1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
|
! Copyright (C) 2005 Barbara Ercolano
!
! Version 2.02
module update_mod
use constants_mod
use common_mod
use composition_mod
use emission_mod
use grid_mod
use interpolation_mod
use xSec_mod
contains
subroutine updateCell(grid, xP, yP, zP)
implicit none
type(grid_type), intent(inout) :: grid ! the grid
real, parameter :: Y0 = 0.5, Y1 = 0.2 ! see Baldwin et al. 1991
real :: deltaXHI ! delta ionDen of H0
! H0 2 is from He0 and 3 is
! is for He+)
real :: phXSec ! ph xSec of ion M at freqency bin j
real :: thResidual ! thermal balance residual
real :: thResidualHigh! ther bal residual-high lim
real :: thResidualLow! ther bal residual-low lim
real :: Thigh ! T high limit [K]
real :: Tlow ! T low limit [K]
real :: XOldHI ! old ionDen of H0 at this cell
! dust-gas interaction heating and cooling process
real :: grainEmi, grainRec ! grain emissions and recom
real, allocatable :: gasDustColl_d(:,:) ! cooling/heating of the
! dust through collisions with grains
real :: gasDustColl_g ! cooling/heating of the
! gas through collisions with grains
real, allocatable :: photoelHeat_d(:,:) ! cooling of dust by photoelectric
! emission
real :: photoelHeat_g ! heating of gas by dust photoelctric
!emission
real, allocatable :: grainPot(:,:) ! [Ryd]
real, parameter :: hcRyd_k = & ! constant: h*cRyd/k (Ryd at inf used) [K]
& 157893.94
real, parameter :: hcRyd = & ! constant: h*c*Ryd (Ryd at inf used) [erg]
& 2.1799153e-11
real, parameter :: thLimit = 0.01! convergence limit T-iteration
real, dimension(nElements, nstages) &
& :: alphaTot ! total recombination coeffs
real, dimension(nElements, nStages) &
& :: nPhotoSte, & ! # of stellar photoionizations
& nPhotoDif ! # of diffuse photoionizations
integer, intent(in) :: xP, yP, zP ! cell indexes on the Cartesian axes
! local variables
logical :: lgHit ! has this cell been hit by a photon?
integer , allocatable :: grainPotP(:,:)
integer :: cellP ! points to this cell
integer :: highNuP ! pointer to highest energy of shell
integer :: IPnuP ! pointer to this ion's IP in NuArray
integer :: xSecP ! pointer to an ion's xSec in xSecArray
integer :: elem ! element counter
integer :: g0, g1 ! stat weights
integer :: ion ! ionization stage counter
integer :: i,j ! counter
integer :: nElec ! # of electrons in ion
integer :: nIterateGC ! # of GC iterations
integer :: nIterateT ! # of T iterations
integer :: nIterateX ! # of X iterations
integer :: outShell ! outer shell number (1 for k shell)
integer :: nspU
integer, parameter :: nTbins=300 ! number of enthalpy bins for T spike
integer, parameter :: maxIterateGC&! limit to number of grain charge it
& = 100
integer, parameter :: maxIterateX& ! limit to number of X-iterat ions
& = 25
integer, parameter :: maxIterateT& ! limit to number of T-iterations
& = 25
! check whether this cell is outside the nebula
if (grid%active(xP, yP, zP)<=0) return
cellP = grid%active(xP, yP, zP)
if (lgMultiDustChemistry) then
nspU = grid%dustAbunIndex(cellP)
else
nspU = 1
end if
! initialise lgBlack
grid%lgBlack(cellP) = 0
! initialise lgHit
lgHit = .false.
! find out if this cell has been hit by at least one photon
if (.not.lgDebug) then
do i = 1, nbins
if ( grid%Jste(cellP,i) > 0.) then
lgHit = .true.
exit
end if
end do
else
do i = 1, nbins
if ( (grid%Jste(cellP,i) > 0.) .or. &
& (grid%Jdif(cellP,i) > 0.)) then
lgHit = .true.
exit
end if
end do
end if
! in the case of a light echo only update cells inside the echo
if (lgEcho) then
if (grid%echoVol(xP,yP,zP).eq.0.0) then
grid%Tdust(:,:,cellP) = echoTemp
TdustTemp(:,:,cellP) = grid%Tdust(:,:,cellP)
return
end if
end if
! do not update this cell if there were no hits
if (.not.lgHit) then
if (lgTalk) print*, "! updateCell [talk]: no photon hits, &
&returning...", xP,yP,zP
if (lgDust) then
TdustTemp(:,:,cellP) = grid%Tdust(:,:,cellP)
end if
if (lgGas) then
! the grid values stay the same
TeTemp(cellP) = grid%Te(cellP)
NeTemp(cellP) = grid%Ne(cellP)
ionDenTemp(cellP,:,:) = grid%ionDen(cellP,:,:)
end if
grid%noHit = grid%noHit+1.
return
end if
if (lgGas) then
! initialize local Te and Ne
TeUsed = grid%Te(cellP)
NeUsed = grid%Ne(cellP)
ionDenUsed = grid%ionDen(cellP, :, :)
! save present value of H0 abundance in XOldHI
XOldHI = grid%ionDen(cellP,elementXref(1),1)
nPhotoSte = 1.e-20
if (lgDebug) nPhotoDif = 1.e-20
! calculate the number of stellar and diffuse photoionizations for each species
! NOTE: no need to time by the frequency bin width (widflx(j)) because JSte and JDif
! were calculated for each individual bin
do elem = 1, nElements ! begin element loop
do ion = 1, min(elem, nStages-1) ! begin ion loop
if(.not.lgElementOn(elem)) exit
if (elem > 2) then
! find the number of electrons in this ion
nElec = elem - ion + 1
! find the outer shell number and statistical weights
call getOuterShell(elem, nELec, outShell, g0, g1)
! get pointer to this ion's IP in NuArray
IPnuP = elementP(elem, ion, outShell, 1)
! get pointer to this cell's highest energy
highNuP = elementP(elem, ion, outShell, 2) - 1
else if (elem == 1) then ! HI
IPNuP = HlevNuP(1)
highNuP = nbins
else if ( (elem == 2) .and. (ion == 1) ) then ! HeI
IPNuP = HeIlevNuP(1)
highNuP = nbins
else if ( (elem == 2) .and. (ion == 2) ) then ! HeII
IPNuP = HeIIlevNuP(1)
highNuP = nbins
end if
do j = IPnuP, highNuP ! begin frequency loop
if ( elem > 2 ) then
! get pointer to phot xSec of this ion in xSecArray
xSecP = elementP(elem, ion, outShell, 3)
! get phot xSec of ion at this energy
phXSec = xSecArray(j+xSecP-IPnuP+1-1)
else if ( elem == 1 ) then ! HI
phXSec = xSecArray(j-IPnuP+1+HlevXSecP(1)-1)
else if ( (elem == 2) .and. (ion == 1) ) then ! HeI
phXSec = xSecArray(j-IPnuP+1+HeISingXSecP(1)-1)
else if ( (elem == 2) .and. (ion == 2) ) then ! HeII
phXSec = xSecArray(j-IPnuP+1+HeIIXSecP(1)-1)
end if
if ((phXSec < 1.e-35) ) then
! print*, "! updateCell: [warning] bad xSec value &
! & exiting loop (j, phXSec)",&
! & nuArray(j), phXSec
! exit
phXSec = 0.
end if
if ((nuArray(j) < 1.e-35) ) then
print*, "! updateCell: insane nu value (j, nuArray(j)", &
& j, nuArray(j)
stop
end if
! stellar photoionizations
if ( grid%Jste(cellP,j) > 0. )then
nPhotoSte(elem,ion) = nPhotoSte(elem,ion) + &
& grid%JSte(cellP,j)*phXSec/(hcRyd*nuArray(j))
end if
! diffuse photoionizations
if (lgDebug) then
if ( grid%Jdif(cellP,j) > 0. ) then
nPhotoDif(elem,ion) = nPhotoDif(elem,ion) + &
& grid%JDif(cellP,j)*phXSec/(hcRyd*nuArray(j))
end if
end if
end do ! end frequency loop
end do ! end ion loop
end do ! end element loop
! zero out T-iteration components
nIterateT = 0
thResidual = 0.
thResidualHigh = 0.
thResidualLow = 0.
Thigh = 0.
