ! U = h*nu/k*T
real :: xlrkt ! log(ryd/kt)
dd = (/8.986940175e+00, -4.009515855e+00, 8.808871266e-01,&
& 2.640245111e-02, -4.580645915e-02, -3.568055702e-03,&
& 2.827798067e-03, 3.365860195e-04, -8.006936989e-01,&
& 9.466021705e-01, 9.043402532e-02, -9.608451450e-02,&
& -1.885629865e-02, 1.050313890e-02, 2.800889961e-03,&
& -1.078209202e-03, -3.781305103e-01, 1.102726332e-01,&
& -1.543619180e-02, 8.310561114e-03, 2.179620525e-02,&
& 4.259726289e-03, -4.181588794e-03, -1.770208330e-03,&
& 1.877213132e-02, -1.004885705e-01, -5.483366378e-02,&
& -4.520154409e-03, 8.366530426e-03, 3.700273930e-03,&
& 6.889320423e-04, 9.460313195e-05, 7.300158392e-02,&
& 3.576785497e-03, -4.545307025e-03, -1.017965604e-02,&
& -9.530211924e-03, -3.450186162e-03, 1.040482914e-03,&
& 1.407073544e-03, -1.744671550e-03, 2.864013856e-02,&
& 1.903394837e-02, 7.091074494e-03, -9.668371391e-04,&
& -2.999107465e-03, -1.820642230e-03, -3.874082085e-04,&
& -1.707268366e-02, -4.694254776e-03, 1.311691517e-03,&
& 5.316703136e-03, 5.178193095e-03, 2.451228935e-03,&
& -2.277321615e-05, -8.182359057e-04, 2.567331664e-04,&
& -9.155339970e-03, -6.997479192e-03, -3.571518641e-03,&
& -2.096101038e-04, 1.553822487e-03, 1.509584686e-03,&
& 6.212627837e-04, 4.098322531e-03, 1.635218463e-03,&
& -5.918883504e-04, -2.333091048e-03, -2.484138313e-03,&
& -1.359996060e-03, -5.371426147e-05, 5.553549563e-04,&
& 3.837562402e-05, 2.938325230e-03, 2.393747064e-03,&
& 1.328839809e-03, 9.135013312e-05, -7.137252303e-04,&
& -7.656848158e-04, -3.504683798e-04, -8.491991820e-04,&
& -3.615327726e-04, 3.148015257e-04, 8.909207650e-04,&
& 9.869737522e-04, 6.134671184e-04, 1.068883394e-04,&
& -2.046080100e-04/)
d = reshape( dd, (/8, 11/) )
! compute temperature dependent coeffcients for U expansion
! xlrxt is log(ryd/kt), code note valid for Te > 10^8
! xlrxt is log(ryd/kt), code note valid for Te < 10^2.5
if ( log10Te < 2.5 ) then
xlrkt = 5.1983649 - 2.5
else if ( log10Te > 8. ) then
xlrkt = 5.1983649 - 8.
else
xlrkt = 5.1983649 - log10Te
end if
! set txg
txg = 0.66666667*(2.0*z+xlrkt)
gamma2 = 10**(txg*1.5)
con = 0.72727273*xlrkt+0.90909091
do j=1,8
ir = 9
b(11) = real(d(j,11))
b(10) = real(txg*b(11)+d(j,10))
do i=1,9
b(ir) = real(txg*b(ir+1)-b(ir+2)+d(j,ir))
ir = ir-1
end do
c(j) = 0.25*(b(1)-b(3))
end do
! sum U expansion
! loop through energy at fixed temperature
do i = 1, size(xlf)
txu = 0.72727273*xlf(i)+con
u = 10**((txu - .90909091)/.72727273)
! criteria set by hummer limits. it is a wedge from
! log(hnu),log(T)) =
! (-5,2.5) to (-5,4) to (-1,8) to (4,8) to (-1.5,2.5).
! these limits correspond to the gamma^2 and U limits
! given above
if(abs(txu)<=2.0) then
ir = 6
b(8) = c(8)
b(7) = txu*b(8)+c(7)
do j=1,6
b(ir) = txu*b(ir+1)-b(ir+2)+c(ir)
ir = ir-1
end do
g(i) = b(1)-b(3)
if( (log10Te>=2.5) .and. (log10Te<=8.0)) iflag = 0
! On the bottom side of the hummer box,u<-4 and gamma2>.33
else if( (log10(u)<-4.0) .and. (gamma2<0.3) ) then
g(i) = 0.551329 * log(2.24593/u)
if( (log10Te>=2.5) .and. (log10Te<=8.0) ) iflag = 2
! On the bottom side of the box,u<-4 and gamma2<.33
else if( (log10(u)<-4.0) .and. (gamma2>=0.3) ) then
g(i) = 0.551329 * alog( 0.944931/u/sqrt(gamma2) )
if( (log10Te>=2.5) .and.( log10Te<=8.0) ) iflag = 3
! Now on the bottom side of the box
else if (txu>2.0) then
! Top of the box high T first
if (log10(gamma2)<-3.) then
g(i) = sqrt(0.9549297/u)
if(log10Te>=2.5.and.log10Te<=8.0) iflag = 4
! Must interpolate between two asymptotes
else if(log10(gamma2)<0.0) then
slope = ( sqrt(12*gamma2/u) - sqrt(0.9549297/u) ) / 3.0
g(i) = sqrt(12*gamma2/u) + slope * log10(gamma2)
if((log10Te>=2.5) .and. (log10Te<=8.0)) iflag = 7
else
! The top side with wedge of 1.05 where region 6 fails
g(i) = sqrt(12. * gamma2 / u)
g(i) = min(1.05,g(i))
if( (g(i)==1.05) .and. (log10Te>=2.5) .and. (log10Te<=8.0)) &
& iflag = 5
if( (g(i)<1.05) .and. (log10Te>=2.5) .and. (log10Te<=8.0)) &
& iflag = 6
end if
end if
u = 0.0
end do
end subroutine getGauntFF
! this subroutine sums up the free electron density over all species
subroutine eDenSum()
implicit none
! local variables
integer :: n, i ! counters
! sum the heavy metal free electron density
eDenFFSum = 0.
