File: RealConv.mi

package info (click to toggle)
mocka 9905-2
  • links: PTS
  • area: non-free
  • in suites: potato, sarge, woody
  • size: 5,436 kB
  • ctags: 160
  • sloc: asm: 23,203; makefile: 124; sh: 102; ansic: 23
file content (524 lines) | stat: -rw-r--r-- 12,771 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
(******************************************************************************)
(* Copyright (c) 1990 by GMD Karlruhe, Germany				      *)
(* Gesellschaft fuer Mathematik und Datenverarbeitung			      *)
(* (German National Research Center for Computer Science)		      *)
(* Forschungsstelle fuer Programmstrukturen an Universitaet Karlsruhe	      *)
(* All rights reserved.							      *)
(******************************************************************************)

IMPLEMENTATION MODULE RealConv;

  (* (w) 1990 CvR *)
  (* 03/93 HH : Endlosschleife bei Infinity beseitigt	       *)
  (* 03/93 HH : korrekte Ueberprufung HIGH(s) bei LongReal2Str *)
  (* 03/93 HH : Unterscheidung von Infinity und Nan	       *)
  (* 04/93 HH : Sonderbehandlung bei MIPS		       *)
  
  FROM LREAL	IMPORT LFLOAT, LTRUNC;

  (* ++ HH 10.03.93 ++ *)
  TYPE LRTRANSLATE = RECORD 
		       CASE : BOOLEAN OF
		       | TRUE : r : LONGREAL;
		       | FALSE : c2, c1 : LONGCARD;
		       END;
		     END;

       RTRANSLATE  = RECORD 
		       CASE : BOOLEAN OF
		       | TRUE : r : REAL;
		       | FALSE : c : LONGCARD;
		       END;
		     END;


  PROCEDURE IsLongRealInfinityOrNaN (x: LONGREAL) : BOOLEAN;
    VAR tr : LRTRANSLATE;
  BEGIN
    tr.r := x;
    RETURN ((tr.c1 DIV 00100000H) MOD 0800H) = 07FFH
  END IsLongRealInfinityOrNaN;

  PROCEDURE IsRealInfinityOrNaN (x: REAL) : BOOLEAN;
    VAR tr : RTRANSLATE;
  BEGIN
    tr.r := x;
    RETURN ((tr.c DIV 00800000H) MOD 0100H) = 0FFH
  END IsRealInfinityOrNaN;

  PROCEDURE IsLongRealInfinity (x: LONGREAL) : BOOLEAN;
    VAR tr : LRTRANSLATE;
  BEGIN
    tr.r := x;
    RETURN (((tr.c1 DIV 00100000H) MOD 0800H) = 07FFH) AND 
	    ((tr.c1 MOD 00100000H) = 0)
  END IsLongRealInfinity;

  PROCEDURE IsRealInfinity (x: REAL) : BOOLEAN;
    VAR tr : RTRANSLATE;
  BEGIN
    tr.r := x;
    RETURN (((tr.c DIV 00800000H) MOD 0100H) = 0FFH) AND
	    ((tr.c MOD 00800000H) = 0)
  END IsRealInfinity;
  (* ++ HH 10.03.93 ++ *)


  PROCEDURE Pow10(e: INTEGER): REAL;
  (* Returns 10 to the 'e's.	*)	
    VAR
      expNeg: BOOLEAN;
      b, x: REAL;
  BEGIN
    expNeg := e<0;
    e := ABS(e);
    b := 10.0;
    x := 1.0;
    WHILE e#0 DO
      IF ODD(e) THEN
        x := x*b;
      END;
      b := b*b; e := e DIV 2;
     END;
    IF expNeg THEN
      RETURN 1.0/x;
    ELSE
      RETURN x;
    END;
  END Pow10;
     
  PROCEDURE LPow10(e: INTEGER): LONGREAL;
  (* Returns 10 to the 'e's.	*)	
    VAR
      expNeg: BOOLEAN;
      b, x: LONGREAL;
  BEGIN
    expNeg := e<0;
    e := ABS(e);
    b := 10.0;
    x := 1.0;
    WHILE e#0 DO
      IF ODD(e) THEN
        x := x*b;
      END;
      b := b*b; e := e DIV 2;
    END;
    IF expNeg THEN
      RETURN 1.0/x;
    ELSE
      RETURN x;
    END;
  END LPow10;
     
  PROCEDURE Str2Real(s: ARRAY OF CHAR; VAR done: BOOLEAN): REAL;
  (* Converts the string 's' to real 'x'.			*)
  (* s has to be of the form:					*)
  (* real   = num ['.' {digit}] ['E' num].			*)
  (* num    = ['+'|'-'] digit {digit}.				*)