Tlow = 0.
if (lgDust .and. lgGas .and. lgPhotoelectric) then
allocate (grainPot(1:nSPecies, 1:nsizes))
grainPot=0.
allocate (grainPotP(1:nSPecies, 1:nsizes))
grainPotP=0
allocate (photoelHeat_d(1:nSPecies, 1:nsizes))
photoelHeat_d=0.
allocate ( gasDustColl_d(1:nSPecies, 1:nsizes))
gasDustColl_d=0.
end if
! call the recursive iteration procedure for the gas
call iterateT()
! call the non recursive itaration procedure for the dust
if (lgDust) call getDustT()
! this was added to help implementing MPI comunication
if (lgDust) TdustTemp(:,:,cellP) = grid%Tdust(:,:,cellP)
if (lgNeInput .and. lgTalk) then
print*, '! updateCell: [talk] cell:', xP,yP,zP, " NeInput: ", &
&grid%NeInput(cellP), " NeUsed: ", &
&grid%Ne(cellP), " N_gas: ", &
&grid%Hden(cellP)
end if
else
if (.not.lgDust) then
print*, '! updateCell: no gas or dust present. the grid is empty.'
stop
end if
XOldHI = grid%Tdust(0,0,cellP)
call getDustT()
! determine if the model has converged at this cell
! NOT variable names refer to gas phase for reasons of laziness
deltaXHI = (grid%Tdust(0,0,cellP) - XOldHI) / XOldHI
if ( abs(deltaXHI) <= XHILimit ) then
grid%lgConverged(cellP) = 1
else
grid%lgConverged(cellP) = 0
end if
if (lgTalk) &
& print*, "updateCell: [talk] cell", xP,yP,zP, "; converged?",&
& grid%lgConverged(cellP), "; mean dust T: ", &
& grid%Tdust(0,0,cellP), "; &
& mean dust T old: ", XOldHI,"; dT(dust): ", deltaXHI
! this was added to help implementing MPI comunication
TdustTemp(:,:,cellP) = grid%Tdust(:,:,cellP)
end if
contains
recursive subroutine iterateT()
implicit none
! local variables
integer :: isp, ai ! counters
integer :: ispbig ! counter
logical :: lgGCBConv ! grain charge converged?
logical :: lgIBConv ! converged?
real :: coolInt ! tot cooling integral [erg/s/Hden]
real :: heatInt ! tot heating integral [erg/s/Hden]
real, parameter :: Xmax = 0.9999 ! max rel abundance
! step up T-iteration
nIterateT = nIterateT + 1
! calculate the recombination coefficients for this cell
call calcalpha()
! initialize X iteration counter
nIterateX = 1
! calculate the ion abundances for the remaning ions
call ionBalance(lgIBConv)
! calculate dust-gas interaction heating/cooling terms
if (lgDust .and. lgGas .and. lgPhotoelectric) then
do isp = 1, nSpeciesPart(nspU)
do ai = 1, nsizes
nIterateGC = 0
grainEmi = 0.
grainRec = 0.
ispbig = isp+dustComPoint(nspU)-1
call setGrainPotential(ispbig,ai,lgGCBConv)
call locate(nuArray, grainPot(isp,ai), grainPotP(isp,ai))
if (grainPotP(isp,ai) == 0) grainPotP = 1
end do
end do
call setPhotoelHeatCool()
call setDustGasCollHeatCool()
end if
! solve thermal balance
call thermBalance(heatInt, coolInt)
! Now calculate new Te
! calculate thResidual = heatInt - coolInt
thResidual = heatInt - coolInt
!print*, cellp, thresidual, heatint, coolint
if ( abs(thResidual) >= thLimit*heatInt ) then ! start convergence condition
if ( nIterateT < maxIterateT ) then ! start nIterateT condition
if ( thResidual < 0) then
thResidualLow = thResidual
Tlow = TeUsed
if ( Thigh /= 0. ) then
TeUsed = Tlow-(Thigh-Tlow)*thResidualLow/&
& (thResidualHigh-thResidualLow)
else
TeUsed = TeUsed/1.2
end if
else
thResidualHigh = thResidual
Thigh = TeUsed
if ( Tlow /= 0. ) then
TeUsed = Tlow-(Thigh-Tlow)*thResidualLow/&
& (thResidualHigh-thResidualLow)
else
TeUsed = TeUsed*1.2
end if
end if
if (nIterateT >= 6) then
if (abs(Thigh-Tlow) <= (0.002*(Thigh+Tlow)) ) then
if ( thResidual < 0 ) then
TeUsed = Thigh - 100.
Thigh = 0.
else
TeUsed = Tlow+100.
Tlow = 0.
end if
end if
end if
if (TeUsed <= 0.) TeUsed = 1.
! next T-iteration
call iterateT()
return
else ! if nIterateT > maxIterateT
! after maxIterateT number of iterations the temperature
! is determined as follows
if ( Thigh == 0. ) then
TeUsed = Tlow
else
if (Tlow == 0.) then
TeUsed = Thigh
else
TeUsed = (Thigh+Tlow)*0.5
end if
end if
if (lgTalk) print*, "! iterateT: [warning] no convergence after ", &
& nIterateT, " steps. (cell, T)", cellP,xP,yP,zP,TeUsed
grid%noTeBal = grid%noTeBal+1.
grid%lgBlack(cellP) = 1
end if
else ! if thResidual < thLimit
! the T-iteration has converged
if (lgTalk) print*, "! iterateT: [talk] convergence achieved after ",&
& nIterateT, " steps. (cell, T)", xP,yP,zP,TeUsed, grid%abFileIndex(xP,yP,zP)
end if ! end convergence condition
if (.not.lgIBConv) then
grid%noIonBal = grid%noIonBal+1
grid%lgBlack(cellP) = 1
end if
grid%Te(cellP) = TeUsed
! determine if the model has converged at this cell
deltaXHI = (grid%ionDen(cellP,elementXref(1),1) - XOldHI) / XOldHI
if ( abs(deltaXHI) <= XHILimit ) then
grid%lgConverged(cellP) = 1
else
grid%lgConverged(cellP) = 0
end if
if (lgTalk) print*, "iterateT: [talk] cell", xP,yP,zP, "; converged?",&
& grid%lgConverged(cellP), "; X(H0): ", &
& grid%ionDen(cellP,elementXref(1),1), &
& "; X(H0) old: ", XOldHI,"; dX(H0): ", deltaXHI
! this was added to help implementing MPI comunication
TeTemp(cellP) = TeUsed
end subroutine iterateT
recursive subroutine setGrainPotential(iSp, ai, lgGCBConv)
implicit none
real,save :: delta,delta1
real,save :: grainPotOld ! local copy of grai pot
real :: grainEmi, grainRec ! grain emissions and recom
real,save :: grainEmiOld, grainRecOld ! grain emissions and recom
real,parameter :: errorLim = 0.005, dm = 0.05 ! loop convergence
real,parameter :: safeLim = 100 ! loop safety limit
real :: threshold,fac
real,save :: dVg,slope
integer, intent(in) :: iSp, ai
logical, intent(inout) :: lgGCBConv ! converged?
nIterateGC = nIterateGC+1
if (nIterateGC==1) then
dVg=0.05
grainPot(isp,ai) = 0.
grainPotOld = grainPot(isp,ai)
lgGCBConv = .true.
grainEmiOld = getGrainEmission(grainPot(isp,ai), isp, ai)
grainRecOld = getGrainRecombination(grainPot(isp,ai))
grainPot(isp,ai) = grainPotOld+0.05
end if
threshold = max(grainVn(isp)+grainPot(isp,ai),grainVn(isp))
grainEmi = getGrainEmission(grainPot(isp,ai), isp, ai)
grainRec = getGrainRecombination(grainPot(isp,ai))
delta = grainEmi-grainRec
delta1 = abs(delta/(0.5*max(1.e-35, grainEmi+grainRec)))
! check for convergence
if (delta1<errorLim) then
return
else
if (grainPot(iSp,ai) /= grainPotOld) then
fac = (grainEmi-grainEmiOld)-(grainRec-grainRecOld)
if (fac/=0.) slope = fac/(grainPot(iSp,ai)-grainPotOld)
end if
grainPotOld=grainPot(iSp,ai)
grainRecOld = grainRec
grainEmiOld = grainEmi
delta1 = -delta/slope
delta = abs(delta1)
delta = min(delta, dm*threshold)
delta = sign(delta, delta1)
grainPot(iSp,ai) = grainPot(iSp,ai)+delta
if (nIterateGC< maxIterateGC) then
call setGrainPotential(isp,ai,lgGCBConv)
return
else
! print*, '! setGrainPotential: no convergence', &
! & cellP,grainPot(isp,ai),grainEmi,grainRec
lgGCBConv=.false.
return
end if
end if
end subroutine setGrainPotential
! calculate the grain recombination
! using eqn 18 etc of Baldwin et al. (1991)
! cellFactor is dependant on the physical conditions of the gas,
function getGrainEmission(Vg, isp,ai)
implicit none
real :: getGrainEmission
real, intent(in) :: Vg ! grain potential
real :: Yn, Yhat
real :: Qa ! grain absorption efficiency
real :: thres, photFlux
integer, intent(in) :: isp, ai
integer :: ifreq, ip
getGrainEmission=0.
