File: flib.f

package info (click to toggle)
model-builder 0.4.1-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 1,056 kB
  • ctags: 621
  • sloc: python: 3,917; fortran: 690; makefile: 18; sh: 11
file content (1360 lines) | stat: -rw-r--r-- 32,939 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
      real function whrand()
c
c     Algorithm AS 183 Appl. Statist. (1982) vol.31, no.2
c
c     Returns a pseudo-random number rectangularly distributed
c     between 0 and 1.   The cycle length is 6.95E+12 (See page 123
c     of Applied Statistics (1984) vol.33), not as claimed in the
c     original article.
c
c     IX, IY and IZ should be set to integer values between 1 and
c     30000 before the first entry.
c
c     Integer arithmetic up to 30323 is required.
c
      integer ix, iy, iz
      common /randc/ ix, iy, iz
c
      ix = 171 * mod(ix, 177) - 2 * (ix / 177)
      iy = 172 * mod(iy, 176) - 35 * (iy / 176)
      iz = 170 * mod(iz, 178) - 63 * (iz / 178)
c
      if (ix .lt. 0) ix = ix + 30269
      if (iy .lt. 0) iy = iy + 30307
      if (iz .lt. 0) iz = iz + 30323
c
c     If integer arithmetic up to 5212632 is available, the preceding
c     6 statements may be replaced by:
c
c     ix = mod(171 * ix, 30269)
c     iy = mod(172 * iy, 30307)
c     iz = mod(170 * iz, 30323)
c
      whrand = mod(float(ix) / 30269. + float(iy) / 30307. +
     +                        float(iz) / 30323., 1.0)
      return
      end

	    real function uniform()
c
c	Generate uniformly distributed random numbers using the 32-bit
c	generator from figure 3 of:
c	L`Ecuyer, P. Efficient and portable combined random number
c	generators, C.A.C.M., vol. 31, 742-749 & 774-?, June 1988.
c
c	The cycle length is claimed to be 2.30584E+18
c
c	Seeds can be set by calling the routine set_uniform
c
c	It is assumed that the Fortran compiler supports long variable
c	names, and integer*4.
c
	    integer*4 z, k, s1, s2
	    common /unif_seeds/ s1, s2
	    save /unif_seeds/
c
	    k = s1 / 53668
	    s1 = 40014 * (s1 - k * 53668) - k * 12211
	    if (s1 .lt. 0) s1 = s1 + 2147483563
c
	    k = s2 / 52774
	    s2 = 40692 * (s2 - k * 52774) - k * 3791
	    if (s2 .lt. 0) s2 = s2 + 2147483399
c
	    if (z .lt. 1) z = z + 2147483562
c
	    uniform = z / 2147483563.
	    return
	    end

	    subroutine set_uniform(seed1, seed2)
c
c	Set seeds for the uniform random number generator.
c
	    integer*4 s1, s2, seed1, seed2
	    common /unif_seeds/ s1, s2
	    save /unif_seeds/

	    s1 = seed1
	    s2 = seed2
	    return
	    end

      SUBROUTINE rcat(hist,mn,step,n,s,k)

c Returns n samples from categorical random variable (histogram)

cf2py real dimension(k),intent(in) :: hist
cf2py real intent(in) :: mn,step
cf2py integer intent(in) :: n
cf2py real dimension(n),intent(out) :: s
cf2py integer intent(hide),depend(hist) :: k=len(hist)

      REAL hist(k),s(n),mn,step,sump,u,rand
      INTEGER n,k,i,j

c repeat for n samples
      do i=1,n
c initialize sum      
        sump = 0.0
c random draw
        u = rand()
        j = 0
c find index to value        
    1   if (u.gt.sump) then
          sump = sump + hist(j+1)
          j = j + 1
        goto 1
        endif
c assign value to array        
        s(i) = mn + step*(j-1)
      enddo
      return
      END

      SUBROUTINE categor(x,hist,mn,step,n,k,like)

c Categorical log-likelihood function

cf2py real dimension(n),intent(in) :: x
cf2py real dimension(k),intent(in) :: hist
cf2py real intent(in) :: mn,step
cf2py integer intent(hide),depend(x) :: n=len(x)
cf2py integer intent(hide),depend(hist) :: k=len(hist)
cf2py real intent(out) :: like
            
      REAL hist(k),x(n),mn,step,val,like
      INTEGER n,k,i,j

      like = 0.0
c loop over number of elements in x      
      do i=1,n
c initialize current value      
        val = mn
        j = 1
c check for appropriate bin        
    1   if (x(i).gt.val) then
c increment value    
          val = val + step
          j = j + 1
        goto 1
        endif
c increment log-likelihood        
        like = like + log(hist(j))
      enddo
      return
      END

