1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
|
(******************************************************************************)
(* Copyright (c) 1990 by GMD Karlruhe, Germany *)
(* Gesellschaft fuer Mathematik und Datenverarbeitung *)
(* (German National Research Center for Computer Science) *)
(* Forschungsstelle fuer Programmstrukturen an Universitaet Karlsruhe *)
(* All rights reserved. *)
(******************************************************************************)
IMPLEMENTATION MODULE RealConv;
(* (w) 1990 CvR *)
(* 03/93 HH : Endlosschleife bei Infinity beseitigt *)
(* 03/93 HH : korrekte Ueberprufung HIGH(s) bei LongReal2Str *)
(* 03/93 HH : Unterscheidung von Infinity und Nan *)
(* 04/93 HH : Sonderbehandlung bei MIPS *)
FROM LREAL IMPORT LFLOAT, LTRUNC;
(* ++ HH 10.03.93 ++ *)
TYPE LRTRANSLATE = RECORD
CASE : BOOLEAN OF
| TRUE : r : LONGREAL;
| FALSE : c2, c1 : LONGCARD;
END;
END;
RTRANSLATE = RECORD
CASE : BOOLEAN OF
| TRUE : r : REAL;
| FALSE : c : LONGCARD;
END;
END;
PROCEDURE IsLongRealInfinityOrNaN (x: LONGREAL) : BOOLEAN;
VAR tr : LRTRANSLATE;
BEGIN
tr.r := x;
RETURN ((tr.c1 DIV 00100000H) MOD 0800H) = 07FFH
END IsLongRealInfinityOrNaN;
PROCEDURE IsRealInfinityOrNaN (x: REAL) : BOOLEAN;
VAR tr : RTRANSLATE;
BEGIN
tr.r := x;
RETURN ((tr.c DIV 00800000H) MOD 0100H) = 0FFH
END IsRealInfinityOrNaN;
PROCEDURE IsLongRealInfinity (x: LONGREAL) : BOOLEAN;
VAR tr : LRTRANSLATE;
BEGIN
tr.r := x;
RETURN (((tr.c1 DIV 00100000H) MOD 0800H) = 07FFH) AND
((tr.c1 MOD 00100000H) = 0)
END IsLongRealInfinity;
PROCEDURE IsRealInfinity (x: REAL) : BOOLEAN;
VAR tr : RTRANSLATE;
BEGIN
tr.r := x;
RETURN (((tr.c DIV 00800000H) MOD 0100H) = 0FFH) AND
((tr.c MOD 00800000H) = 0)
END IsRealInfinity;
(* ++ HH 10.03.93 ++ *)
PROCEDURE Pow10(e: INTEGER): REAL;
(* Returns 10 to the 'e's. *)
VAR
expNeg: BOOLEAN;
b, x: REAL;
BEGIN
expNeg := e<0;
e := ABS(e);
b := 10.0;
x := 1.0;
WHILE e#0 DO
IF ODD(e) THEN
x := x*b;
END;
b := b*b; e := e DIV 2;
END;
IF expNeg THEN
RETURN 1.0/x;
ELSE
RETURN x;
END;
END Pow10;
PROCEDURE LPow10(e: INTEGER): LONGREAL;
(* Returns 10 to the 'e's. *)
VAR
expNeg: BOOLEAN;
b, x: LONGREAL;
BEGIN
expNeg := e<0;
e := ABS(e);
b := 10.0;
x := 1.0;
WHILE e#0 DO
IF ODD(e) THEN
x := x*b;
END;
b := b*b; e := e DIV 2;
END;
IF expNeg THEN
RETURN 1.0/x;
ELSE
RETURN x;
END;
END LPow10;
PROCEDURE Str2Real(s: ARRAY OF CHAR; VAR done: BOOLEAN): REAL;
(* Converts the string 's' to real 'x'. *)
(* s has to be of the form: *)
(* real = num ['.' {digit}] ['E' num]. *)