! get the threshold
thres = max(grainVn(isp)+Vg,grainVn(isp))
call locate( nuArray, thres, ip)
ip = ip+1
do ifreq = ip, nbins
Yn = min(Y0*(1.-grainVn(isp)/nuArray(ifreq)), Y1)
Yhat = Yn*min(1., max(0.,1.-Vg/(nuArray(ifreq)-grainVn(isp))))
if (.not. lgDebug) then
! photFlux = (grid%JPEots(cellP,ifreq) + &
! & grid%Jste(cellP,ifreq))/(hcRyd*nuArray(ifreq))
photFlux = grid%Jste(cellP,ifreq)/(hcRyd*nuArray(ifreq))
else
! photFlux = (grid%JPEots(cellP,ifreq) +&
! & grid%Jste(cellP,ifreq)+grid%Jdif(cellP,ifreq))/&
! & (hcRyd*nuArray(ifreq))
end if
photFlux = photFlux*fourPi
Qa = XSecArray(dustAbsXsecP(isp,ai)+ifreq-1)/(1.e-8*grainRadius(ai)**2)
getGrainEmission = getGrainEmission+Yhat*photFlux*Qa
end do
end function getGrainEmission
! calculate the grain recombination
! using eqn 23 etcof Baldwin et al. (1991)
! cellFactor is dependant on the physical conditions of the gas,
function getGrainRecombination(Vg)
implicit none
real :: getGrainRecombination
real, intent(in) :: Vg ! grain potential [ryd]
real :: eta ! Coulomb correction
real :: cpDen ! colliding particle number density [cm^-3]
real :: eightkT_pi ! 8*k * Te/Pi [erg]
real :: mcp ! mass of colliding particle in [g]
real :: kT ! k*Te [ryd]
real :: S ! sticking coefficient
real :: vmean ! colliding particle mean velocity
real :: Z ! colliding particle charge
integer :: istage
getGrainRecombination = 0.
eta = 0.
kT =6.336e-6*TeUsed
eightkT_pi = (1.1045e-15)*TeUsed/Pi
! add e- collisions contributions
vmean = sqrt(eightkT_pi/me)
S =1. ! electron sticking probability
! eq 24 of Baldwin et al 91
eta = -Vg/kT
if (eta <= 0.) then
eta = 1.-eta
else if (eta >0.) then
eta = exp(-eta)
else
print*, "! getGrainRecombination: insane eta for e-", eta
end if
getGrainRecombination = getGrainRecombination + &
& NeUsed*vmean*S*eta
! add contribution from all other neutral and ionic species
do elem = 1, nElements
if (lgElementOn(elem)) then
do istage = 2, min(elem+1,nstages)
! get cpDen
cpDen = grid%ionDen(cellP,elementXref(elem),istage)*&
& grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)*&
& grid%Hden(cellP)
mcp = (aWeight(elem)*amu)
vmean = sqrt(eightkT_pi/mcp)
S = 1.
Z = real(istage-1)
eta = Z*Vg/kT
if (eta <= 0.) then
eta = 1.-eta
else if (eta >0.) then
eta = exp(-eta)
else
print*, "! getGrainRecombination: insane eta", &
& eta, elem, istage
end if
getGrainRecombination = getGrainRecombination - &
& cpDen*vmean*S*eta
end do
end if
end do
end function getGrainRecombination
! see Baldwin et al 1991; but beware that we are resolving the size distribution.
! so must keep size dependance, so Qa ia really Pi a^2 Qa
subroutine setPhotoelHeatCool()
implicit none
real :: Qa, photFlux, EY, Yhat,Yn,th
integer :: ns,na,ifreq,thP
! calculate the cooling of dust by photoelectric emission
! and heating of gas
! Baldwin et al. 1991 eqn 25-27
photoelHeat_d=0.
photoelHeat_g=0.
do ns = 1, nSpeciesPart(nspU)
do na = 1, nSizes
if (grainPotP(ns,na) <= 0) then
print*, "! setPhotoelHeatCool irregular grain potential index", &
grainPotP(ns,na), grainPot(ns,na)
stop
end if
th = max(grainVn(ns)+grainPot(ns,na), grainVn(ns))
call locate(nuArray,th,thP)
if(thP<=0) thP=1
do ifreq = thP, nbins
! do ifreq = grainPotP(ns,na), nbins
Yn = min(Y0*(1.-grainVn(ns)/nuArray(ifreq)), Y1)
Yhat = Yn*min(1., max(0.,1.-grainPot(ns,na)/(nuArray(ifreq)-grainVn(ns))))
if (.not. lgDebug) then
! photFlux = (grid%JPEots(cellP,ifreq) + &
! & grid%Jste(cellP,ifreq))/(hcRyd*nuArray(ifreq))
photFlux = grid%Jste(cellP,ifreq)/(hcRyd*nuArray(ifreq))
else
! photFlux = (grid%JPEots(cellP,ifreq) + grid%Jste(cellP,ifreq)+&
! & grid%Jdif(cellP,ifreq))/(hcRyd*nuArray(ifreq))
photFlux = (grid%Jste(cellP,ifreq)+grid%Jdif(cellP,ifreq))/(hcRyd*nuArray(ifreq))
end if
photFlux = photFLux
Qa = XSecArray(dustAbsXsecP(ns,na)+ifreq-1)
EY = Yn*0.5* min(nuArray(ifreq)-grainVn(ns),&
& max(0., ((nuArray(ifreq)-grainVn(ns))**2-grainPot(ns,na)**2)/&
& (nuArray(ifreq)-grainVn(ns))))
! photoelHeat_d(ns,na) = photoelHeat_d(ns,na)+Qa*photFlux*EY*hcRyd/Pi
photoelHeat_d(ns,na) = photoelHeat_d(ns,na)+Qa*photFlux*EY*hcRyd/Pi
photoelHeat_g = photoelHeat_g+Qa*photFlux*(EY-Yhat*grainPot(ns,na))*&
& grainAbun(nspU,ns)*grainWeight(na)
end do
end do
end do
photoelHeat_g = photoelHeat_g*grid%Ndust(cellP)*hcRyd/grid%Hden(cellP)
end subroutine setPhotoelHeatCool
! sets the cooling and heating rates of gas and dust due to collisions between the two phases
! see Baldwin et al 1991
! only collisions with up to the 3 times ionised case are considered here
! (process becomes unimportant for higher ionisation cases)
subroutine setDustGasCollHeatCool()
implicit none
real :: Z , kT, eta, psi,xi, S, IPerg
real :: eightkT_pi ! 8*k * Te/Pi [erg]
integer :: ss(30)
real :: vmean, mcp ! colliding particle mean velocity and mean particle mass
integer :: nelectrons, istage, ns, na
! outer shell array
ss = (/1,1,2,2,3,3,3,3,3,3,4,4,5,5,5,5,5,5,&
&6,6,6,6,6,6,6,6,6,6,7,7/)
gasDustColl_g = 0.
gasDustColl_d = 0.
kT =6.336e-6*TeUsed ! ryd
eightkT_pi = (1.1045e-15)*TeUsed/Pi
do elem = 1, nElements ! 0 for electrons
if ( lgElementOn(elem)) then
do istage = 1, min(nstages,elem+1)
Z = real(istage-1)
mcp = aWeight(elem)*amu
vmean = sqrt(eightkT_pi/mcp)
! number of e-'s of the ionisation stage above
nelectrons = elem-istage+1
if (istage>1) then
if (elem == 1) then
IPerg = nuArray(HlevNuP(1))*ryd2erg
else if (elem == 2 .and. istage == 2) then
IPerg = nuArray(HeIlevNuP(1))*ryd2erg
else if (elem == 2 .and. istage == 3) then
IPerg = nuArray(HeIIlevNuP(1))*ryd2erg
else
IPerg = nuArray(elementP(elem,istage-1,nShells(elem,istage-1),1))*ryd2erg
end if
end if
do ns = 1, nSpeciesPart(nspU)
if (istage == 1) then
S = 2*mcp*MsurfAtom(ns)/(mcp+MsurfAtom(ns))**2
else
S = 1.
end if
do na = 1, nSizes
psi = Z*grainPot(ns,na)/kT
if (psi <= 0. ) then
eta = 1.-psi
xi = 1. - psi/2.
else
eta = exp(-psi)
xi = (1.+psi/2.) * eta
end if
gasDustColl_d(ns,na) = gasDustColl_d(ns,na)+&
& ionDenUsed(elementXref(elem),istage)*&
& grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)*&
& grid%Hden(cellP)*&
& Pi*grainRadius(na)*grainRadius(na)*1.e-8*&
& S*vmean*(2.*kT*Ryd2erg*xi-eta*&
& (Z*grainPot(ns,na)*Ryd2erg-IPerg+&
& 2.*kBoltzmann*grid%Tdust(ns,na,cellP)))
gasDustColl_g = gasDustColl_g + &
& ionDenUsed(elementXref(elem),istage)*&
& grainWeight(na)*grainAbun(nspU,ns)*grid%Ndust(cellP)*&
& grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)*&
& Pi*grainRadius(na)*grainRadius(na)*1.e-8*&
& S*vmean*(2.*kT*Ryd2erg*xi-eta*2.*kBoltzmann*&
& grid%Tdust(ns,na,cellP))
end do
end do
end do
end if
end do
! add contribution of e- collisions
vmean = sqrt(eightkT_pi/me)
do ns = 1, nSpeciesPart(nspU)
S = 1.
