File: lib.h

package info (click to toggle)
mold 2.40.4%2Bdfsg-2.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,200 kB
  • sloc: ansic: 193,268; cpp: 155,496; asm: 29,241; sh: 13,924; python: 4,068; makefile: 3,398; ada: 1,681; pascal: 1,139; xml: 278; objc: 176; javascript: 37
file content (705 lines) | stat: -rw-r--r-- 16,095 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
#pragma once

#include "atomics.h"
#include "integers.h"
#include "bitvector.h"

#include <array>
#include <atomic>
#include <bit>
#include <bitset>
#include <cassert>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fcntl.h>
#include <filesystem>
#include <iostream>
#include <mutex>
#include <optional>
#include <span>
#include <sstream>
#include <string>
#include <string_view>
#include <sys/stat.h>
#include <sys/types.h>
#include <tbb/concurrent_vector.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/parallel_for.h>
#include <vector>

#ifdef _WIN32
# include <io.h>
#else
# include <sys/mman.h>
# include <unistd.h>
#endif

#define XXH_INLINE_ALL 1
#include "../third-party/xxhash/xxhash.h"

#ifdef NDEBUG
# define unreachable() __builtin_unreachable()
#else
# define unreachable() assert(0 && "unreachable")
#endif

inline uint64_t hash_string(std::string_view str) {
  return XXH3_64bits(str.data(), str.size());
}

class HashCmp {
public:
  static size_t hash(const std::string_view &k) {
    return hash_string(k);
  }

  static bool equal(const std::string_view &k1, const std::string_view &k2) {
    return k1 == k2;
  }
};

namespace mold {

namespace ranges = std::ranges;
using namespace std::literals::string_literals;
using namespace std::literals::string_view_literals;

inline u64 combine_hash(u64 a, u64 b) {
  return a ^ (b + 0x9e3779b9 + (a << 6) + (a >> 2));
}

//
// perf.cc
//

// Counter is used to collect statistics numbers.
class Counter {
public:
  Counter(std::string_view name, i64 value = 0) : name(name), values(value) {
    static std::mutex mu;
    std::scoped_lock lock(mu);
    instances.push_back(this);
  }

  Counter &operator++(int) {
    if (enabled) [[unlikely]]
      values.local()++;
    return *this;
  }

  Counter &operator+=(int delta) {
    if (enabled) [[unlikely]]
      values.local() += delta;
    return *this;
  }

  static void print();

  static inline bool enabled = false;

private:
  i64 get_value();

  std::string_view name;
  tbb::enumerable_thread_specific<i64> values;

  static inline std::vector<Counter *> instances;
};

// Timer and TimeRecord records elapsed time (wall clock time)
// used by each pass of the linker.
struct TimerRecord {
  TimerRecord(std::string name, TimerRecord *parent = nullptr);
  void stop();

  std::string name;
  TimerRecord *parent;
  tbb::concurrent_vector<TimerRecord *> children;
  i64 start;
  i64 end;
  i64 user;
  i64 sys;
  bool stopped = false;
};

void
print_timer_records(tbb::concurrent_vector<std::unique_ptr<TimerRecord>> &);

template <typename Context>
class Timer {
public:
  Timer(Context &ctx, std::string name, Timer *parent = nullptr) {
    record = new TimerRecord(name, parent ? parent->record : nullptr);
    ctx.timer_records.emplace_back(record);
  }

  Timer(const Timer &) = delete;

  ~Timer() {
    record->stop();
  }

  void stop() {
    record->stop();
  }

private:
  TimerRecord *record;
};

//
// Utility functions
//

// Some C++ libraries haven't implemented std::has_single_bit yet.
inline bool has_single_bit(u64 val) {
  return std::popcount(val) == 1;
}

// Some C++ libraries haven't implemented std::bit_ceil yet.
inline u64 bit_ceil(u64 val) {
  if (has_single_bit(val))
    return val;
  return 1LL << (64 - std::countl_zero(val));
}

inline u64 align_to(u64 val, u64 align) {
  if (align == 0)
    return val;
  assert(has_single_bit(align));
  return (val + align - 1) & ~(align - 1);
}

inline u64 align_down(u64 val, u64 align) {
  assert(has_single_bit(align));
  return val & ~(align - 1);
}

inline u64 bit(u64 val, i64 pos) {
  return (val >> pos) & 1;
};