(* num = ['+'|'-'] digit {digit}. *)
CONST
HighM = 0;
(* HighM+1 Cardinals will be used to store the Mantissa. *)
VAR
i: CARDINAL;
e, fractionDigits, truncatedDigits: INTEGER;
phase: (Integral,Fractional);
M: ARRAY[0..HighM] OF CARDINAL;
(* Will hold the DezimalMantissa. *)
N: ARRAY[0..HighM] OF INTEGER;
(* N[i]= Number of decimal digits stored in M[i]. *)
m: CARDINAL;
(* The actual Index for M and N. *)
x: REAL;
mantNeg, expNeg: BOOLEAN;
BEGIN
done:=FALSE; mantNeg:=FALSE;
i:=0;
fractionDigits:=0; truncatedDigits:=0;
FOR m:=0 TO HighM DO M[m]:=0; N[m]:=0; END;
m:=0;
phase := Integral;
IF s[i]='-' THEN
INC(i);
mantNeg := TRUE;
ELSIF s[i]='+' THEN
INC(i);
END;
IF (i<=HIGH(s)) & (s[i]#0C) THEN
REPEAT
IF ('0'<=s[i]) & (s[i]<='9') THEN
IF phase=Fractional THEN
INC(fractionDigits);
END;
IF (m<HighM) & (M[m]>=MAX(INTEGER) DIV 10) THEN
(* MUST be MAX(INTEGER) since we're *)
(* calling LFLOAT(x:INTEGER) with it. *)
INC(m);
END;
IF M[m]<MAX(INTEGER) DIV 10 THEN
M[m] := M[m]*10 + (ORD(s[i]) - ORD('0')); INC(N[m]);
ELSE
INC(truncatedDigits);
END;
ELSIF (phase=Integral) & (s[i]='.') THEN
phase := Fractional;
ELSE
RETURN 0.0;
END;
INC(i);
UNTIL (i>HIGH(s)) OR (s[i]=0C) OR (s[i]='E');
END;
e:=0; expNeg:=FALSE;
IF (i<=HIGH(s)) & (s[i]#0C) & (s[i]='E') THEN
INC(i);
IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
IF s[i]='-' THEN
INC(i);
expNeg := TRUE;
ELSIF s[i]='+' THEN
INC(i);
END;
IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
REPEAT
IF ('0'<=s[i]) & (s[i]<='9') THEN
e:=e*10+INTEGER(ORD(s[i])-ORD('0'));
(* ToDo: Overflowchecks !!! *)
ELSE
RETURN 0.0;
END;
INC(i);
UNTIL (i>HIGH(s)) OR (s[i]=0C);
IF expNeg THEN e:=-e END;
END;
e:=e-fractionDigits+truncatedDigits;
(* ToDo: Overflowchecks !!! *)
x:=0.0;
LOOP
x:=x+FLOAT(M[m])*Pow10(e);
IF m=0 THEN EXIT; END;
e:=e+N[m];
DEC(m);
END;
done := TRUE;
IF mantNeg THEN
RETURN -x;
ELSE
RETURN x;
END;
END Str2Real;
PROCEDURE Str2LongReal(s: ARRAY OF CHAR; VAR done: BOOLEAN): LONGREAL;
(* Converts the string 's' to real 'x'. *)
(* s has to be of the form: *)
(* real = num ['.' {digit}] ['E' num]. *)
(* num = ['+'|'-'] digit {digit}. *)
CONST
HighM = 1;
(* HighM+1 Cardinals will be used to store the Mantissa. *)
VAR
i: CARDINAL;
e, fractionDigits, truncatedDigits: INTEGER;
phase: (Integral,Fractional);
M: ARRAY[0..HighM] OF CARDINAL;
(* Will hold the DezimalMantissa. *)
N: ARRAY[0..HighM] OF INTEGER;
(* N[i]= Number of decimal digits stored in M[i]. *)
m: CARDINAL;
(* The actual Index for M and N. *)