Z=-1.
do na = 1, nSizes
psi = Z*grainPot(ns,na)/kT
if (psi <= 0. ) then
eta = 1.-psi
xi = 1. - psi/2.
else
eta = exp(-psi)
xi = (1.+psi/2.) * eta
end if
gasDustColl_d(ns,na) = gasDustColl_d(ns,na)+&
& NeUsed* &
& Pi*grainRadius(na)*grainRadius(na)*1.e-8*&
& S*vmean*(2.*kT*Ryd2erg*xi-eta*&
& (Z*grainPot(ns,na)*ryd2erg))
gasDustColl_g = gasDustColl_g + &
& NeUsed* &
& grainWeight(na)*grainAbun(nspU, ns)*grid%Ndust(cellP)*&
& Pi*grainRadius(na)*grainRadius(na)*1.e-8*&
& S*vmean*(2.*kT*Ryd2erg*xi)/&
& grid%Hden(cellP)
end do
end do
! factor of fourpi to make up for the lack of fourpi
! in the balance eqns for J
gasDustColl_d(:,:)= gasDustColl_d(:,:)/fourpi
gasDustColl_g= gasDustColl_g/fourpi
end subroutine setDustGasCollHeatCool
subroutine thermBalance(heatInt, coolInt)
implicit none
real, intent(out) :: heatInt, & ! total heating and
& coolInt ! cooling integrals
! local variables
integer :: i,j,k ! counters
integer :: elem, ion ! counters
real :: betaFF ! energy loss coeff due to ff rad
real :: betaRec ! energy loss coeff due to recomb
real :: ch12, ch13, & ! collision excitation of
& ex12, ex13,& ! hydrogen data
& th12, th13 ! (Mathis, Ly alpha, beta)
real :: coolFF ! cool due to FF radiation [erg/s/Hden]
real :: coolColl ! cool due to coll excit [erg/s/Hden]
real :: coolRec ! cool due to recombination[erg/s/Hden]
real :: fcool
real :: heatIonSte ! heat due to this ion stellar phot
real :: heatIonDif ! heat due to this ion diffuse phot
real :: heatSte ! tot heat gain due to stellar phot
real :: heatDif ! tot heat gain due to diffuse phot
real :: log10Te ! log10(Te)
real :: log10TeScaled ! log10(Te/Z^2)
real :: Np ! proton density
real :: Te4 ! Te/10000.
! find log10Te and Te4 at this cell
log10Te = log10(TeUsed)
Te4 = TeUsed / 1.e4
! open ff, rec beta files for H+ and He2+ (Hummer, MNRAS 268(1994) 109, Table 1.
! find the N(H+)
Np = grid%ionDen(cellP,elementXref(1),2)*grid%elemAbun(grid%abFileIndex(xP,yP,zP),1)
! cooling of gas due to FF radiation from H+
! fits to Hummer, MNRAS 268(1994) 109, Table 1. or least square fitting to m=4
betaFF = 1.0108464E-11 + 9.7930778E-13*log10Te - &
& 6.6433144E-13*log10Te*log10Te + 2.4793747E-13*log10Te*log10Te*log10Te -&
& 2.3938215E-14*log10Te*log10Te*log10Te*log10Te
coolFF = Np*NeUsed*betaFF*kBoltzmann*TeUsed/sqrt(TeUsed)
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Cell: ', xp,yp,zp
write(57,*) 'FF H+: ', coolFF
end if
! cooling of gas due to recombination of H+
! fits to Hummer, MNRAS 268(1994) 109, Table 1.
! least square fitting to m=4
betaRec = 9.4255985E-11 -4.04794384E-12*log10Te &
& -1.0055237E-11*log10Te*log10Te + 1.99266862E-12*log10Te*log10Te*log10Te&
& -1.06681387E-13*log10Te*log10Te*log10Te*log10Te
coolRec = Np*NeUsed*betaRec*kBoltzmann*TeUsed/sqrt(TeUsed)
if (lgTraceHeating.and.taskid==0) then
if (nIterateT > 1) then
do i = 1, 12
backspace 57
end do
end if
write(57,*) 'Rec H+: ', coolrec
end if
! cooling of gas due to FF radiation from He++
! fits to Hummer, MNRAS 268(1994) 109, Table 1. least square fitting to m=4 and
! scaled to Z=2
! find N(He++)
Np = grid%ionDen(cellP,elementXref(2),3)*grid%elemAbun(grid%abFileIndex(xP, yP,zP),2)
log10TeScaled = log10(TeUsed/4.)
betaFF = 2.*(1.0108464E-11 + 9.7930778E-13*log10TeScaled - &
& 6.6433144E-13*log10TeScaled*log10TeScaled + &
& 2.4793747E-13*log10TeScaled*log10TeScaled*log10TeScaled -&
& 2.3938215E-14*log10TeScaled*log10TeScaled*log10TeScaled*log10TeScaled)
coolFF = coolFF + Np*NeUsed*betaFF*kBoltzmann*TeUsed/sqrt(TeUsed/4.)
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'FF He++: ',Np*NeUsed*betaFF*kBoltzmann*TeUsed/sqrt(TeUsed/4.)
end if
! cooling of gas due to recombination of He++
! fits to Hummer, MNRAS 268(1994) 109, Table 1. least square fitting to m=4
! and scaled to Z=2
betaRec = 2.*(9.4255985E-11 -4.04794384E-12*log10TeScaled &
& -1.0055237E-11*log10TeScaled*log10TeScaled &
& +1.99266862E-12*log10TeScaled*log10TeScaled*log10TeScaled&
& -1.06681387E-13*log10TeScaled*log10TeScaled*log10TeScaled*log10TeScaled)
coolRec = coolRec + Np*NeUsed*betaRec*kBoltzmann*TeUsed/sqrt(TeUsed/4.)
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Rec He++: ',Np*NeUsed*betaRec*kBoltzmann*TeUsed/sqrt(TeUsed/4.)
end if
! cooling of gas due to FF radiation from He+
! fits to Hummer and Storey, MNRAS 297(1998) 1073, Table 6. least square fitting to m=4
! find N(He+)
Np = grid%ionDen(cellP,elementXref(2),2)*grid%elemAbun(grid%abFileIndex(xp, yP, zP),2)
betaFF = 1.070073e-11 -2.5730207e-13*log10Te + &
& 2.109134e-13*log10Te*log10Te
coolFF = coolFF + Np*NeUsed*betaFF*kBoltzmann*TeUsed/sqrt(TeUsed)
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'FF He+: ',Np*NeUsed*betaFF*kBoltzmann*TeUsed/sqrt(TeUsed)
end if
! cooling of gas due to recombination of He+
! fits to Hummer and Storey, MNRAS 297(1998) 1073, Table 6. least square fitting to m=4
betaRec = 9.4255985E-11 -4.04794384E-12*log10Te &
& -1.0055237E-11*log10Te*log10Te &
& +1.99266862E-12*log10Te*log10Te*log10Te &
& -1.06681387E-13*log10Te*log10Te*log10Te*log10Te
coolRec = coolRec + Np*NeUsed*betaRec*kBoltzmann*TeUsed/sqrt(TeUsed)
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Rec He+: ',Np*NeUsed*betaRec*kBoltzmann*TeUsed/sqrt(TeUsed)
end if
! collisional excitation of Hydrogen
! Mathis, Ly alpha, beta
ch12 = 2.47e-8
ch13 = 1.32e-8
ex12 = -0.228
ex13 = -0.460
th12 = 118338.
th13 = 140252.
if (TeUsed > 5000.) then
coolColl = (ch12*exp(-th12/TeUsed)*Te4**ex12 + &
& ch13*exp(-th13/TeUsed)*Te4**ex13) * &
& hcRyd*grid%ionDen(cellP,elementXref(1),1)*NeUsed
else
coolColl = 0.
end if
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Coll exc H: ',coolColl
fcool = 0.