      SUBROUTINE hazard(x,sigma,b,k,like)
      
c Hazard-rate log-likelihood function (used mainly for distance sampling)

cf2py real dimension(k),intent(in) :: x
cf2py real intent(in) :: sigma,b 
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: k=len(x)

      REAL x(k)
      INTEGER i,k
      REAL like,sigma,b
      
      like = 0.0
      do i=1,k
        like = like + log(1 - exp( -(x(i) / sigma) ** (-b) ))
      enddo
      return
      END
      
      SUBROUTINE simple(x,w,a,start,m,n,like)

cf2py	real intent(in) :: w
cf2py real dimension(m),intent(in) :: a
cf2py integer intent(hide),depend(a) :: m=len(a)
cf2py real dimension(n),intent(in) :: x
cf2py integer intent(hide),depend(x) :: n=len(x)
cf2py integer intent(in) :: start
cf2py real intent(out) :: like

  		real summ
  		integer i,n,j,m
  		real w,a(m),x(n),like

  		like=0.0

  		do i=1,n
  			summ=0.0
  			do j=start,m
  				summ = summ + (a(j)*(x(i)/w)**(2*j))
  			enddo
  			like = like + log(1 + summ)
  		enddo
  		
  		return
		  END
		  
		  SUBROUTINE cosine(x,w,a,start,n,m,like)

cf2py	real intent(in) :: w
cf2py real dimension(m),intent(in) :: a
cf2py integer intent(hide),depend(a) :: m=len(a)
cf2py real dimension(n),intent(in) :: x
cf2py integer intent(hide),depend(x) :: n=len(x)
cf2py integer intent(in) :: start
cf2py real intent(out) :: like

  		real summ
  		integer i,n,j,m
  		real w,a(m),x(n),like
  		
  		DOUBLE PRECISION PI
      PARAMETER (PI=3.141592653589793238462643d0)

  		like=0.0

  		do i=1,n
  			summ=0.0
  			do j=start,m
  				summ = summ + (a(j) * cos(j * PI * x(i) / w))
  			enddo
  			like = like + log(1 + summ)
  		enddo
  		
  		return
		  END
		  
		  SUBROUTINE hermite(x,w,a,start,h,n,m,like)

cf2py	real intent(in) :: w
cf2py real dimension(m),intent(in) :: a
cf2py integer intent(hide),depend(a) :: m=len(a)
cf2py real dimension(n),intent(in) :: x
cf2py integer intent(hide),depend(x) :: n=len(x)
cf2py integer intent(in) :: start, h
cf2py real intent(out) :: like

  		real summ,like,w
  		integer i,n,j,m,h
  		real a(m),x(n),herm(h)

  		like=0.0

  		do i=1,n
  			summ=0.0
  			do j=start,m
  			  call hermpoly(h,x(i)/w,herm)
  				summ = summ + (a(j) * herm(h))
  			enddo
  			like = like + log(1 + summ)
  		enddo
  		
  		return
		  END

      SUBROUTINE hyperg(x,d,red,total,n,like)

c Hypergeometric log-likelihood function

c Distribution models the probability of drawing x red balls in d
c draws from an urn of 'red' red balls and 'total' total balls.

cf2py integer dimension(n),intent(in) :: x
cf2py integer intent(in) :: d,red,total
cf2py integer intent(hide),depend(x) :: n=len(x)
cf2py real intent(out) :: like

      INTEGER x(n),d,red,total
      INTEGER i,n
      REAL like
      
      like = 0.0
      do i=1,n
c Combinations of x red balls      
        like = like + factln(red)-factln(x(i))-factln(red-x(i))
c Combinations of d-x other balls        
        like = like + factln(total-red)-factln(d-x(i))
     +-factln(total-red-d+x(i))
      enddo
c Combinations of d draws from total
      like = like - n * like - (factln(total)-factln(d)
     +-factln(total-d))
      return
      END

      
      SUBROUTINE mvhyperg(x,color,k,like)

c Multivariate hypergeometric log-likelihood function

cf2py integer dimension(k),intent(in) :: x,color
cf2py integer intent(hide),depend(x) :: k=len(x)
cf2py real intent(out) :: like

      INTEGER x(k),color(k)
      INTEGER d,total,i,k
      REAL like
      
      total = 0
      d = 0
      like = 0.0
      do i=1,k
c Combinations of x balls of color i     
        like = like + factln(color(i))-factln(x(i))
     +-factln(color(i)-x(i))
        d = d + x(i)
        total = total + color(i)
      enddo
c Combinations of d draws from total    
      like = like - (factln(total)-factln(d)-factln(total-d))
      return
      END


      SUBROUTINE poisson(x,mu,n,like)
      
c Poisson log-likelihood function      

cf2py integer dimension(n),intent(in) :: x      
cf2py real intent(in) :: mu
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)
     