// Returns [hi:lo] bits of val.
inline u64 bits(u64 val, u64 hi, u64 lo) {
  return (val >> lo) & ((1LL << (hi - lo + 1)) - 1);
}

// Cast val to a signed N bit integer.
// For example, sign_extend(x, 32) == (i32)x for any integer x.
inline i64 sign_extend(u64 val, i64 n) {
  return (i64)(val << (64 - n)) >> (64 - n);
}

inline bool is_int(u64 val, i64 n) {
  return sign_extend(val, n) == val;
}

template <typename T, typename Compare = std::less<T>>
void update_minimum(std::atomic<T> &atomic, u64 new_val, Compare cmp = {}) {
  T old_val = atomic.load(std::memory_order_relaxed);
  while (cmp(new_val, old_val) &&
         !atomic.compare_exchange_weak(old_val, new_val,
                                       std::memory_order_relaxed));
}

template <typename T, typename Compare = std::less<T>>
void update_maximum(std::atomic<T> &atomic, u64 new_val, Compare cmp = {}) {
  T old_val = atomic.load(std::memory_order_relaxed);
  while (cmp(old_val, new_val) &&
         !atomic.compare_exchange_weak(old_val, new_val,
                                       std::memory_order_relaxed));
}

template <typename T>
inline void append(std::vector<T> &x, const auto &y) {
  x.insert(x.end(), y.begin(), y.end());
}

template <typename T>
inline std::vector<T> flatten(std::vector<std::vector<T>> &vec) {
  i64 size = 0;
  for (std::vector<T> &v : vec)
    size += v.size();

  std::vector<T> ret;
  ret.reserve(size);
  for (std::vector<T> &v : vec)
    append(ret, v);
  return ret;
}

template <typename T>
inline void remove_duplicates(std::vector<T> &vec) {
  vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
}

inline i64 write_string(void *buf, std::string_view str) {
  memcpy(buf, str.data(), str.size());
  *((u8 *)buf + str.size()) = '\0';
  return str.size() + 1;
}

template <typename T>
inline void write_vector(void *buf, const std::vector<T> &vec) {
  if (!vec.empty())
    memcpy(buf, vec.data(), vec.size() * sizeof(T));
}

inline void encode_uleb(std::vector<u8> &vec, u64 val) {
  do {
    u8 byte = val & 0x7f;
    val >>= 7;
    vec.push_back(val ? (byte | 0x80) : byte);
  } while (val);
}

inline void encode_sleb(std::vector<u8> &vec, i64 val) {
  for (;;) {
    u8 byte = val & 0x7f;
    val >>= 7;

    bool neg = (byte & 0x40);
    if ((val == 0 && !neg) || (val == -1 && neg)) {
      vec.push_back(byte);
      break;
    }
    vec.push_back(byte | 0x80);
  }
}

inline i64 write_uleb(u8 *buf, u64 val) {
  i64 i = 0;
  do {
    u8 byte = val & 0x7f;
    val >>= 7;
    buf[i++] = val ? (byte | 0x80) : byte;
  } while (val);
  return i;
}

inline u64 read_uleb(u8 **buf) {
  u64 val = 0;
  u8 shift = 0;
  u8 byte;
  do {
    byte = *(*buf)++;
    val |= (byte & 0x7f) << shift;
    shift += 7;
  } while (byte & 0x80);
  return val;
}

inline u64 read_uleb(u8 *buf) {
  u8 *tmp = buf;
  return read_uleb(&tmp);
}

inline i64 read_sleb(u8 **buf) {
  u64 val = 0;
  u8 shift = 0;
  u8 byte;
  do {
    byte = *(*buf)++;
    val |= (byte & 0x7f) << shift;
    shift += 7;
  } while (byte & 0x80);
  return sign_extend(val, shift);
}

inline i64 read_sleb(u8 *buf) {
  u8 *tmp = buf;
  return read_sleb(&tmp);
}

inline u64 read_uleb(std::string_view *str) {
  u8 *start = (u8 *)str->data();
  u8 *ptr = start;
  u64 val = read_uleb(&ptr);
  *str = str->substr(ptr - start);
  return val;
}

inline u64 read_uleb(std::string_view str) {
  std::string_view tmp = str;
  return read_uleb(&tmp);
}

inline i64 uleb_size(u64 val) {
  for (int i = 1; i < 9; i++)
    if (val < (1LL << (7 * i)))
      return i;
  return 9;
}

inline void overwrite_uleb(u8 *loc, u64 val) {
  while (*loc & 0b1000'0000) {
    *loc++ = 0b1000'0000 | (val & 0b0111'1111);
    val >>= 7;
  }
  *loc = val & 0b0111'1111;
}

static inline void pause() {
#if defined(__x86_64__)
  asm volatile("pause");
#elif defined(__aarch64__)
  asm volatile("yield");
#elif defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_8A__)
  asm volatile("yield");
#endif
}

