1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
# -*- coding:latin-1 -*-
#-----------------------------------------------------------------------------
# Name: PlotFigure.py
# Purpose: Plotting frame that contains the plots generated by Model Buider
#
# Author: Flavio C. Coelho
#
# Created: 2004/09/01
# RCS-ID: $Id: PlotFigure.py,v 1.1 2004/01/13 10:51:43 fccoelho Exp $
# Copyright: (c) 2003
# Licence: GPL
# Obs: This code was based on Jeremy Donoghue's embedding_in_wx.py included with
# matplotlib.
#-----------------------------------------------------------------------------
#Boa:Frame:PlotFigure
import matplotlib
matplotlib.use('WXAgg')
from matplotlib.backends.backend_wx import NavigationToolbar2Wx, FigureManager
from matplotlib.backends.backend_wxagg import FigureCanvasWxAgg as FigureCanvas
from matplotlib.figure import Figure
from matplotlib.axes import Subplot
import matplotlib.numerix as numpy
#from RandomArray import *
#from numpy.random.old import *
from pylab import *
from numpy.random import *
from numpy import *
import wxversion
wxversion.select('2.8')
import wx
def create(parent):
return PlotFigure(parent)
[wxID_PLOTFIGURE] = [wx.NewId() for _init_ctrls in range(1)]
class PlotFigure(wx.Frame):
def _init_ctrls(self, prnt):
# generated method, don't edit
wx.Frame.__init__(self, id=wxID_PLOTFIGURE, name='Output', parent=prnt,
pos=wx.Point(311, 209), size=wx.Size(1280, 893),
style=wx.DEFAULT_FRAME_STYLE, title='Results')
self.SetClientSize(wx.Size(1280, 893))
def __init__(self, parent):
self._init_ctrls(parent)
self.fig = Figure((10,8), 75)
self.canvas = FigureCanvas(self,-1, self.fig)
self.toolbar = NavigationToolbar2Wx(self.canvas)
self.toolbar.Realize()
# On Windows, default frame size behaviour is incorrect
# you don't need this under Linux
tw, th = self.toolbar.GetSizeTuple()
fw, fh = self.canvas.GetSizeTuple()
self.toolbar.SetSize(wx.Size(fw, th))
# Create a figure manager to manage things
self.figmgr = FigureManager(self.canvas, 1, self)
# Now put all into a sizer
sizer = wx.BoxSizer(wx.VERTICAL)
# This way of adding to sizer prevents resizing
#sizer.Add(self.fig, 0, wxLEFT|wxTOP)
# This way of adding to sizer allows resizing
sizer.Add(self.canvas, 1, wx.LEFT|wx.TOP|wx.GROW)
# Best to allow the toolbar to resize!
sizer.Add(self.toolbar, 0, wx.GROW)
self.SetSizer(sizer)
self.Fit()
def plot(self,x,y,leg=[]):
"""
This function will plot one or more lines.
y is a list of sequances or a single vector.
x is a vector.
"""
# Use this line if using a toolbar
a = self.fig.add_subplot(111)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
if str(type(y)) == "<type 'list'>":
nlin = len(y)
for i in range(nlin):
a.plot (x,y[i])
else:
a.plot(x,y)
a.set_xlabel('Time', fontsize=9)
#---generating tuple of legends-------------------------------------------------
if str(type(y)) == "<type 'list'>":
if leg ==[]:
b = range(nlin)
leg = tuple(['$y_{'+str(i)+'}$' for i in b])
else:
pass
#-------------------------------------------------------------------------------
a.legend(leg)
self.toolbar.update()
def vectorField(self,x,y,u,v,c=0.2,xlabel='',ylabel='',trajectory=[]):
"""
Plot a vector field for State space visualizations
"""
# Use this line if using a toolbar
a = self.fig.add_subplot(111)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
q = a.quiver2(x,y,u,v,c,units='x')
a.set_xlabel(xlabel)
a.set_ylabel(ylabel)
a.set_title('State Space Diagram')
if trajectory:
for i in range(len(trajectory))[::2]:
lt = '-'
if i != 0:
lt = ':'
a.plot(trajectory[i],trajectory[i+1],lt,linewidth=2)
# Do contours for isoclines
print x.shape
sq = int(sqrt(len(x)))
x.shape = (sq,sq)
y.shape = (sq,sq)
u.shape = (sq,sq)
v.shape = (sq,sq)
z1 = sqrt(u**2+v**2) #basic arrow lengths
z2 = u #dx/dt
z3 = v #dy/dt
lev = (0,)
cs1 = a.contour(x,y,z1,20,origin='lower')#general isoclines
# im = a.imshow(z1, interpolation='bilinear',alpha=0.9, origin='lower',cmap=cm.gray)
cs1l = a.contour(x,y,z1,lev,linewidths=2,colors='k',origin='lower')
cs2l = a.contour(x,y,z2,lev,linewidths=2,colors='k',origin='lower')
cs3l = a.contour(x,y,z3,lev,linewidths=2,colors='k',origin='lower')
#doing contour labels
a.clabel(cs1l,fmt = 'Nullcline %2.1f',inline=0, colors = 'r', fontsize=14)
a.clabel(cs2l,fmt = 'dx/dt=%2.1f',inline=0, colors = 'r', fontsize=14)
a.clabel(cs3l,fmt = 'dy/dt=%2.1f',inline=0, colors = 'r', fontsize=14)
def plotSpecg(self,x, name):
"""
Makes a Spectrogram plot of x
"""
# Use this line if using a toolbar
a = self.fig.add_subplot(111)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
a.specgram(x)
a.set_xlabel('time')
a.set_ylabel('frequency')
a.set_title('Spectrogram of %s'%name)
def plotSpec(self,x, name):
"""
Makes a power spectrum plot of x
"""
# Use this line if using a toolbar
a = self.fig.add_subplot(111)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
a.psd(x)
a.set_xlabel('frequency')
a.set_ylabel('Power(dB)')
a.set_title('Power Spectrum of %s'%name)
def plot_data(self, x,y,leg=None):
"""
This function will plot the time series as output by odeint.