      INTEGER x(n) 
      REAL mu,like,sumx
      INTEGER n,i

      sumx = 0.0
      sumfact = 0.0
      do i=1,n
        sumx = sumx + x(i)*log(mu) - mu
        sumfact = sumfact + factln(x(i))
      enddo
      like = sumx - sumfact
      return
      END


      SUBROUTINE weibull(x,alpha,beta,n,like)

c Weibull log-likelihood function      

cf2py real dimension(n),intent(in) :: x      
cf2py real intent(in) :: alpha,beta
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)

      REAL x(n)
      REAL alpha,beta,like
      INTEGER n,i

c normalizing constant
      like = n * (log(alpha) - alpha*log(beta))
c kernel of distribution      
      do i=1,n
        like = like + (alpha-1) * log(x(i)) - (x(i)/beta)**alpha
      enddo
      return
      END


      SUBROUTINE cauchy(x,alpha,beta,n,like)

c Cauchy log-likelihood function      

cf2py real dimension(n),intent(in) :: x      
cf2py real intent(in) :: alpha,beta
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)

      REAL x(n)
      REAL alpha,beta,like
      INTEGER n,i
      PARAMETER (PI=3.141592653589793238462643d0) 

c normalization constant
      like = -n*(log(PI) + log(beta))
c kernel      
      do i=1,n
        like = like -  log( 1. + ((x(i)-alpha) / beta) ** 2 )
      enddo
      return
      END

      SUBROUTINE negbin(x,r,p,n,like)

c Negative binomial log-likelihood function     
      
cf2py integer dimension(n),intent(in) :: x
cf2py integer intent(in) :: r 
cf2py real intent(in) :: p
cf2py integer intent(hide),depend(x) :: m=len(x)
cf2py real intent(out) :: like      
      
      REAL like,p
      INTEGER r,n,i
      INTEGER x(n)

      like = 0.0
      do i=1,n
        like = like + r*log(p) + x(i)*log(1.-p)
        like = like + factln(x(i)+r-1)-factln(x(i))-factln(r-1) 
      enddo
      return
      END


      SUBROUTINE binomial(x,n,p,m,like)

c Binomial log-likelihood function     
      
cf2py integer dimension(m),intent(in) :: x
cf2py integer intent(in) :: n 
cf2py real intent(in) :: p
cf2py integer intent(hide),depend(x) :: m=len(x)
cf2py real intent(out) :: like      
      
      REAL like,p
      INTEGER n,m,i
      INTEGER x(m)

      like = 0.0
      do i=1,m
        like = like + x(i)*log(p) + (n-x(i))*log(1.-p)
        like = like + factln(n)-factln(x(i))-factln(n-x(i)) 
      enddo
      return
      END


      SUBROUTINE bernoulli(x,p,m,like)

c Binomial log-likelihood function     
      
cf2py integer dimension(m),intent(in) :: x
cf2py real intent(in) :: p
cf2py integer intent(hide),depend(x) :: m=len(x)
cf2py real intent(out) :: like      
      
      REAL like,p
      INTEGER m,i
      INTEGER x(m)

      like = 0.0
      do i=1,m
        like = like + x(i)*log(p) + (1-x(i))*log(1.-p)
      enddo
      return
      END


      SUBROUTINE multinomial(x,n,p,m,like)

c Multinomial log-likelihood function     

cf2py integer dimension(m),intent(in) :: x
cf2py integer intent(in) :: n
cf2py real dimension(m),intent(in) :: p
cf2py integer intent(hide),depend(x) :: m=len(x)
cf2py real intent(out) :: like      

      REAL like,sump,pp
      REAL p(m)
      INTEGER m,i,n,sumx
      INTEGER x(m)

      like = 0.0
      sumx = 0
      sump = 0.0
      do i=1,m
        pp = p(i)+1E-10
        like = like + x(i)*log(pp) - factln(x(i))
        sumx = sumx + x(i)
        sump = sump + pp
      enddo
      like = like + factln(n) + (n-sumx)*log(max(1.0-sump,1E-10)) 
     +- factln(n-sumx)
      return
      END


      SUBROUTINE normal(x,mu,tau,n,like)

c Normal log-likelihood function      

cf2py real dimension(n),intent(in) :: x
cf2py real intent(in) :: mu,tau
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)
      
      INTEGER n,i
      REAL like,mu,tau
      REAL x(n)

      DOUBLE PRECISION PI
      PARAMETER (PI=3.141592653589793238462643d0) 

      like = 0.0
      do i=1,n
        like = like - 0.5 * tau * (x(i)-mu)**2
      enddo
      like = like + n*0.5*log(0.5*tau/PI)
      return
      END


      SUBROUTINE hnormal(x,tau,n,like)

c Half-normal log-likelihood function    

cf2py real dimension(n),intent(in) :: x
cf2py real intent(in) :: tau
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)
      
      INTEGER n,i
      REAL like,tau
      REAL x(n)