    CONST
      HighM = 0;
      (* HighM+1 Cardinals will be used to store the Mantissa. *)

    VAR
      i: CARDINAL;
      e, fractionDigits, truncatedDigits: INTEGER;
      phase: (Integral,Fractional);
      
      M: ARRAY[0..HighM] OF CARDINAL;
      (* Will hold the DezimalMantissa.	*)
      
      N: ARRAY[0..HighM] OF INTEGER;
      (* N[i]= Number of decimal digits stored in M[i].	*)
      
      m: CARDINAL;
      (* The actual Index for M and N.	*) 
      
      x: REAL;
      mantNeg, expNeg: BOOLEAN;
  BEGIN
    done:=FALSE; mantNeg:=FALSE;
    i:=0; 
    fractionDigits:=0; truncatedDigits:=0;
    FOR m:=0 TO HighM DO M[m]:=0; N[m]:=0; END;
    m:=0;

    phase := Integral;

    IF s[i]='-' THEN
      INC(i);
      mantNeg := TRUE;
    ELSIF s[i]='+' THEN
      INC(i);
    END;

    IF (i<=HIGH(s)) & (s[i]#0C) THEN
      REPEAT
        IF ('0'<=s[i]) & (s[i]<='9') THEN
          IF phase=Fractional THEN
            INC(fractionDigits);
          END;

          IF (m<HighM) & (M[m]>=MAX(INTEGER) DIV 10) THEN
            (* MUST be MAX(INTEGER) since we're   *)
	    (* calling LFLOAT(x:INTEGER) with it. *)
            INC(m);
          END;
              
          IF M[m]<MAX(INTEGER) DIV 10 THEN
            M[m] := M[m]*10 + (ORD(s[i]) - ORD('0')); INC(N[m]);
          ELSE
            INC(truncatedDigits);
          END;
        ELSIF (phase=Integral) & (s[i]='.') THEN
          phase := Fractional;
        ELSE
          RETURN 0.0;
        END;
        INC(i);
      UNTIL (i>HIGH(s)) OR (s[i]=0C) OR (s[i]='E');
    END;
    
    e:=0; expNeg:=FALSE;
    IF (i<=HIGH(s)) & (s[i]#0C) & (s[i]='E') THEN
      INC(i);
      IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
      IF s[i]='-' THEN
        INC(i);
        expNeg := TRUE;
      ELSIF s[i]='+' THEN
        INC(i);
      END;
      IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
      REPEAT
        IF ('0'<=s[i]) & (s[i]<='9') THEN
          e:=e*10+INTEGER(ORD(s[i])-ORD('0'));
	  (* ToDo: Overflowchecks !!! *)   
        ELSE
          RETURN 0.0;
        END;
        INC(i);
      UNTIL (i>HIGH(s)) OR (s[i]=0C);
      IF expNeg THEN e:=-e END;
    END;
    e:=e-fractionDigits+truncatedDigits;
    (* ToDo: Overflowchecks !!! *)
    x:=0.0;
    LOOP
      x:=x+FLOAT(M[m])*Pow10(e); 
      IF m=0 THEN EXIT; END;
      e:=e+N[m];
      DEC(m);
    END;
    done := TRUE;
    IF mantNeg THEN
      RETURN -x;
    ELSE
      RETURN x;
    END;
  END Str2Real;



  PROCEDURE Str2LongReal(s: ARRAY OF CHAR; VAR done: BOOLEAN): LONGREAL;
  (* Converts the string 's' to real 'x'.			*)
  (* s has to be of the form:					*)
  (* real   = num ['.' {digit}] ['E' num].			*)
  (* num    = ['+'|'-'] digit {digit}.				*)

    CONST
      HighM = 1;
      (* HighM+1 Cardinals will be used to store the Mantissa. *)

    VAR
      i: CARDINAL;
      e, fractionDigits, truncatedDigits: INTEGER;
      phase: (Integral,Fractional);
      
      M: ARRAY[0..HighM] OF CARDINAL;
      (* Will hold the DezimalMantissa.	*)
      
      N: ARRAY[0..HighM] OF INTEGER;
      (* N[i]= Number of decimal digits stored in M[i].	*)
      
      m: CARDINAL;
      (* The actual Index for M and N.	*) 
      
      x: LONGREAL;
      mantNeg, expNeg: BOOLEAN;
  BEGIN
    done:=FALSE; mantNeg:=FALSE;
    i:=0; 
    fractionDigits:=0; truncatedDigits:=0;
    FOR m:=0 TO HighM DO M[m]:=0; N[m]:=0; END;
    m:=0;

    phase := Integral;