end if
! collisional excitation of Heavies
! get the emissivities of the forb lines
call forLines()
! sum all contributions from the heavies to coolColl
do elem = 3, nElements
do ion = 1, min(elem+1, nstages)
do j = 1, 10
do k = 1, 10
coolColl = coolColl + real(forbiddenLines(elem,ion,j,k))
if (lgTraceHeating.and.taskid==0) then
fcool = fcool + real(forbiddenLines(elem,ion,j,k))
end if
end do
end do
end do
end do
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'CELs cool: ',fcool
fcool = 0.
end if
! heating due to photoionization
! re-initialize heatSte and heatDif
heatSte = 0.
if (lgDebug) heatDif = 0.
do elem = 1, nElements ! begin element loop
do ion = 1, min(elem, nStages-1) ! begin ion loop
if(.not.lgElementOn(elem)) exit
if (elem > 2) then
! find the number of electrons in this ion
nElec = elem - ion + 1
! find the outer shell number and statistical weights
call getOuterShell(elem, nELec, outShell, g0, g1)
! get pointer to this ion's IP in NuArray
IPnuP = elementP(elem, ion, outShell, 1)
! get pointer to this cell's highest energy
highNuP = elementP(elem, ion, outShell, 2)
else if (elem == 1) then ! HI
IPNuP = HlevNuP(1)
highNuP = nbins
else if ( (elem == 2) .and. (ion == 1) ) then ! HeI
IPNuP = HeIlevNuP(1)
highNuP = nbins
else if ( (elem == 2) .and. (ion == 2) ) then ! HeII
IPNuP = HeIIlevNuP(1)
highNuP = nbins
end if
! re-initialize heatIonSte and heatIonDif
heatIonSte = 0.
if (lgDebug) heatIonDif = 0.
do j = IPnuP, highNuP ! begin frequency loop
if ( elem > 2 ) then
! get pointer to phot xSec of this ion in xSecArray
xSecP = elementP(elem, ion, outShell, 3)
! get phot xSec of ion at this energy
phXSec = xSecArray(j+xSecP-IPnuP+1-1)
else if ( elem == 1 ) then ! HI
phXSec = xSecArray(j-IPnuP+1+HlevXSecP(1)-1)
else if ( (elem == 2) .and. (ion == 1) ) then ! HeI
phXSec = xSecArray(j-IPnuP+1+HeISingXSecP(1)-1)
else if ( (elem == 2) .and. (ion == 2) ) then ! HeII
phXSec = xSecArray(j-IPnuP+1+HeIIXSecP(1)-1)
end if
if ((phXSec < 1.e-35) ) then
exit
end if
if ((nuArray(j) < 1.e-35) ) then
print*, "! thermBalance: insane nu value (j, nuArray(j)", &
& j, nuArray(j)
stop
end if
! stellar photoionizations
if ( grid%Jste(cellP,j) > 0. )then
heatIonSte = heatIonSte + phXSec*grid%Jste(cellP,j)*&
& (nuArray(j)-nuArray(IPNuP)) / (nuArray(j))
end if
! diffuse photoionizations
if (lgDebug) then
if ( grid%Jdif(cellP,j) > 0. ) then
heatIonDif = heatIonDif + phXSec*grid%JDif(cellP,j)* &
& (nuArray(j)-nuArray(IPNuP)) / (nuArray(j))
end if
end if
end do ! end frequency loop
! get total heat gain from stellar and diffuse photoionizations
heatIonSte = heatIonSte*ionDenUsed(elementXref(elem),ion)*&
& grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)
if (lgDebug) &
& heatIonDif = heatIonDif*ionDenUsed(elementXref(elem),ion)*&
&grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)
heatSte = heatSte + heatIonSte
if (lgDebug) &
& heatDIf = heatDif + heatIonDif
end do ! end ion loop
end do ! end element loop
! calculate the total heating and cooling integrals
if (lgDebug) then
heatInt = heatSte + heatDIf
else
heatInt = heatSte
end if
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Dust gas coll cool: ',gasDustColl_g
write(57,*) 'Heat photionization: ', heatInt
write(57,*) 'Heat photoelectric: ', photoelHeat_g
end if
coolInt = coolFF + coolRec + coolColl
if (lgDust .and. lgPhotoelectric) then
coolInt = coolInt+gasDustColl_g
heatInt = heatInt+photoelHeat_g
end if
end subroutine thermBalance
! this subroutine is the driver for the calculation of the emissivity
! from the heavy elements forbidden lines.
subroutine forLines()
implicit none
integer :: elem, ion ! counters
! re-initialize forbiddenLines
forbiddenLines = 0.
do elem = 3, nElements
do ion = 1, min(elem+1, nstages)
if (.not.lgElementOn(elem)) exit
if (lgDataAvailable(elem, ion)) then
if (elem == 26 .and. ion == 2) then
if (nstages > 2) then
call equilibrium(file_name=dataFile(elem, ion), &
&ionDenUp=ionDenUsed(elementXref(elem),ion+1)/&
&ionDenUsed(elementXref(elem),ion), Te=TeUsed,&
&Ne=NeUsed, FlineEm=forbiddenLinesLarge(&
&1:nForLevelsLarge, 1:nForLevelsLarge))
else
call equilibrium(file_name=dataFile(elem, ion), &
&ionDenUp=0., Te=TeUsed,&
&Ne=NeUsed, FlineEm=forbiddenLinesLarge(&
&1:nForLevelsLarge, 1:nForLevelsLarge))
end if
forbiddenLinesLarge(:, :) = forbiddenLinesLarge(:, :)*&
& grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)*&
& ionDenUsed(elementXref(elem), ion)
else
if (ion<nstages) then
call equilibrium(dataFile(elem, ion), &
&ionDenUsed(elementXref(elem), ion+1)/&
&ionDenUsed(elementXref(elem),ion), &
& TeUsed, NeUsed, forbiddenLines(elem, ion,:,:))
else
call equilibrium(dataFile(elem, ion), 0., &
& TeUsed, NeUsed, forbiddenLines(elem, ion,:,:))
end if
forbiddenLines(elem, ion, :, :) = forbiddenLines(elem, ion, :, :)*&
& grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)*&
& ionDenUsed(elementXref(elem), ion)
end if
end if
end do
end do
! scale the forbidden lines emissivity to give units of [erg/s/Ngas]
! comment: the forbidden line emissivity is so far in units of cm^-1/s/Ngas
! the energy [erg] of unit wave number [cm^-1] is 1.9865e-16, hence
! the right units are obtained by multiplying by 1.9865e-16
forbiddenLines = forbiddenLines*1.9865e-16
if (lgElementOn(26) .and. ion>2) forbiddenLinesLarge = forbiddenLinesLarge*1.9865e-16
end subroutine forLines
recursive subroutine ionBalance(lgConv)
implicit none
logical, intent(out) :: lgConv ! did ion bal converge?
! local variables
real :: collIon ! collisional ionization of H
real :: correction ! used in lgNeInput = .t.
real :: deltaHI ! delta(X(H0))
real :: deltaHeI ! delta(X(He0))
real :: deltaHeII ! delta(X(HeII))
real :: expFact ! exponential factor
real :: t4 ! TeUsed/10000.
real, save :: HIOld ! X(H0) from last iteration
real, save :: HeIOld ! X(He0) from last iteration
real, save :: HeIIOld ! X(He+) from last iteration
real, parameter :: limit = 0.01 ! convergence limit
integer :: elem, ion ! element and ion counters
integer :: g0,g1 ! stat weights
integer :: i ! counter
integer :: nElec ! of e's in the ion
integer :: outShell ! byproduct of proc to get stat weights
real :: revRate ! reverse charge exchange rate
double precision, dimension(nELements) :: &
& denominator ! denominator of final ion abundance
real, dimension(nElements, nstages) :: &
& deltaE_k ! deltaE/k [K]
double precision, dimension(nElements, nstages) :: &
& ionRatio, & ! X(i+1)/X(+i)
& ionProd ! ionRatio products
real, dimension(nElements, nstages,4) :: &
& chex ! ch exchange coeff in cm^3/s
! initialize variables
correction = 0.
ionRatio = 0.
ionProd = 1.
denominator = 1.
lgConv = .true.