      DOUBLE PRECISION PI
      PARAMETER (PI=3.141592653589793238462643d0) 

      like = n * 0.5 * (log(2. * tau / PI)) 
      do i=1,n
        like = like - (0.5 * x(i)**2 * tau)
      enddo
      return
      END


      SUBROUTINE lognormal(x,mu,tau,n,like)

c Log-normal log-likelihood function

cf2py real dimension(n),intent(in) :: x
cf2py real intent(in) :: mu,tau
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)
      
      INTEGER n,i
      REAL like,mu,tau
      REAL x(n)

      DOUBLE PRECISION PI
      PARAMETER (PI=3.141592653589793238462643d0) 

      like =  n * 0.5 * (log(tau) - log(2.0*PI)) 
      do i=1,n
        like = like - 0.5*tau*(log(x(i))-mu)**2 - log(x(i))
      enddo
      return
      END
      
      
      SUBROUTINE gamma(x,alpha,beta,n,like)

c Gamma log-likelihood function      

cf2py real dimension(n),intent(in) :: x
cf2py real intent(in) :: alpha,beta
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)

      INTEGER i,n
      REAL like,alpha,beta
      REAL x(n)

c normalizing constant
      like = -n * (gammln(alpha) + alpha*log(beta))
      do i=1,n
c kernel of distribution      
        like = like + (alpha - 1.0)*log(x(i)) - x(i)/beta
      enddo     

      return
      END
      
      SUBROUTINE igamma(x,alpha,beta,n,like)

c Inverse gamma log-likelihood function      

cf2py real dimension(n),intent(in) :: x
cf2py real intent(in) :: alpha,beta
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)

      INTEGER i,n
      REAL like,alpha,beta
      REAL x(n)
      
c normalizing constant           
      like = -n * (gammln(alpha) + alpha*log(beta))
      do i=1,n
c kernel of distribution      
        like = like - (alpha+1.0)*log(x(i)) - 1./(x(i)*beta) 
      enddo

      return
      END


      SUBROUTINE beta(x,a,b,n,like)

c Beta log-likelihood function      
      
cf2py real dimension(n),intent(in) :: x
cf2py real intent(in) :: a,b      
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=len(x)

      INTEGER i,n
      REAL like,a,b
      REAL x(n)

c normalizing constant
      like = n * (gammln(a+b) - gammln(a) - gammln(b))
      do i=1,n
c kernel of distribution      
        like = like + (a-1.0)*log(x(i)) + (b-1.0)*log(1.0-x(i))
      enddo   

      return
      END


      SUBROUTINE dirichlet(x,theta,p,n,like)

c Dirichlet log-likelihood function      
      
cf2py real dimension(n,p),intent(in) :: x,theta      
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: n=shape(x,0), p=shape(x,1)

      INTEGER i,j,n,p
      REAL like,sumt
      REAL x(n,p),theta(n,p)

      like = 0.0
      do 111 i=1,n
        sumt = 0.0
        do 222 j=1,p
c kernel of distribution      
          like = like + (theta(i,j)-1.0)*log(x(i,j))  
c normalizing constant        
          like = like - gammln(theta(i,j))
          sumt = sumt + theta(i,j)
  222   continue 
        like = like + gammln(sumt)
  111 continue

      return
      END


      SUBROUTINE wishart(X,k,n,sigma,like)

c Wishart log-likelihood function      

cf2py real dimension(k,k),intent(in) :: X,sigma
cf2py real intent(in) :: n
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(X) :: k=len(X)

      INTEGER i,k
      REAL X(k,k),sigma(k,k),bx(k,k)
      REAL dx,n,db,tbx,a,g,like
      
c determinants
      call dtrm(X,k,dx)
      call dtrm(sigma,k,db)
c trace of sigma*X     
      call matmult(sigma,X,bx,k,k,k,k)
      call trace(bx,k,tbx)
     
      like = (n - k - 1)/2.0 * log(dx)
      like = like + (n/2.0)*log(db)
      like = like - 0.5*tbx
      like = like - (n*k/2.0)*log(2.0)
      
      do i=1,k
        a = (n - i + 1)/2.0
        call gamfun(a, g)
        like = like - log(g)
      enddo

      return
      END


      SUBROUTINE mvnorm(x,mu,tau,k,like)

c Multivariate normal log-likelihood function      
      
cf2py real dimension(k),intent(in) :: x,mu
cf2py real dimension(k,k),intent(in) :: tau
cf2py real intent(out) :: like
cf2py integer intent(hide),depend(x) :: k=len(x)

      INTEGER i,k
      REAL x(k),dt(1,k),dtau(k),mu(k),d(k),tau(k,k)
      REAL like,det,dtaud
      