    IF s[i]='-' THEN
      INC(i);
      mantNeg := TRUE;
    ELSIF s[i]='+' THEN
      INC(i);
    END;

    IF (i<=HIGH(s)) & (s[i]#0C) THEN
      REPEAT
        IF ('0'<=s[i]) & (s[i]<='9') THEN
          IF phase=Fractional THEN
            INC(fractionDigits);
          END;

          IF (m<HighM) & (M[m]>=MAX(INTEGER) DIV 10) THEN
            INC(m);
          END;
              
          IF M[m]<MAX(INTEGER) DIV 10 THEN
            M[m] := M[m]*10 + (ORD(s[i]) - ORD('0')); INC(N[m]);
          ELSE
            INC(truncatedDigits);
          END;
        ELSIF (phase=Integral) & (s[i]='.') THEN
          phase := Fractional;
        ELSE
          RETURN 0.0;
        END;
        INC(i);
      UNTIL (i>HIGH(s)) OR (s[i]=0C) OR (s[i]='E');
    END;
    
    e:=0; expNeg:=FALSE;
    IF (i<=HIGH(s)) & (s[i]='E') THEN
      INC(i);
      IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
      IF s[i]='-' THEN
        INC(i);
        expNeg := TRUE;
      ELSIF s[i]='+' THEN
        INC(i);
      END;
      IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
      REPEAT
        IF ('0'<=s[i]) & (s[i]<='9') THEN
          e:=e*10+INTEGER(ORD(s[i])-ORD('0'));
	  (* ToDo: Overflowchecks !!! *)   
        ELSE
          RETURN 0.0;
        END;
        INC(i);
      UNTIL (i>HIGH(s)) OR (s[i]=0C);
      IF expNeg THEN e:=-e END;
    END;
    e:=e-fractionDigits+truncatedDigits;
    (* ToDo: Overflowchecks !!! *)
    x:=0.0;
    LOOP
      x:=x+LFLOAT(M[m])*LPow10(e); 
      IF m=0 THEN EXIT; END;
      e:=e+N[m];
      DEC(m);
    END;
    done := TRUE;
    IF mantNeg THEN
      RETURN -x;
    ELSE
      RETURN x;
    END;
  END Str2LongReal;

  PROCEDURE Real2Str (x : REAL; n : CARDINAL; k : INTEGER;
                      VAR S: ARRAY OF CHAR; VAR done: BOOLEAN);
  (* Convert real 'x' into external representation.	*)
  (* If k > 0 use k decimal places.			*)
  (* If k = 0 write x as integer.			*)
  (* If k < 0 use scientific notation.			*)
  BEGIN
    LongReal2Str(x,n,k,S,done);
  END Real2Str;

  PROCEDURE LongReal2Str (x : LONGREAL; n : CARDINAL; k : INTEGER;
			  VAR S: ARRAY OF CHAR; VAR done: BOOLEAN);
  (* Convert long real 'x' into external representation.*)
  (* If k > 0 use k decimal places.			*)
  (* If k = 0 write x as integer.			*)
  (* If k < 0 use scientific notation.			*)

    VAR
      xl : LONGREAL;
      c  : CARDINAL;
      neg : BOOLEAN;
      exp, i, p, rexp : INTEGER;
      blanks, ExpLength,
      n0, i0, k0, exp0 : INTEGER;

  BEGIN
    done:=FALSE; S[0]:=0C;
    IF HIGH(S)+1<n THEN RETURN END; (* Result won't fit into given String *)

    (* ++ HH 10.03.93 ++ *)
    IF IsLongRealInfinityOrNaN (x)
      THEN
        IF HIGH(S) >= 8
	  THEN
	    IF IsLongRealInfinity (x)
	      THEN
		IF n > 9 THEN p := n-1 ELSE p := 8 END;
		FOR i := 0 TO p-9 DO S[i] := ' ' END;
		IF x > 0.0 THEN S[p-8] := ' ' ELSE S[p-8] := '-' END;
		S[p-7] := 'I';
		S[p-6] := 'n';
		S[p-5] := 'f';
		S[p-4] := 'i';
		S[p-3] := 'n';
		S[p-2] := 'i';
		S[p-1] := 't';
		S[p  ] := 'y';
	      ELSE
	        IF n > 3 THEN p := n-1 ELSE p := 3 END;
		FOR i := 0 TO p-3 DO S[i] := ' ' END;
		S[p-2] := 'N';
		S[p-1] := 'a';
		S[p  ] := 'N';
	    END;
	    IF p+1 <= VAL (INTEGER,HIGH(S)) THEN S[p+1] := 0C END;
	    done := TRUE;
	  ELSE
	    S[0] := 0C;
	    done := FALSE;
        END;
	RETURN		  
    END;
    (* ++ HH 10.03.93 ++ *)

    p:=0;
    
    n0  := n;
    k0  := k;
    neg := x < 0.0;
    IF neg THEN x := -x; END;