//
// Concurrent Map
//

// This is an implementation of a fast concurrent hash map. Unlike
// ordinary hash tables, this impl just aborts if it becomes full.
// So you need to give a correct estimation of the final size before
// using it. We use this hash map to uniquify pieces of data in
// mergeable sections.
//
// We've implemented this ourselves because the performance of
// conrurent hash map is critical for our linker.
template <typename T>
class ConcurrentMap {
public:
  ConcurrentMap() = default;

  ConcurrentMap(i64 nbuckets) {
    resize(nbuckets);
  }

  ~ConcurrentMap() {
    if (entries) {
#ifdef _WIN32
      _aligned_free(entries);
#else
      munmap(entries, sizeof(Entry) * nbuckets);
#endif
    }
  }

  // In order to avoid unnecessary cache-line false sharing, we want
  // to make this object to be aligned to a reasonably large
  // power-of-two address.
  struct alignas(32) Entry {
    Atomic<const char *> key;
    u32 keylen;
    T value;
  };

  void resize(i64 nbuckets) {
    assert(!entries);
    this->nbuckets = std::max<i64>(MIN_NBUCKETS, bit_ceil(nbuckets));
    i64 bufsize = sizeof(Entry) * this->nbuckets;

    // Allocate a zero-initialized buffer. We use mmap() if available
    // because it's faster than malloc() and memset().
#ifdef _WIN32
    entries = (Entry *)_aligned_malloc(bufsize, alignof(Entry));
    memset((void *)entries, 0, bufsize);
#else
    entries = (Entry *)mmap(nullptr, bufsize, PROT_READ | PROT_WRITE,
                            MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
#endif
  }

  std::pair<T *, bool> insert(std::string_view key, u64 hash, const T &val) {
    assert(has_single_bit(nbuckets));

    u64 begin = hash & (nbuckets - 1);
    u64 mask = nbuckets / NUM_SHARDS - 1;

    for (i64 i = 0; i < MAX_RETRY; i++) {
      u64 idx = (begin & ~mask) | ((begin + i) & mask);
      Entry &ent = entries[idx];

      // It seems avoiding compare-and-swap is faster overall at least
      // on my Zen4 machine, so do it.
      if (const char *ptr = ent.key.load(std::memory_order_acquire);
          ptr != nullptr && ptr != (char *)-1) {
        if (key == std::string_view(ptr, ent.keylen))
          return {&ent.value, false};
        continue;
      }

      // Otherwise, use CAS to atomically claim the ownership of the slot.
      const char *ptr = nullptr;
      bool claimed = ent.key.compare_exchange_strong(ptr, (char *)-1,
                                                     std::memory_order_acquire);

      // If we successfully claimed the ownership of the slot,
      // copy values to it.
      if (claimed) {
        new (&ent.value) T(val);
        ent.keylen = key.size();
        ent.key.store(key.data(), std::memory_order_release);
        return {&ent.value, true};
      }

      // If someone is copying values to the slot, do busy wait.
      while (ptr == (char *)-1) {
        pause();
        ptr = ent.key.load(std::memory_order_acquire);
      }

      // If the same key is already present, this is the slot we are
      // looking for.
      if (key == std::string_view(ptr, ent.keylen))
        return {&ent.value, false};
    }

    std::cerr << "ConcurrentMap is full\n";
    abort();
  }

  i64 get_idx(T *value) const {
    uintptr_t addr = (uintptr_t)value - (uintptr_t)value % sizeof(Entry);
    return (Entry *)addr - entries;
  }