      DOUBLE PRECISION PI
      PARAMETER (PI=3.141592653589793238462643d0) 

c calculate determinant of precision matrix     
      call dtrm(tau,k,det)
      
c calculate d=x-mu
      do i=1,k
        d(i) = x(i)-mu(i)
      enddo

c transpose 
      call trans(d,dt,k,1)
c mulitply t(d) by tau 
      call matmult(dt,tau,dtau,1,k,k,k)
c multiply dtau by d      
      call matmult(dtau,d,dtaud,1,k,k,1)
      
      like = 0.5*log(det) - (k/2.0)*log(2.0*PI) - (0.5*dtaud)

      return
      END

      
      SUBROUTINE trace(mat,k,tr)

c matrix trace (sum of diagonal elements)
      
      INTEGER k,i
      REAL mat(k,k),tr

      tr = 0.0
      do i=1,k
        tr = tr + mat(k,k)
      enddo
      return
      END
   
      
      SUBROUTINE gamfun(xx,gx)

c the gamma function

cf2py real intent(in) :: xx
cf2py real intent(out) :: gx

      INTEGER i
      REAL x,xx,ser,tmp,gx
      DIMENSION coeff(6)
      DATA coeff/76.18009173,-86.50532033,24.01409822,
     +-1.231739516,0.00120858003,-0.00000536382/
      
      x = xx
      tmp = x + 5.5
      tmp = tmp - (x+0.5) * log(tmp)
      ser = 1.000000000190015
      do i=1,6
        x = x+1
        ser = ser + coeff(i)/x
      enddo
      gx = -tmp + log(2.50662827465*ser/xx)
      return
      END


      SUBROUTINE trans(mat,tmat,m,n)
      
c matrix transposition      

cf2py real dimension(m,n),intent(in) :: mat
cf2py real dimension(n,m),intent(out) :: tmat
cf2py integer intent(hide),depend(mat) :: m=len(mat)
cf2py integer intent(hide),depend(mat) :: n=shape(mat,1)

      INTEGER i,j,m,n
      REAL mat(m,n),tmat(n,m)
      
      do 88 i=1,m
        do 99 j=1,n
          tmat(j,i) = mat(i,j)
99      continue
88    continue
      
      return
      END

      
      SUBROUTINE matmult(mat1, mat2, prod, m, n, p, q)
      
c matrix multiplication

cf2py real dimension(m,q),intent(out) :: prod
cf2py real dimension(m,n),intent(in) :: mat1
cf2py real dimension(p,q),intent(in) :: mat2
cf2py integer intent(hide),depend(mat1) :: m=len(mat1),n=shape(mat1,1)
cf2py integer intent(hide),depend(mat2) :: p=len(mat2),q=shape(mat2,1)


      INTEGER i,j,k,m,n,p,q
      REAL mat1(m,n), mat2(p,q), prod(m,q)
      REAL sum
      
      if (n.eq.p) then
        do 30 i = 1,m
          do 20 j = 1,q
            sum = 0.0
            do 10 k = 1,n
              sum = sum + mat1(i,k) * mat2(k,j)
10          continue
            prod(i,j) = sum
20        continue
30      continue
      else
        pause 'Matrix dimensions do not match'
      end if
      return
      END


c Updated 10/24/2001.
c
ccccccccccccccccccccccccc     Program 4.2     cccccccccccccccccccccccccc
c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c                                                                      c
c Please Note:                                                         c
c                                                                      c
c (1) This computer program is part of the book, "An Introduction to   c
c     Computational Physics," written by Tao Pang and published and    c
c     copyrighted by Cambridge University Press in 1997.               c
c                                                                      c
c (2) No warranties, express or implied, are made for this program.    c
c                                                                      c
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
c
      SUBROUTINE DTRM(A,N,D)
C
C Subroutine for evaluating the determinant of a matrix using 
C the partial-pivoting Gaussian elimination scheme.
C

cf2py real dimension(N,N),intent(in) :: A
cf2py real intent(out) :: D
cf2py integer intent(hide),depend(A) :: N=len(A)      

      DIMENSION A(N,N),INDX(N)

      CALL ELGS(A,N,INDX)
C
      D    = 1.0
      DO     100 I = 1, N
         D = D*A(INDX(I),I)
  100 CONTINUE
C
      MSGN = 1
      DO     200 I = 1, N
        DO   150 WHILE (I.NE.INDX(I))
          MSGN = -MSGN
          J = INDX(I)
          INDX(I) = INDX(J)
          INDX(J) = J
  150   END DO
  200 CONTINUE
      D = MSGN*D

      RETURN
      END


      SUBROUTINE ELGS(A,N,INDX)

C Subroutine to perform the partial-pivoting Gaussian elimination.
C A(N,N) is the original matrix in the input and transformed
C matrix plus the pivoting element ratios below the diagonal in
C the output.  INDX(N) records the pivoting order.