    IF k>=0 THEN 
      x:=x+0.5*LPow10(-k);
    END;

    (* get exponent *)
    exp := 0;
    IF x >= 10.0 THEN
      REPEAT
        INC (exp); x := x / 10.0;
      UNTIL x < 10.0;
    ELSIF (x < 1.0) & (x # 0.0) THEN
      REPEAT
        DEC (exp); x := x * 10.0;
      UNTIL x >= 1.0;
    END;

    IF k<0 THEN
      x:=x+0.5*LPow10(k);
    END;

    IF x>=10.0 THEN
      INC(exp); x:=x/10.0;
    END;

    (* calculate leading blanks *)
    exp0 := exp;
    ExpLength := 0;
    REPEAT
      INC (ExpLength); exp0 := exp0 DIV 10;
    UNTIL exp0 = 0;
    IF k < 0 THEN
      blanks := n0 - (-k0 + 3 + ExpLength);
      IF exp < 0 THEN DEC (blanks); END;
    ELSE
      IF k > 0 THEN
        IF exp < 0 THEN
          blanks := n0 - (k0 + 2);
        ELSE
          blanks := n0 - (exp + 2 + k0); (* HH 16.03.93 war: exp0 *)
        END;
      ELSE
        IF exp < 0 THEN
          (* will be zero *)
          neg    := FALSE;
          blanks :=  n0 - 1;
        ELSE
          blanks :=  n0 - (exp + 1);  (* HH 16.03.93 war: exp0 *)
        END;
      END;
    END;
    IF neg THEN DEC (blanks); END;

    IF (blanks<0) & (VAL(INTEGER,n)-VAL(INTEGER,HIGH(S))>blanks) THEN
      RETURN	(* Result won't fit into given string.	*)
    END;
    done:=TRUE;

    (* fill in leading blanks *)
    WHILE blanks > 0 DO
      S[p]:=' '; INC(p);
      DEC(blanks);
    END;

    (* sign *)
    IF neg THEN
      S[p]:='-'; INC(p);
    END;

    (* absolute value *)
    IF k >= 0 THEN
      IF exp < 0 THEN
        S[p]:='0'; INC(p);
      ELSE
        FOR i := 0 TO exp DO
          c := LTRUNC (x);
          S[p]:=VAL (CHAR, ORD ('0') + c); INC(p);
          xl := LFLOAT (c);
          x := (x - xl) * 10.0;
        END;
      END;
    ELSE (* k < 0 *)
      c := LTRUNC (x);
      S[p]:=VAL (CHAR, ORD ('0') + c); INC(p);
      xl := LFLOAT (c);
      x := (x - xl) * 10.0;
    END;
    IF k # 0 THEN
      S[p]:='.'; INC(p);
      IF (k > 0) & (exp < 0) THEN
        IF k < ABS (exp) THEN
          FOR i := 1 TO k DO
            S[p]:='0'; INC(p);
          END;
          IF p<=VAL(INTEGER,HIGH(S)) THEN S[p]:=0C; END;
          RETURN
        ELSE
          FOR i := 1 TO ABS (exp) - 1 DO
            S[p]:='0'; INC(p);
          END;
          k := k + exp + 1;
        END;
      END;
      FOR i := 1 TO ABS (k) DO
        c := LTRUNC (x);
        S[p]:=VAL (CHAR, ORD ('0') + c); INC(p);
        xl := LFLOAT (c);
        x := (x - xl) * 10.0;
      END;
      IF k < 0 THEN
        S[p]:='E'; INC(p);
        IF exp<0 THEN exp:=-exp;
          S[p]:='-'; INC(p);
        END;
        i:=ExpLength-1;
        WHILE i>=0 DO
          S[p+i]:=VAL(CHAR, ORD('0')+exp MOD 10); exp:=exp DIV 10;
          DEC(i);
        END;
        INC(p,ExpLength);
      END;
    END;
    IF p<=VAL(INTEGER,HIGH(S)) THEN S[p]:=0C; END;
  END LongReal2Str;

END RealConv.