x: LONGREAL;
mantNeg, expNeg: BOOLEAN;
BEGIN
done:=FALSE; mantNeg:=FALSE;
i:=0;
fractionDigits:=0; truncatedDigits:=0;
FOR m:=0 TO HighM DO M[m]:=0; N[m]:=0; END;
m:=0;
phase := Integral;
IF s[i]='-' THEN
INC(i);
mantNeg := TRUE;
ELSIF s[i]='+' THEN
INC(i);
END;
IF (i<=HIGH(s)) & (s[i]#0C) THEN
REPEAT
IF ('0'<=s[i]) & (s[i]<='9') THEN
IF phase=Fractional THEN
INC(fractionDigits);
END;
IF (m<HighM) & (M[m]>=MAX(INTEGER) DIV 10) THEN
INC(m);
END;
IF M[m]<MAX(INTEGER) DIV 10 THEN
M[m] := M[m]*10 + (ORD(s[i]) - ORD('0')); INC(N[m]);
ELSE
INC(truncatedDigits);
END;
ELSIF (phase=Integral) & (s[i]='.') THEN
phase := Fractional;
ELSE
RETURN 0.0;
END;
INC(i);
UNTIL (i>HIGH(s)) OR (s[i]=0C) OR (s[i]='E');
END;
e:=0; expNeg:=FALSE;
IF (i<=HIGH(s)) & (s[i]='E') THEN
INC(i);
IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
IF s[i]='-' THEN
INC(i);
expNeg := TRUE;
ELSIF s[i]='+' THEN
INC(i);
END;
IF (i>HIGH(s)) OR (s[i]=0C) THEN RETURN 0.0; END;
REPEAT
IF ('0'<=s[i]) & (s[i]<='9') THEN
e:=e*10+INTEGER(ORD(s[i])-ORD('0'));
(* ToDo: Overflowchecks !!! *)
ELSE
RETURN 0.0;
END;
INC(i);
UNTIL (i>HIGH(s)) OR (s[i]=0C);
IF expNeg THEN e:=-e END;
END;
e:=e-fractionDigits+truncatedDigits;
(* ToDo: Overflowchecks !!! *)
x:=0.0;
LOOP
x:=x+LFLOAT(M[m])*LPow10(e);
IF m=0 THEN EXIT; END;
e:=e+N[m];
DEC(m);
END;
done := TRUE;
IF mantNeg THEN
RETURN -x;
ELSE
RETURN x;
END;
END Str2LongReal;
PROCEDURE Real2Str (x : REAL; n : CARDINAL; k : INTEGER;
VAR S: ARRAY OF CHAR; VAR done: BOOLEAN);
(* Convert real 'x' into external representation. *)
(* If k > 0 use k decimal places. *)
(* If k = 0 write x as integer. *)
(* If k < 0 use scientific notation. *)
BEGIN
LongReal2Str(x,n,k,S,done);
END Real2Str;
PROCEDURE LongReal2Str (x : LONGREAL; n : CARDINAL; k : INTEGER;
VAR S: ARRAY OF CHAR; VAR done: BOOLEAN);
(* Convert long real 'x' into external representation.*)
(* If k > 0 use k decimal places. *)
(* If k = 0 write x as integer. *)
(* If k < 0 use scientific notation. *)
VAR
xl : LONGREAL;
c : CARDINAL;
neg : BOOLEAN;
exp, i, p, rexp : INTEGER;
blanks, ExpLength,
n0, i0, k0, exp0 : INTEGER;
BEGIN
done:=FALSE; S[0]:=0C;
IF HIGH(S)+1<n THEN RETURN END; (* Result won't fit into given String *)
(* ++ HH 10.03.93 ++ *)
IF IsLongRealInfinityOrNaN (x)
THEN
IF HIGH(S) >= 8
THEN
IF IsLongRealInfinity (x)
THEN
IF n > 9 THEN p := n-1 ELSE p := 8 END;
FOR i := 0 TO p-9 DO S[i] := ' ' END;
IF x > 0.0 THEN S[p-8] := ' ' ELSE S[p-8] := '-' END;
S[p-7] := 'I';
S[p-6] := 'n';
S[p-5] := 'f';
S[p-4] := 'i';