do n = 3, nElements
do i = 1, min(n, nstages-1)
eDenFFSum = eDenFFSum + float(i*i)*density(n, i+1)
end do
end do
end subroutine eDenSum
subroutine addOpacity(opacity)
implicit none
real, dimension(:), intent(out) :: opacity ! opacity
! local variables
integer :: i ! counters
real :: fac1, fac2, fac3 ! factors to be used in calculations
! (re) initialize opacity arrays
opacity = 0.
! hydrogen helium and heavy element brems (free-free) opacity,
! assuming hydrogen ff gaunt factors
! xSecArray is missing factor of 1.e-20 to avoid underflow.
fac1 = (NeUsed/1.e10) * ( (density(1,2) + density(2, 2) + &
& 4.*density(2, 3) + eDenFFSum)/1.e10 ) / sqrTeUsed
fac2 = fac1 * Te1Ryd / TeUsed
do i = 1, nbins
if (i>1) then
if (FFOpacity(i-1)<1.e-35) then
FFOpacity(i) = 0.
end if
else
if (contBoltz(i) < 0.995 ) then
! 1-exp(hn/kT) is used only is exp is small
! the last term is scaled h minus free-free absorption
fac3 = xSecArray(i-1+bremsXSecP)*(1.-contBoltz(i))*gauntFF(i)
FFOpacity(i) = fac3 * fac1
else
fac3 = xSecArray(i-1+bremsXSecP)*nuArray(i)*gauntFF(i)
FFOpacity(i) = fac3 * fac2
end if
end if
opacity(i) = opacity(i) + FFOpacity(i)
end do
! hydrogen lyman continuum photoelectric opacity
call inOpacity(HlevXSecP(1), HlevNuP(1), nbins, density(1,1), 0.)
! NOTE: the opacity due to the excited levels of HI, HeI and HeII is
! neglected for now as it requires calculations of the densities of
! the excited levels populations -> 4th argument in inOpacity is density
! of the lower level [cm^-3]
! helium singlets HeI (ground special because it extends to the high energy limit)
call inOpacity(HeISingXSecP(1), HeIlevNuP(1), nbins, density(2, 1), 0.)
! ionized helium HeII (ground special because it extends to the high energy limit)
call inOpacity(HeIIXSecP(1), HeIIlevNuP(1), nbins, density(2, 2), 0.)
do i = 3, nElements
if ( lgElementOn(i) ) call putOpacity(i)
end do
contains
! this subroutine enters the total phoo cross section
! for all subshells into opacity array. it drives inOpacity
! to put in total opacities
subroutine putOpacity(nElem)
implicit none
integer, intent(in) :: nElem
! local variables
integer :: nIon ! counter
integer :: nuLowP, nuHighP ! pointers to lower and highert limit of energy range
integer :: nShell ! counter
integer :: xSecP ! pointer to x scetion in xSecArray
do nIon = 1, min(nElem, nstages)
if ( density(nElem, nIon) > 0. ) then
! number of bound electrons
do nShell = 1, nShells(nElem, nIon)
nuLowP = elementP(nElem, nIon, nShell, 1)
nuHighP = elementP(nElem, nIon, nShell, 2)
xSecP = elementP(nElem, nIon, nShell, 3)
call inOpacity(xSecP, nuLowP, nuHighP, density(nElem, nIon), 0.)
end do
end if
end do
end subroutine putOpacity
! this subroutine adds the opacity of individual species,
! it can include stimulated emission. the departure coefficient b
! can be set to zero.
subroutine inOpacity(xSecP, nuLowP, nuHighP, den, b)
implicit none
integer, intent(in) :: nuLowP, nuHighP ! pointers to lower and higher limits in nuArray
integer, intent(in) :: xSecP ! x section pointer
real, intent(in) :: b ! departure coefficient
real, intent(in) :: den ! density of the lower level [cm^-3]
! local variables
integer :: i ! counter
integer :: iup ! upper limit
integer :: k ! offset
real :: bInv ! 1./b
k = xSecP - nuLowP
iup = min(nuHighP, nbins)
iup = max(nuLowP, iup)
if (b > 1e-35) then
bInv = 1./b
do i = nuLowP, iup
opacity(i) = opacity(i) + xSecArray(i+k)*den*&
& max(0., 1.-contBoltz(i)*bInv)
end do
else
do i = nuLowP, iup
opacity(i) = opacity(i) + xSecArray(i+k)*den
end do
end if
end subroutine inOpacity
end subroutine addOpacity
end module ionization_mod
|