! take into account collisional ionization of H
! Drake & Ulrich, ApJS42(1980)351
expFact = 157893.94/TeUsed
if (expFact > 75.) then
! prevents underflow of exponential factor in collIon
expFact = 75.
end if
collIon = 2.75E-16*TeUsed*sqrt(TeUsed)*&
& (157893.94/TeUsed+2.)*exp(-expFact)
! get HIOld, HeIOld, HeIIOld from last iteration
HIOld = ionDenUsed(elementXref(1),1)
HeIOld = ionDenUSed(elementXref(2),1)
HeIIOld = ionDenUsed(elementXref(2),2)
! the set of charge exchange coeffs is not complete; the following might need
! to be changed when a more complete set is available
chex = 0.
deltaE_k = 0.
chex(2,1,:) = (/7.47e-6, 2.06, 9.93,-3.89/)! He0
chex(2,2,:) = (/1.e-5 , 0. , 0. , 0./) ! He+
chex(3,2,:) = (/1.26 , 0.96,3.02 ,-0.65/)! Li+
chex(3,3,:) = (/1.e-5 , 0. , 0. , 0. /) ! Li+2
chex(4,2,:) = (/1.e-5 , 0. , 0. , 0. /) ! Be+
chex(4,3,:) = (/1.e-5 , 0. , 0. , 0. /) ! Be+2
chex(4,4,:) = (/5.17 , 0.82, -.69, -1.12 /)! Be+3
chex(5,2,:) = (/2.e-2 , 0. , 0. , 0. /) ! B+
chex(5,3,:) = (/1.e-5 , 0. , 0. , 0. /) ! B+2
chex(5,4,:) = (/5.27e-1, 0.76,-0.63,-1.17/)! B+3
chex(6,1,:) = (/1.76e-9, 8.33, 4278.78, -6.41/)! C0
chex(6,2,:) = (/1.67e-4, 2.79, 304.72, -4.07/)! C+
chex(6,3,:) = (/3.25 , 0.21, 0.19, -3.29/)! C+2
chex(6,4,:) = (/332.46 ,-0.11,-0.995,-1.58e-3/)! C+3
chex(7,1,:) = (/1.01e-3,-0.29,-0.92, -8.38/)! N0
chex(7,2,:) = (/3.05e-1, 0.60, 2.65, -0.93/)! N+
chex(7,3,:) = (/4.54 , 0.57,-0.65, -0.89/)! N2+
chex(7,4,:) = (/3.28 , 0.52,-0.52, -0.19/)! N3+
chex(8,1,:) = (/1.04 , 3.15e-2, -0.61, -9.73/)! O0
chex(8,2,:) = (/1.04 , 0.27, 2.02, -5.92/)! O+
chex(8,3,:) = (/3.98 , 0.26, 0.56, -2.62/)! O2+
chex(8,4,:) = (/2.52e-1, 0.63, 2.08, -4.16/)! O3+
chex(9,2,:) = (/1.e-5 , 0. , 0. , 0./) ! F+
chex(9,3,:) = (/9.86 , 0.29,-0.21,-1.15/) ! F+2
chex(9,4,:) = (/7.15e-1, 1.21,-0.70,-0.85/) ! F3+
chex(10,2,:) = (/1.e-5 , 0. , 0. , 0. /) ! Ne+
chex(10,3,:) = (/14.73 , 4.52e-2, -0.84, -0.31 /) ! Ne+2
chex(10,4,:) = (/6.47 , 0.54 , 3.59 , -5.22 /) ! Ne+3
chex(11,2,:) = (/1.e-5 , 0. , 0. , 0. /) ! Na+
chex(11,3,:) = (/1.33 , 1.15 , 1.20 , -0.32 /)! Na+2
chex(11,4,:) = (/1.01e-1, 1.34 , 10.05, -6.41 /)! Na+3
chex(12,2,:) = (/8.58e-5, 2.49e-3, 2.93e-2, -4.33 /)! Mg+
chex(12,3,:) = (/6.49 , 0.53 , 2.82, -7.63 /) ! Mg+2
chex(12,4,:) = (/6.36 , 0.55 , 3.86, -5.19 /) ! Mg+3
chex(13,2,:) = (/1.e-5 , 0. , 0. , 0./) ! Al+
chex(13,3,:) = (/7.11e-5, 4.12 , 1.72e4, -22.24/)! Al+2
chex(13,4,:) = (/7.52e-1, 0.77 , 6.24, -5.67/) ! Al+3
chex(14,2,:) = (/1.23 , 0.24 , 3.17, 4.18e-3/) ! Si+
chex(14,3,:) = (/4.900e-1, -8.74e-2, -0.36, -0.79/)! Si+2
chex(14,4,:) = (/7.58 , 0.37 , 1.06, -4.09/)! Si+3
chex(16,1,:) = (/3.82e-7, 11.10, 2.57e4, -8.22/)! S0
chex(16,2,:) = (/1.e-5 , 0. , 0. ,0. /)! S+
chex(16,3,:) = (/2.29 , 4.02e-2, 1.59, -6.06/)! S+2
chex(16,4,:) = (/6.44 , 0.13 , 2.69 , -5.69/)! S+3
chex(18,2,:) = (/1.e-5 , 0. , 0. , 0./) ! Ar+
chex(18,3,:) = (/4.57 , 0.27 , -0.18 , -1.57/)! Ar+2
chex(18,4,:) = (/6.37 , 2.12 , 10.21 , -6.22/)! Ar+3
chex(18,3,:) = (/3.17e-2, 2.12 , 12.06 , -0.40/)! Ca+2
chex(18,4,:) = (/2.68 , 0.69 , -0.68 , -4.47/)! Ca+3
chex(26,2,:) = (/1.26 , 7.72e-2, -0.41, -7.31/)! Fe+
chex(26,3,:) = (/3.42 , 0.51 , -2.06 , -8.99/)! Fe+2.
deltaE_k(7,1) = 10863.
deltaE_k(8,1) = 2205.
chex(:,:,1) = chex(:,:,1)*1.e-9
t4 = TeUsed/10000.
! calculate the X(i+1)/X(i) ratio
do elem = 1, nElements
do ion = 1, min(elem, nstages-1)
if (.not.lgElementOn(elem)) exit
chex(elem,ion,1) = chex(elem,ion,1)*(t4**chex(elem,ion,2))*&
& (1.+chex(elem,ion,3)*exp(chex(elem,ion,4)*t4))
if (chex(elem,ion,1) < 0. ) chex(elem,ion,1) = 0.
if (TeUsed < 6000. .or. TeUsed>5.e4) chex(elem,ion,1) = 0.
! find the number of electron in this ion
nElec = elem - ion +1
! find the stat weights
call getOuterShell(elem, nElec, outShell, g0, g1)
! calculate the reverse charge exchange rate (only if deltaE_k > 1.)
if ( deltaE_k(elem,ion) > 1.) then
revRate = chex(elem,ion,1) * &
& (1.-grid%ionDen(cellP, &
& elementXref(1),1))*grid%Hden(cellP)*&
& 2. * exp(-deltaE_k(elem,ion)/TeUsed)/(real(g0)/real(g1))
else
revRate = 0.
end if
if ( (elem>1) .or. (ion>1) ) collIon = 0.
! calculate the X(i+1)/X(i) ratio
if (lgDebug) then
ionRatio(elem,ion) = (nPhotoSte(elem,ion)+nPhotoDif(elem,ion)+&
& collIon+revRate)/&
& (NeUsed*alphaTot(elem,ion)&
& +chex(elem,ion,1)*grid%Hden(grid%active(xP,yp,zP)) * &
& grid%ionDen(cellP,elementXref(1),1))
else
ionRatio(elem,ion) = (nPhotoSte(elem,ion)+&
& collIon+revRate)/&
& (NeUsed*alphaTot(elem,ion)&
& +chex(elem,ion,1)*grid%Hden(grid%active(xP,yp,zP)) * &
& grid%ionDen(cellP,elementXref(1),1))
end if
end do
end do
! calculate the products of ionRatio
do elem = 1, nElements
do ion = 1, min(elem, nstages-1)
if (.not.lgElementOn(elem)) exit
! generate the product
do i = 1, ion
ionProd(elem, ion) = ionProd(elem,ion)*ionRatio(elem, i)
end do
end do
end do
! calculate denominators for final ion abundances
do elem = 1, nElements
do ion = 1, min(elem, nstages-1)
if (.not.lgElementOn(elem)) exit
denominator(elem) = denominator(elem) + ionProd(elem, ion)
end do
end do
! calculate the new abundances for all ions
do elem = 1, nElements
do ion = 1, min(elem+1, nstages)
if (.not.lgElementOn(elem)) exit
if (ion == 1) then
grid%ionDen(cellP,elementXref(elem),ion) = real(1.0/denominator(elem))
else
grid%ionDen(cellP,elementXref(elem),ion) = &
& real(ionProd(elem, ion-1)/denominator(elem))
end if
! take back within the limit
if (grid%ionDen(cellP,elementXref(elem),ion) > xMax) &
& grid%ionDen(cellP,elementXref(elem),ion) = xMax
if (grid%ionDen(cellP,elementXref(elem),ion) < 1.e-20) &
& grid%ionDen(cellP,elementXref(elem),ion) = 1.e-20
ionDenUsed(elementXref(elem), ion) = &
& grid%ionDen(cellP,elementXref(elem),ion)
! this was added to help MPI communication
ionDenTemp(cellP,elementXref(elem),ion) = &
& grid%ionDen(cellP,elementXref(elem),ion)
end do
end do
! calculate new Ne
NeUsed = 0.