      DIMENSION A(N,N),INDX(N),C(N)

C Initialize the index

      DO     50    I = 1, N
        INDX(I) = I
   50 CONTINUE

C Find the rescaling factors, one from each row

        DO     100   I = 1, N
          C1= 0.0
          DO    90   J = 1, N
            C1 = AMAX1(C1,ABS(A(I,J)))
   90     CONTINUE
          C(I) = C1
  100   CONTINUE

C Search the pivoting (largest) element from each column

      DO     200   J = 1, N-1
        PI1 = 0.0
        DO   150   I = J, N
          PI = ABS(A(INDX(I),J))/C(INDX(I))
          IF (PI.GT.PI1) THEN
            PI1 = PI
            K   = I
          ELSE
          ENDIF
  150   CONTINUE

C Interchange the rows via INDX(N) to record pivoting order

        ITMP    = INDX(J)
        INDX(J) = INDX(K)
        INDX(K) = ITMP
        DO   170   I = J+1, N
          PJ  = A(INDX(I),J)/A(INDX(J),J)

C Record pivoting ratios below the diagonal

          A(INDX(I),J) = PJ

C Modify other elements accordingly

          DO 160   K = J+1, N
            A(INDX(I),K) = A(INDX(I),K)-PJ*A(INDX(J),K)
  160     CONTINUE
  170   CONTINUE
  200 CONTINUE

      RETURN
      END

      FUNCTION gammln(xx) 
C Returns the value ln[gamma(xx)] for xx > 0. 

      REAL gammln,xx         
      INTEGER j 
      DOUBLE PRECISION ser,stp,tmp,x,y,cof(6) 

C Internal arithmetic will be done in double precision, 
C a nicety that you can omit if five-figure accuracy is good enough. 

      SAVE cof,stp 
      DATA cof,stp/76.18009172947146d0,-86.50532032941677d0, 
     +24.01409824083091d0,-1.231739572450155d0,.1208650973866179d-2, 
     +-.5395239384953d-5,2.5066282746310005d0/ 
      x=xx 
      y=x 
      tmp=x+5.5d0 
      tmp=(x+0.5d0)*log(tmp)-tmp 
      ser=1.000000000190015d0 
      do j=1,6
         y=y+1.d0 
         ser=ser+cof(j)/y 
      enddo 
      gammln=tmp+log(stp*ser/x) 
      return 
      END

      FUNCTION factrl(n) 
C Returns the value n! as a floating-point number. 


      INTEGER n 
      REAL factrl 

      INTEGER j,ntop 
C Table to be filled in only as required. 
      REAL a(33),gammln 
      SAVE ntop,a 
C Table initialized with 0! only. 
      DATA ntop,a(1)/0,1./

      if (n.lt.0) then 
        pause 'negative factorial in factrl' 
      else if (n.le.ntop) then 
C Already in table. 
        factrl=a(n+1) 
      else if (n.le.32) then 
C Fill in table up to desired value. 
        do j=ntop+1,n
          a(j+1)=j*a(j) 
        enddo
        ntop=n 
        factrl=a(n+1) 
      else 
C Larger value than size of table is required. Actually, 
C this big a value is going to overflow on many computers, 
C but no harm in trying. 
        factrl=exp(gammln(n+1.)) 
      endif 
      return 
      END 

      FUNCTION factln(n) 
C USES gammln Returns ln(n!). 

      INTEGER n 
      REAL factln 
      REAL a(100),gammln 
      SAVE a 
C Initialize the table to negative values. 
      DATA a/100*-1./ 
      if (n.lt.0) pause 'negative factorial in factln' 
C In range of the table. 
      if (n.le.99) then
C If not already in the table, put it in.  
        if (a(n+1).lt.0.) a(n+1)=gammln(n+1.) 
        factln=a(n+1) 
      else 
C Out of range of the table. 
        factln=gammln(n+1.) 
      endif 
      return 
      END

      FUNCTION bico(n,k) 
C USES factln Returns the binomial coefficient as a 
C floating point number.
      INTEGER k,n
      REAL bico
C The nearest-integer function cleans up roundoff error
C for smaller values of n and k. 
      bico=nint(exp(factln(n)-factln(k)-factln(n-k))) 
      return 
      END

      subroutine chol(n,a,c)
c...perform a Cholesky decomposition of matrix a, returned as c
      implicit real*8 (a-h,o-z)
      real c(n,n),a(n,n)

cf2py real dimension(n,n),intent(in) :: a
cf2py real dimension(n,n),intent(out) :: c
cf2py integer intent(in),depend(a) :: n=len(a)

      c(1,1) = sqrt(a(1,1))
      do i=2,n
         c(i,1) = a(i,1) / c(1,1)
      enddo
      do j=2,n
         do i=j,n
            s = a(i,j)
            do k=1,j-1
               s = s - c(i,k) * c(j,k)
            enddo
            if(i .eq. j) then
               c(j,j) = sqrt(s)
            else
               c(i,j) = s / c(j,j)
               c(j,i) = 0.d0
            endif
         enddo
      enddo
      return
      end
      
