1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
|
! Copyright (C) 2005 Barbara Ercolano
!
! Version 2.02
module vector_mod
use constants_mod
implicit none
public
! The definition of the vector type
type vector
real :: x
real :: y
real :: z
end type vector
! Define multiply
interface operator(*)
module procedure mult
end interface
! and divide
interface operator(/)
module procedure divideVec
end interface
! add
interface operator(+)
module procedure add
end interface
! subtract
interface operator(-)
module procedure subtract
end interface
! equivalence
interface operator(==)
module procedure equivalence
end interface
! notEquivalence(/=)
interface operator(/=)
module procedure notEquivalence
end interface
! note that the following two operators are costumised
! for use in the mocassinPlot routines, these are only
! meaningful in the context of this program
! >=
interface operator(>=)
module procedure greaterEqual
end interface
! <=
interface operator(<=)
module procedure lessEqual
end interface
! dot product
interface operator(.dot.)
module procedure dotProd
end interface
! cross product
interface operator(.cross.)
module procedure crossProd
end interface
contains
! the dot product function
real function dotProd(a , b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
dotProd = a%x*b%x + a%y*b%y + a%z*b%z
end function dotProd
! the cross product function
type(vector) function crossProd(a ,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
crossProd%x = (a%y*b%z - a%z*b%y)
crossProd%y = -(a%x*b%z - a%z*b%x)
crossProd%z = (a%x*b%y - a%y*b%x)
end function crossProd
! normalization subroutine - checks for zero vector
subroutine normalize(a)
type(vector) :: a
real :: m
m = modulus(a)
if (m == 0.) then
write(*,'(a)') "! Attempt to normalize the zero vector"
STOP
endif
a%x = a%x / m
a%y = a%y / m
a%z = a%z / m
end subroutine normalize
! find the modulus of a vector
real function modulus(a)
type(vector) :: a
modulus = a%x*a%x + a%y*a%y + a%z*a%z
modulus = sqrt(modulus)
end function modulus
! multiply function
type(vector) function mult(a,b)
real, intent(in) :: a
type(vector), intent(in) :: b
mult%x = a * b%x
mult%y = a * b%y
mult%z = a * b%z
end function mult
! divide vector by a scalar
type(vector) function divideVec(a,b)
type(vector), intent(in) :: a
real, intent(in) :: b
divideVec%x = a%x / b
divideVec%y = a%y / b
divideVec%z = a%z / b
end function divideVec
! add two vectors
type(vector) function add(a,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
add%x = a%x + b%x
add%y = a%y + b%y
add%z = a%z + b%z
end function add
! subtract two vectors
type(vector) function subtract(a,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
subtract%x = a%x - b%x
subtract%y = a%y - b%y
subtract%z = a%z - b%z
end function subtract
logical function equivalence(a,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
if( (a%x == b%x) .and.&
& (a%y == b%y) .and.&
& (a%z == b%z) ) then
equivalence = .true.
else
equivalence = .false.
end if
end function equivalence
logical function greaterEqual(a,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
if( (a%z <= b%z) .and.&
& ( a%x/(sqrt(1.-a%z*a%z)) >= &
& b%x/(sqrt(1.-b%z*b%z))) ) then
greaterEqual = .true.
else
greaterEqual = .false.
end if
end function greaterEqual
logical function lessEqual(a,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
if( (a%z >= b%z) .and.&
& ( a%x/(sqrt(1.-a%z*a%z)) <= &
& b%x/(sqrt(1.-b%z*b%z))) ) then
lessEqual = .true.
else
lessEqual = .false.
end if
end function lessEqual
logical function notEquivalence(a,b)
type(vector), intent(in) :: a
type(vector), intent(in) :: b
if( (a%x == b%x) .and.&
& (a%y == b%y) .and.&
& (a%z == b%z) ) then
notEquivalence = .false.
else
notEquivalence = .true.
end if
end function notEquivalence
! get polar form of a cartesian vector
subroutine getPolar(vec, r, theta, phi)
implicit none
type(vector) :: vec
real :: r, theta, phi, cosTheta
r = modulus(vec)
if ((vec%y == 0.) .and. (vec%x == 0)) then
phi = 0.
else
phi = atan2(vec%y, vec%x)
endif
if (phi < 0.) phi = phi + twoPi
cosTheta = vec%z/r
theta = acos(cosTheta)
end subroutine getPolar
! rotate a vector "a" about the z-axis by angle b
type(vector) function rotateZ(a,b)
type(vector), intent(in) :: a
real, intent(in) :: b ! angle in radians
real :: cosb, sinb
cosb = cos(b)
sinb = sin(b)
rotateZ%x = cosb * a%x + sinb * a%y
rotateZ%y =-sinb * a%x + cosb * a%y
rotateZ%z = a%z
end function rotateZ
type(vector) function rotateX(a,b)
type(vector), intent(in) :: a
real, intent(in) :: b ! angle in radians
real :: cosb, sinb
cosb = cos(b)
sinb = sin(b)
rotateX%x = a%x
rotateX%y = cosb * a%y + sinb * a%z
rotateX%z =-sinb * a%y + cosb * a%z
end function rotateX
type(vector) function rotateY(a,b)
type(vector), intent(in) :: a
real, intent(in) :: b ! angle in radians
real :: cosb, sinb
cosb = cos(b)
sinb = sin(b)
rotateY%x = cosb * a%x + sinb * a%z
rotateY%y = a%y
rotateY%z =-sinb * a%x + cosb * a%z
end function rotateY
type(vector) function randomUnitVector()
real :: r1, r2, u, v, w, t, ang
call random_number(r1)
w = 2.*r1 - 1.
t = sqrt(1.-w*w)
call random_number(r2)
ang = 3.141592654*(2.*r2-1.)
u = t*cos(ang)
v = t*sin(ang)
randomUnitVector = vector(u,v,w)
end function randomUnitVector
end module vector_mod
|