"""
# Use this line if using a toolbar
a = self.fig.add_subplot(111)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
nvar = min(y[0].shape)
for i in range(nvar):
a.plot (x,y[0][:,i])
a.set_xlabel('Time', fontsize=9)
a.set_ylabel('$State variables$', fontsize=9)
a.set_title('Time series')
#---generating tuple of legends-------------------------------------------------
if not leg:
b = range(nvar)
leg = tuple(['$y_{'+str(i)+'}$' for i in b])
#-------------------------------------------------------------------------------
a.legend(leg)
self.toolbar.update()
def plotStats(self,x, ts,vnames=[]):
"""
This function will plot multiple time series
ts is a list of lists: [list of median time-series, list of lower credible intervals, list of upper credible intervals]
"""
# Use this line if using a toolbar
#a = self.figmgr.add_subplot(111)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
nvar = len(ts[0])
print len(x), len(ts[0])
c=['r','g','b','c','m','y','k']
for i in range(nvar):
a = self.fig.add_subplot(nvar*100+10+i+1)
a.plot(x,ts[0][i], '%s-o'%c[i%len(c)],x,ts[1][i],'%s-.'%c[i%len(c)], x,ts[2][i],'%s-.'%c[i%len(c)])
a.set_xlabel('Time', fontsize=9)
if vnames:
a.set_ylabel(vnames[i], fontsize=9)
else:
a.set_ylabel('$y_{'+str(i)+'}$', fontsize=9)
a.legend(('$median$',))
#---generating tuple of legends-------------------------------------------------
## b = range(nvar)
## leg = tuple(['$y_{'+str(i)+'}$' for i in b])
#-------------------------------------------------------------------------------
self.toolbar.update()
def plotDist(self,data,vname):
"""
Plots histograms of each line of 'data'
the name of the variables are the elements of the list 'vname'
"""
nvar = len(data)
for i in range(nvar):
# Use this line if using a toolbar
a = self.fig.add_subplot(nvar*100+10+i+1)
nb, bins, patches = a.hist(data[i],bins=50, normed=1)
a.set_ylabel(vname[i], fontsize=9)
self.toolbar.update()
def plotMeldout(self,meldout,vnames=[]):
"""
Plots histograms of the posterior distributions of the model components
meldOut is the output of the Melding.SIR function: (w,qtiltheta,qtilphi,q1est)
"""
nvar = len(meldout[1])
data = meldout[1]
for i in range(nvar):
# Use this line if using a toolbar
a = self.fig.add_subplot(nvar*100+10+i+1)
# Or this one if there is no toolbar
#a = Subplot(self.fig, 111)
nb, bins, patches = a.hist(data[i],bins=50, normed=1)
a.set_title('Posterior Distribution of %s$'%vnames[i], fontsize=9)
self.toolbar.update()
def plotEquation(self, eqlist):
"""
Plot list of equations typeset with mathtext on an equation box
"""
a = self.fig.add_subplot(111)
a.plot([0,10],'w.')
a.set_xlim((0,10))
a.set_ylim((0,10))
a.set_title('Model Equations')
a.set_xticklabels([])
a.set_yticklabels([])
a.set_xticks([])
a.set_yticks([])
for i in range(len(eqlist)):
print eqlist[i]
a.text(1,9-i,eqlist[i], fontsize=15)
self.toolbar.update()
def GetToolBar(self):
# You will need to override GetToolBar if you are using an
# unmanaged toolbar in your frame
return self.toolbar
if __name__ == '__main__':
app = wx.PySimpleApp()
frame = create(None)
x = normal(0,1,50)
y = normal(0,1,(50,5))
frame.plot_data(x,[y])
frame.Show()
app.MainLoop()
|