      SUBROUTINE rbin(n,pp,x) 
  
cf2py real intent(in) :: pp
cf2py integer intent(in) :: n
cf2py integer intent(out) :: x  
      
      INTEGER n,x 
      REAL pp,PI 
C USES gammln,rand 
      PARAMETER (PI=3.141592654) 
C Returns as a floating-point number an integer value that is a random deviate drawn from 
C a binomial distribution of n trials each of probability pp, using rand as a source 
C of uniform random deviates. 
      INTEGER j,nold
      REAL am,em,en,g,oldg,p,pc,pclog,plog,pold,sq,t,y,gammln,rand
      SAVE nold,pold,pc,plog,pclog,en,oldg 
C     Arguments from previous calls.
      DATA nold /-1/, pold /-1./  
      if(pp.le.0.5)then 
C       The binomial distribution is invariant under changing pp to 
C       1.-pp, if we also change the answer to n minus itself; 
C       we’ll remember to do this below. 
        p=pp 
      else 
        p=1.-pp 
      endif 
C     This is the mean of the deviate to be produced. 
      am=n*p
      if (n.lt.25) then 
C       Use the direct method while n is not too large. This can 
C       require up to 25 calls to ran1.
        x=0. 
        do 11 j=1,n 
          if(rand().lt.p) x=x+1. 
   11   enddo 
      else if (am.lt.1.) then 
C       If fewer than one event is expected out of 25 or more tri- 
C       als, then the distribution is quite accurately Poisson. Use 
C       direct Poisson method. 
        g=exp(-am) 
        t=1. 
        do 12 j=0,n 
        t=t*rand() 
        if (t.lt.g) goto 1 
   12   enddo  
        j=n 
    1   x=j 
      else 
C       Use the rejection method. 
        if (n.ne.nold) then 
C         If n has changed, then compute useful quantities. 
          en=n 
          oldg=gammln(en+1.) 
          nold=n 
        endif 
        if (p.ne.pold) then 
C         If p has changed, then compute useful quantities. 
          pc=1.-p 
          plog=log(p) 
          pclog=log(pc) 
          pold=p 
        endif 
        sq=sqrt(2.*am*pc) 
C       The following code should by now seem familiar: rejection 
C       method with a Lorentzian comparison function.
    2   y=tan(PI*rand()) 
        em=sq*y+am 
C       Reject.
        if (em.lt.0..or.em.ge.en+1.) goto 2  
         
C       Trick for integer-valued distribution.
        em=int(em)
        t=1.2*sq*(1.+y**2)*exp(oldg-gammln(em+1.) 
     +-gammln(en-em+1.)+em*plog+(en-em)*pclog) 
C       Reject. This happens about 1.5 times per deviate, on average.
        if (rand().gt.t) goto 2 
        x=em 
        endif 
C     Remember to undo the symmetry transformation. 
      if (p.ne.pp) x=n-x 
      return 
      END 
      
      
      SUBROUTINE RNORM(U1, U2)
C
C     ALGORITHM AS 53.1  APPL. STATIST. (1972) VOL.21, NO.3
C
C     Sets U1 and U2 to two independent standardized random normal
C     deviates.   This is a Fortran version of the method given in
C     Knuth(1969).
C
C     Function RAND must give a result randomly and rectangularly
C     distributed between the limits 0 and 1 exclusive.
C
      REAL U1, U2
      REAL RAND
C
C     Local variables
C
      REAL X, Y, S, ONE, TWO
      DATA ONE /1.0/, TWO /2.0/
C
    1 X = RAND()
      Y = RAND()
      X = TWO * X - ONE
      Y = TWO * Y - ONE
      S = X * X + Y * Y
      IF (S .GT. ONE) GO TO 1
      S = SQRT(- TWO * LOG(S) / S)
      U1 = X * S
      U2 = Y * S
      RETURN
      END


      SUBROUTINE WSHRT(D, N, NP, NNP, SB, SA)
C
C     ALGORITHM AS 53  APPL. STATIST. (1972) VOL.21, NO.3
C
C     Wishart variate generator.  On output, SA is an upper-triangular
C     matrix of size NP * NP (written in linear form, column ordered)
C     whose elements have a Wishart(N, SIGMA) distribution.
C
C     D is an upper-triangular array such that SIGMA = D'D (see AS 6)
C
C     Auxiliary function required: a random no. generator called RAND.
C     The Wichmann & Hill generator is included here.   It should be
C     initialized in the calling program.


cf2py real dimension(NNP),intent(in) :: D
cf2py real dimension(NNP),intent(out) :: SA
cf2py real dimension(NNP),intent(hide) :: SB
cf2py integer intent(hide),depend(D) :: NNP=len(D)
cf2py integer intent(in) :: NP
cf2py integer intent(in) :: N