S[p-3] := 'n';
S[p-2] := 'i';
S[p-1] := 't';
S[p ] := 'y';
ELSE
IF n > 3 THEN p := n-1 ELSE p := 3 END;
FOR i := 0 TO p-3 DO S[i] := ' ' END;
S[p-2] := 'N';
S[p-1] := 'a';
S[p ] := 'N';
END;
IF p+1 <= VAL (INTEGER,HIGH(S)) THEN S[p+1] := 0C END;
done := TRUE;
ELSE
S[0] := 0C;
done := FALSE;
END;
RETURN
END;
(* ++ HH 10.03.93 ++ *)
p:=0;
n0 := n;
k0 := k;
neg := x < 0.0;
IF neg THEN x := -x; END;
IF k>=0 THEN
x:=x+0.5*LPow10(-k);
END;
(* get exponent *)
exp := 0;
IF x >= 10.0 THEN
REPEAT
INC (exp); x := x / 10.0;
UNTIL x < 10.0;
ELSIF (x < 1.0) & (x # 0.0) THEN
REPEAT
DEC (exp); x := x * 10.0;
UNTIL x >= 1.0;
END;
IF k<0 THEN
x:=x+0.5*LPow10(k);
END;
IF x>=10.0 THEN
INC(exp); x:=x/10.0;
END;
(* calculate leading blanks *)
exp0 := exp;
ExpLength := 0;
REPEAT
INC (ExpLength); exp0 := exp0 DIV 10;
UNTIL exp0 = 0;
IF k < 0 THEN
blanks := n0 - (-k0 + 3 + ExpLength);
IF exp < 0 THEN DEC (blanks); END;
ELSE
IF k > 0 THEN
IF exp < 0 THEN
blanks := n0 - (k0 + 2);
ELSE
blanks := n0 - (exp + 2 + k0); (* HH 16.03.93 war: exp0 *)
END;
ELSE
IF exp < 0 THEN
(* will be zero *)
neg := FALSE;
blanks := n0 - 1;
ELSE
blanks := n0 - (exp + 1); (* HH 16.03.93 war: exp0 *)
END;
END;
END;
IF neg THEN DEC (blanks); END;
IF (blanks<0) & (VAL(INTEGER,n)-VAL(INTEGER,HIGH(S))>blanks) THEN
RETURN (* Result won't fit into given string. *)
END;
done:=TRUE;
(* fill in leading blanks *)
WHILE blanks > 0 DO
S[p]:=' '; INC(p);
DEC(blanks);
END;
(* sign *)
IF neg THEN
S[p]:='-'; INC(p);
END;
(* absolute value *)
IF k >= 0 THEN
IF exp < 0 THEN
S[p]:='0'; INC(p);
ELSE
FOR i := 0 TO exp DO
c := LTRUNC (x);
S[p]:=VAL (CHAR, ORD ('0') + c); INC(p);
xl := LFLOAT (c);
x := (x - xl) * 10.0;
END;
END;
ELSE (* k < 0 *)
c := LTRUNC (x);
S[p]:=VAL (CHAR, ORD ('0') + c); INC(p);
xl := LFLOAT (c);
x := (x - xl) * 10.0;
END;
IF k # 0 THEN
S[p]:='.'; INC(p);
IF (k > 0) & (exp < 0) THEN
IF k < ABS (exp) THEN
FOR i := 1 TO k DO
S[p]:='0'; INC(p);
END;
IF p<=VAL(INTEGER,HIGH(S)) THEN S[p]:=0C; END;
RETURN
ELSE
FOR i := 1 TO ABS (exp) - 1 DO
S[p]:='0'; INC(p);
END;
k := k + exp + 1;
END;
END;
FOR i := 1 TO ABS (k) DO
c := LTRUNC (x);
S[p]:=VAL (CHAR, ORD ('0') + c); INC(p);
xl := LFLOAT (c);
x := (x - xl) * 10.0;
END;
IF k < 0 THEN
S[p]:='E'; INC(p);
IF exp<0 THEN exp:=-exp;
S[p]:='-'; INC(p);
END;
i:=ExpLength-1;
WHILE i>=0 DO
S[p+i]:=VAL(CHAR, ORD('0')+exp MOD 10); exp:=exp DIV 10;
DEC(i);
END;
INC(p,ExpLength);
END;
END;
IF p<=VAL(INTEGER,HIGH(S)) THEN S[p]:=0C; END;
END LongReal2Str;
END RealConv.
|