do elem = 1, nElements
do ion = 2, min(elem+1, nstages)
if (lgElementOn(elem)) then
if( ionDenUsed(elementXref(elem),ion) >= 1.e-10) &
& NeUsed = NeUsed + (ion-1)*&
&grid%elemAbun(grid%abFileIndex(xP,yP,zP),elem)*&
&ionDenUsed(elementXref(elem), ion)
end if
end do
end do
NeUsed = NeUsed * grid%Hden(cellP)
if (NeUsed==0. .and.lgTalk) print*, '! ionBalance [warning]: cell ', xP,yP,zP, &
&'; NeUsed = ', NeUsed
if (NeUsed == 0.) then
NeUsed = 1.
end if
if (LgNeInput) then
correction = NeUsed/grid%NeInput(cellP)
grid%Hden(cellP) = grid%Hden(cellP)/correction
end if
! this was added to help MPI implementation
NeTemp(cellP) = NeUsed
grid%Ne(cellP) = NeUsed
! calculate the residuals
deltaHI = (ionDenUsed(elementXref(1),1) - HIOld) / HIOld
deltaHeI = (ionDenUsed(elementXref(2),1) - HeIOld) / HeIOld
deltaHeII = (ionDenUsed(elementXref(2),2) - HeIIOld) / HeIIOld
! check for convergence
if ( ( (abs(deltaHI)>limit) .or. (abs(deltaHeI)>limit) .or. &
&(abs(deltaHeII)>limit) ) .and. (nIterateX<maxIterateX) ) then
! stepa up X iteration
nIterateX = nIterateX + 1
call ionBalance(lgConv)
return
else if (( (abs(deltaHI)>limit) .or. (abs(deltaHeI)>limit) .or. &
&(abs(deltaHeII)>limit) ) .and. (nIterateX == maxIterateX) ) then
if (lgTalk) print*, "! ionBalance: [warning] convergence not reached after ", &
&maxIterateX, " steps. Finishing up..."
lgConv = .false.
end if
! this was added to help MPI implementation
NeTemp(cellP) = NeUsed
end subroutine ionBalance
subroutine calcAlpha()
implicit none
real, dimension(nElements, nstages) &
&:: diRec ! total recombination coeffs
! zero out alphaTot and contributors
alphaTot = 0.
diRec = 0.
! calculate radiative recombination part first
do elem = 1, nElements
do ion = 1, min(nstages-1, elem)
alphaTot(elem, ion) = radRecFit(elem, elem-ion+1)
end do
end do
call dielectronic(diRec)
! calculate dielectronic recombination part
do elem = 3, nElements
do ion = 1, min(nstages-1, elem)
if (diRec(elem,ion) == 0.) diRec(elem,ion) = diRec(8,ion)
alphaTot(elem, ion) = alphaTot(elem, ion) + diRec(elem, ion)
end do
end do
end subroutine calcAlpha
! This subroutine calculates rates of radiative recombination for all ions
! of all elements from H through Zn by use of the following fits:
! H-like, He-like, Li-like, Na-like - Verner & Ferland, 1996, ApJS, 103, 467
! Other ions of C, N, O, Ne - Pequignot et al. 1991, A&A, 251, 680,
! refitted by Verner & Ferland formula to ensure correct asymptotes
! Fe XVII-XXIII - Arnaud & Raymond, 1992, ApJ, 398, 394
! Fe I-XV - refitted by Verner & Ferland formula to ensure correct asymptotes
! Other ions of Mg, Si, S, Ar, Ca, Fe, Ni -
! - Shull & Van Steenberg, 1982, ApJS, 48, 95
! Other ions of Na, Al - Landini & Monsignori Fossi, 1990, A&AS, 82, 229
! Other ions of F, P, Cl, K, Ti, Cr, Mn, Co (excluding Ti I-II, Cr I-IV,
! Mn I-V, Co I) - Landini & Monsignori Fossi, 1991, A&AS, 91, 183
! All other species - interpolations of the power-law fits
! Input parameters: z - atomic number
! n - number of electrons from 1 to z
! Output parameter: radRecFit - rate coefficient, cm^3 s^(-1)
function radRecFit(z, n)
implicit none
integer, intent(in) :: z ! atomic weight of the element
integer, intent(in) :: n ! number of electrons (from 1 to z)
real :: radRecFit ! rad rate coeff [cm^3/s]
! local variables
integer :: elem ! element counter
integer :: i ! counter
integer :: ion ! ion stage counter
integer :: ios ! I/O error status
logical, save :: lgFirst = .true.
! first time this is evaluated?
real :: tt ! temp dep fact in interpolation
real, dimension(2, nElements, nElements),& ! coefficients for the
& save :: rrec ! calculation of the
real, dimension(4, nElements, nElements),& ! radiative rates
& save :: rnew !
real, dimension(3, 4:13), save :: fe !
! if this is the first time this procedure is called
! read in radiative recombination coefficient file
! and the dielectronic recombination data
if (lgFirst) then
close(17)
open (unit=17, file=PREFIX//'/share/mocassin/data/radrec.dat', status='old',position='rewind', iostat = ios, action="read")
do ion = 4, 30
if (ion /= 11) then
do elem = ion, 30
if ( (elem /= 26) .or. (ion >= 14) ) then
read(unit=17, fmt=*, iostat=ios) (rrec(i,elem,ion), i=1,2)
end if
end do
end if
end do
do ion = 1, 3
do elem = ion, 30
read(unit=17, fmt=*, iostat=ios) (rnew(i,elem,ion), i=1,4)
end do
end do
do elem = 11, 30
read(unit=17, fmt=*, iostat=ios) (rnew(i,elem,11), i=1,4)
end do
do ion = 4, 10
do elem = max(6,ion), 8
read(unit=17, fmt=*, iostat=ios) (rnew(i,elem,ion), i=1,4)
end do
read(unit=17, fmt=*, iostat=ios) (rnew(i,10,ion), i=1,4)
end do
do ion = 12, 26
read(unit=17, fmt=*, iostat=ios) (rnew(i,26,ion), i=1,4)
end do
! close the files
close(17)
! set data for Fe
fe(1,:) = (/4.33e-10,3.91e-10,3.49e-10,3.16e-10,&
&2.96e-10,2.59e-10,2.24e-10,1.91e-10,1.68e-10,1.46e-10/)
fe(2,:) = (/0.531,0.523,0.521,0.534, &
&0.557,0.567,0.579,0.601,0.602,0.597/)
fe(3,:) = (/5.77e-02,6.15e-02,6.22e-02,6.02e-02,&
&5.79e-02,5.65e-02,5.49e-02,5.10e-02,5.07e-02,5.22e-02/)
! set lgFirst to .false.
lgFirst = .false.
end if
! check right element and number of electron reference
if ( (z<1) .or. (z>30) ) then
print*, "! radRecFit: insane atomic number", z
stop
end if
if ( (n<1) .or. (n>z) ) then
print*, "! radRecFit: insane number of electrons", n
stop
end if
! calculate the rates
if ( (n<=3) .or. (n==11) .or. ((z>5) .and. (z<9)) .or. (z==10) .or.&
&((z==26) .and. (n>11)) ) then
tt = sqrt(TeUsed/rnew(3,z,n))
radRecFit = rnew(1,z,n) / (tt*(tt+1.)**(1.-rnew(2,z,n))*&
&(1.+sqrt(TeUsed/rnew(4,z,n)))**(1.+rnew(2,z,n)))
else
tt = TeUsed*1.e-4
if ( (z==26) .and. (n<=13) ) then
radRecFit = fe(1,n)/tt**(fe(2,n)+fe(3,n)*log10(tt))
else
radRecFit = rrec(1,z,n)/tt**rrec(2,z,n)
end if
end if
end function radRecFit
subroutine dielectronic(diRec)
implicit none
real, intent(out), dimension(nElements, nstages) :: diRec ! total recombination coeffs
! local variables
integer :: ion
real :: t ! t = TeUsed/10000., t0,t1 are fitting par
real :: alpha
real, dimension(nElements, nstages) :: aldroPequi! high T dielec rec coeff by A&P73
aldroPequi = 0.
t = TeUsed/10000.
alpha = 0.
aldroPequi=0.