      INTEGER N, NP, NNP
      REAL D(NNP), SB(NNP), SA(NNP)
C
C     Local variables
C
      INTEGER K, NS, I, J, NR, IP, NQ, II
      REAL DF, U1, U2, RN, C
      REAL ZERO, ONE, TWO, NINE
      DATA ZERO /0.0/, ONE /1.0/, TWO /2.0/, NINE /9.0/
C
      K = 1
    1 CALL RNORM(U1, U2)
C
C     Load SB with independent normal (0, 1) variates
C
      SB(K) = U1
      K = K + 1
      IF (K .GT. NNP) GO TO 2
      SB(K) = U2
      K = K + 1
      IF (K .LE. NNP) GO TO 1
    2 NS = 0
C
C     Load diagonal elements with square root of chi-square variates
C
      DO 3 I = 1, NP
        DF = N - I + 1
        NS = NS + I
        U1 = TWO / (NINE * DF)
        U2 = ONE - U1
        U1 = SQRT(U1)
C
C     Wilson-Hilferty formula for approximating chi-square variates
C
        SB(NS) = SQRT(DF * (U2 + SB(NS) * U1)**3)
    3 CONTINUE
C
      RN = N
      NR = 1
      DO 5 I = 1, NP
        NR = NR + I - 1
        DO 5 J = I, NP
          IP = NR
          NQ = (J*J - J) / 2 + I - 1
          C = ZERO
          DO 4 K = I, J
            IP = IP + K - 1
            NQ = NQ + 1
            C = C + SB(IP) * D(NQ)
    4     CONTINUE
          SA(IP) = C
    5 CONTINUE
C
      DO 7 I = 1, NP
        II = NP - I + 1
        NQ = NNP - NP
        DO 7 J = 1, I
          IP = (II*II - II) / 2
          C = ZERO
          DO 6 K = I, NP
            IP = IP + 1
            NQ = NQ + 1
            C = C + SA(IP) * SA(NQ)
    6     CONTINUE
          SA(NQ) = C / RN
          NQ = NQ - 2 * NP + I + J - 1
    7 CONTINUE
C
      RETURN
      END
C

      SUBROUTINE hermpoly( n, x, cx )

C*******************************************************************************
C
CC HERMPOLY evaluates the Hermite polynomials at X.
C
C  Differential equation:
C
C    Y'' - 2 X Y' + 2 N Y = 0
C
C  First terms:
C
C      1
C      2 X
C      4 X**2     -  2
C      8 X**3     - 12 X
C     16 X**4     - 48 X**2     + 12
C     32 X**5    - 160 X**3    + 120 X
C     64 X**6    - 480 X**4    + 720 X**2    - 120
C    128 X**7   - 1344 X**5   + 3360 X**3   - 1680 X
C    256 X**8   - 3584 X**6  + 13440 X**4  - 13440 X**2   + 1680
C    512 X**9   - 9216 X**7  + 48384 X**5  - 80640 X**3  + 30240 X
C   1024 X**10 - 23040 X**8 + 161280 X**6 - 403200 X**4 + 302400 X**2 - 30240
C
C  Recursion:
C
C    H(0,X) = 1,
C    H(1,X) = 2*X,
C    H(N,X) = 2*X * H(N-1,X) - 2*(N-1) * H(N-2,X)
C
C  Norm:
C
C    Integral ( -Infinity < X < Infinity ) exp ( - X**2 ) * H(N,X)**2 dX
C    = sqrt ( PI ) * 2**N * N!
C
C    H(N,X) = (-1)**N * exp ( X**2 ) * dn/dXn ( exp(-X**2 ) )
C
C  Modified:
C
C    01 October 2002
C
C  Author:
C
C    John Burkardt
C
C  Reference:
C
C    Milton Abramowitz and Irene Stegun,
C    Handbook of Mathematical Functions,
C    US Department of Commerce, 1964.
C
C    Larry Andrews,
C    Special Functions of Mathematics for Engineers,
C    Second Edition, 
C    Oxford University Press, 1998.
C
C  Parameters:
C
C    Input, integer N, the highest order polynomial to compute.
C    Note that polynomials 0 through N will be computed.
C
C    Input, real ( kind = 8 ) X, the point at which the polynomials are 
C    to be evaluated.
C
C    Output, real ( kind = 8 ) CX(0:N), the values of the first N+1 Hermite
C    polynomials at the point X.
C

cf2py real intent(in) :: x
cf2py integer intent(in) :: n
cf2py real dimension(n+1),intent(out) :: cx
      
      integer n,i
      real cx(n+1)
      real x

      if ( n < 0 ) then
        return
      end if

      cx(1) = 1.0

      if ( n == 0 ) then
        return
      end if

      cx(2) = 2.0 * x

      do i = 3, n+1
        cx(i) = 2.0 * x * cx(i-1) - 2.0 * real(i - 1) * cx(i-2)
      end do

      return
      end