do i = 1, size(direc_coeffs)
ion = direc_coeffs(i)%elem + 1 - direc_coeffs(i)%n
if (ion <= nstages) then
if (direc_coeffs(i)%g == 0) then
diRec(direc_coeffs(i)%elem, ion) = (10.**(-12))*(direc_coeffs(i)%a/t+direc_coeffs(i)%b+direc_coeffs(i)%c*t+direc_coeffs(i)%d*t**2)*t**(-3./2.)*exp(-direc_coeffs(i)%f/t)
else if (direc_coeffs(i)%g == 1 .and. TeUsed .lt. 20000.) then
diRec(direc_coeffs(i)%elem, ion) = (10.**(-12))*(direc_coeffs(i)%a/t+direc_coeffs(i)%b+direc_coeffs(i)%c*t+direc_coeffs(i)%d*t**2)*t**(-3./2.)*exp(-direc_coeffs(i)%f/t)
else if (direc_coeffs(i)%g == 2 .and. TeUsed .ge. 20000.) then
diRec(direc_coeffs(i)%elem, ion) = (10.**(-12))*(direc_coeffs(i)%a/t+direc_coeffs(i)%b+direc_coeffs(i)%c*t+direc_coeffs(i)%d*t**2)*t**(-3./2.)*exp(-direc_coeffs(i)%f/t)
end if
end if
end do
! calculate the high temperatures dielectronic recombination coeficients of
! Aldrovandi and Pequignot 1973
t = TeUsed
do i = 1, size(aldropequi_coeffs)
ion = aldropequi_coeffs(i)%elem + 1 - aldropequi_coeffs(i)%n
alpha = aldropequi_coeffs(i)%a*t**(-3./2.)*exp(-aldropequi_coeffs(i)%t0/t)*(1.+aldropequi_coeffs(i)%b*exp(-aldropequi_coeffs(i)%t1/t))
if (ion <= nstages) aldroPequi(aldropequi_coeffs(i)%elem, ion) = alpha
end do
if (TeUsed>60000.) then
diRec = aldroPequi
else
where (direc .eq. 0.)
diRec = aldroPequi
endwhere
end if
end subroutine dielectronic
subroutine getDustT()
implicit none
real :: dustAbsIntegral ! dust absorption integral
real :: dabs
real :: resLineHeat ! resonance line heating
real, dimension(nbins) :: radField ! radiation field
integer :: nS, i, ai ! counters
integer :: iT ! pointer to dust temp in dust temp array
! radiation field at this location
if (lgDebug) then
radField = ((grid%Jste(cellP,:) + grid%Jdif(cellP,:)))/Pi
else
radField = grid%Jste(cellP,:)/Pi
end if
! zero out dust temperature arrays
grid%Tdust(:,:,cellP) = 0.
if (lgforceTDust) then ! BEKS2010
grid%Tdust(:,:,cellP) = forceTDust
return
endif
! calculate absorption integrals for each species
do nS = 1, nSpeciesPart(nspU)
do ai = 1, nSizes
dustAbsIntegral=0.
if (lgTraceHeating.and.taskid==0) dabs=0.
do i = 1, nbins
dustAbsIntegral = dustAbsIntegral+xSecArray(dustAbsXsecP(nS,ai)+i-1)*radField(i)
if (lgTraceHeating.and.taskid==0) then
dabs = dabs+xSecArray(dustAbsXsecP(nS,ai)+i-1)*radField(i)
end if
end do
if (lgGas .and. convPercent>=resLinesTransfer .and. (.not.lgResLinesFirst) .and. &
& (.not.nIterateMC==1) ) then
dustHeatingBudget(grid%abFileIndex(xp,yp,zp),0) = dustHeatingBudget(grid%abFileIndex(xp,yp,zp),0)+&
& dustAbsIntegral*grainWeight(ai)*grainAbun(nspU,nS)*grid%Ndust(cellP)
dustHeatingBudget(0,0) = dustHeatingBudget(0,0)+&
& dustAbsIntegral*grainWeight(ai)*grainAbun(nspU,nS)*grid%Ndust(cellP)
resLineHeat = resLineHeating(ai,ns,nspU)
dustAbsIntegral = dustAbsIntegral+resLineHeat
end if
if (lgGas .and. lgPhotoelectric) then
dustAbsIntegral = dustAbsIntegral+gasDustColl_d(nS,ai)-&
& photoelHeat_d(nS,ai)
end if
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Dust Species: ', ns, ai
write(57,*) 'Abs of cont rad field ', dabs
write(57,*) 'Res Lines Heating: ', reslineheat
if (lgGas .and. lgPhotoelectric) then
write(57,*) 'Grain potential ', grainPot(ns,ai)
write(57,*) 'Gas-dust collision heat', gasDustColl_d(nS,ai)
write(57,*) 'Photoelctric cooling: ', photoelHeat_d(nS,ai)
end if
end if
call locate(dustEmIntegral(nS,ai,:), dustAbsIntegral, iT)
if (iT<=0 .and. lgTalk) then
print*, "getDustT: [warning] temperature of grain = 0. K!!!!"
print*, cellP
print*, nS, dustAbsIntegral
print*, dustEmIntegral(nS,ai,1)
!stop
iT=1
grid%Tdust(nS,ai,cellP) = 1.
else if (iT>=nTemps) then
grid%Tdust(nS,ai,cellP) = real(nTemps)
else
grid%Tdust(nS,ai,cellP) = real(iT) + &
& (dustAbsIntegral-dustEmIntegral(nS,ai,iT))*&
& (real(iT+1)-real(iT))/(dustEmIntegral(nS,ai,iT+1)-&
& dustEmIntegral(nS,ai,iT))
end if
if (lgTraceHeating.and.taskid==0) then
write(57,*) 'Radiative cooling: ', dustEmIntegral(ns,ai,iT)
write(57,*) 'Grain temperature: ', grid%Tdust(nS,ai,cellP), &
& " species ", grainLabel(nS), " size:", grainRadius(ai)
end if
if (lgTalk) &
& print*, "! getDustT: [talk] cell ", xP,yP,zP,"; Grain temperature: "&
&, grid%Tdust(nS,ai,cellP), " species ", grainLabel(nS), " size:", grainRadius(ai)
! find weighted mean
grid%Tdust(nS,0,cellP) = grid%Tdust(nS,0,cellP)+&
& grid%Tdust(nS,ai,cellP)*grainWeight(ai)
end do
grid%Tdust(0,0,cellP) = grid%Tdust(0,0,cellP)+&
& grid%Tdust(nS,0,cellP)*grainAbun(nspU,nS)
end do
end subroutine getDustT
function resLineHeating(sizeP,speciesP, icompP)
implicit none
real :: resLineHeating ! dust heating due to res lines
real :: Gline ! energy is the line [erg sec^-1]
real :: heat ! sub calculation var
integer, intent(in) :: sizeP ! size pointer
integer, intent(in) :: speciesP! species pointer
integer, intent(in) :: icompP! dust componenent pointer
integer :: iL ! line counter
integer :: imul ! multiplet counter
resLineHeating = 0.
do iL = 1, nResLines
Gline = 0.
do imul = 1, resLine(iL)%nmul
if (resLine(iL)%elem==1) then
if ( resLine(iL)%ion == 1 .and. resLine(iL)%moclow(imul)==1 .and. resLine(iL)%mochigh(imul)==2 ) then
! fits to Storey and Hummer MNRAS 272(1995)41
Gline = Gline + 10**(-0.897*log10(TeUsed) + 5.05)*grid%elemAbun(grid%abFileIndex(xP,yP,zP),1)&
& *1.e-25*ionDenUsed(elementXref(1),2)*&
& NeUsed
else
print*, "! resLineHeating: [warning] only dust &
&heating from H Lyman alpha and resonance lines from heavy"
print*, "elements is implemented in this version. please contact author B. Ercolano -1-", &
&iL, resLine(iL)%elem, &
& resLine(iL)%ion
end if
else if (resLine(iL)%elem>2) then
Gline = Gline+real(forbiddenLines(resLine(iL)%elem,resLine(iL)%ion, &
&resline(iL)%moclow(imul), resline(iL)%mochigh(imul)))
else
print*, "! resLineHeating: [warning] only dust heating from H ",&
&"Lyman alpha and resonance lines from heavy"
print*, "elements is implemented in this version. please contact author B. Ercolano -2-", &
&iL, resLine(iL)%elem, &
& resLine(iL)%ion
end if
end do
Gline=Gline/Pi
heat = Gline*grid%Hden(cellP)* &
& (1.-grid%fEscapeResPhotons(cellP, iL))*&
& xSecArray(dustAbsXSecP(speciesP,sizeP)+resLine(iL)%nuP-1)/&
& (grid%Ndust(cellP)*&
& absOpacSpecies(speciesP,resLine(iL)%nuP))
! Harrington Monk and Clegg 1988 (section 3.2)
resLineHeating = resLineHeating + heat
dustHeatingBudget(grid%abFileIndex(xP,yP,zP),iL) = &
& dustHeatingBudget(grid%abFileIndex(xP,yP,zP),iL) + &
& heat*grainWeight(sizeP)*grainAbun(icompP,speciesP)*grid%Ndust(cellP)
dustHeatingBudget(0,iL) = dustHeatingBudget(0,iL) + &
& heat*grainWeight(sizeP)*grainAbun(icompP,speciesP)*grid%Ndust(cellP)
end do
end function resLineHeating
end subroutine updateCell
end module update_mod
|