  // Return a list of map entries sorted in a deterministic order.
  std::vector<Entry *> get_sorted_entries(i64 shard_idx) {
    if (nbuckets == 0)
      return {};

    i64 shard_size = nbuckets / NUM_SHARDS;
    i64 begin = shard_idx * shard_size;
    i64 end = begin + shard_size;

    i64 sz = 0;
    for (i64 i = begin; i < end; i++)
      if (entries[i].key)
        sz++;

    std::vector<Entry *> vec;
    vec.reserve(sz);

    // Since the shard is circular, we need to handle the last entries
    // as if they were next to the first entries.
    while (begin < end && entries[end - 1].key)
      vec.push_back(entries + --end);

    // Find entries contiguous in the buckets and sort them.
    i64 last = 0;
    for (i64 i = begin; i < end;) {
      while (i < end && entries[i].key)
        vec.push_back(entries + i++);

      std::sort(vec.begin() + last, vec.end(), [](Entry *a, Entry *b) {
        if (a->keylen != b->keylen)
          return a->keylen < b->keylen;
        return memcmp(a->key, b->key, a->keylen) < 0;
      });

      last = vec.size();

      while (i < end && !entries[i].key)
        i++;
    }
    return vec;
  }

  std::vector<Entry *> get_sorted_entries_all() {
    std::vector<std::vector<Entry *>> vec(NUM_SHARDS);
    tbb::parallel_for((i64)0, NUM_SHARDS, [&](i64 i) {
      vec[i] = get_sorted_entries(i);
    });
    return flatten(vec);
  }

  static constexpr i64 MIN_NBUCKETS = 4096;
  static constexpr i64 NUM_SHARDS = 16;
  static constexpr i64 MAX_RETRY = 256;

  Entry *entries = nullptr;
  u64 nbuckets = 0;
};

//
// random.cc
//

void get_random_bytes(u8 *buf, i64 size);

//
// hyperloglog.cc
//

class HyperLogLog {
public:
  void insert(u64 hash) {
    update_maximum(buckets[hash & (NBUCKETS - 1)], std::countl_zero(hash) + 1);
  }

  i64 get_cardinality() const;

  void merge(const HyperLogLog &other) {
    for (i64 i = 0; i < NBUCKETS; i++)
      update_maximum(buckets[i], other.buckets[i]);
  }

private:
  static constexpr i64 NBUCKETS = 2048;
  static constexpr double ALPHA = 0.79402;

  Atomic<u8> buckets[NBUCKETS];
};

//
// aho-corasick.cc
//

class AhoCorasick {
public:
  bool add(std::string_view pat, i64 val);
  bool empty() const { return nodes.empty(); }
  void compile();
  i64 find(std::string_view str);

  static bool can_handle(std::string_view str);

private:
  struct TrieNode {
    TrieNode() { children.fill(-1); }
    i64 value = -1;
    i32 suffix_link = -1;
    std::array<i32, 256> children;
  };

  void fix_suffix_links(i64 idx);
  void fix_values();

  std::vector<TrieNode> nodes;
};

//
// glob.cc
//

class MultiGlob {
public:
  bool add(std::string_view pat, i64 val);
  bool empty() const { return patterns.empty(); }
  void compile();
  i64 find(std::string_view str);

  struct State {
    std::bitset<256> incoming_edge;
    bool is_star = false;
  };

  struct GlobPattern {
    std::vector<State> states;
    i64 value = -1;
  };

private:
  std::vector<GlobPattern> patterns;
  Bitvector start_states;
  Bitvector star_mask;
  Bitvector char_mask[256];
};

class Glob {
public:
  bool add(std::string_view pat, i64 val);
  bool empty() const { return multi_glob.empty() && aho_corasick.empty(); }
  i64 find(std::string_view str);

private:
  std::once_flag once;
  bool is_compiled = false;

  MultiGlob multi_glob;
  AhoCorasick aho_corasick;
};

//
// filepath.cc
//

inline std::filesystem::path path_dirname(std::string_view path) {
  return std::filesystem::path(path).parent_path();
}

inline std::string path_filename(std::string_view path) {
  return std::filesystem::path(path).filename().string();
}

inline std::string path_clean(std::string_view path) {
  return std::filesystem::path(path).lexically_normal().string();
}

std::string get_self_path();

//
// demangle.cc
//

std::optional<std::string_view> demangle_cpp(std::string_view name);
std::optional<std::string_view> demangle_rust(std::string_view name);

//
// crc32.cc
//

u32 compute_crc32(u32 crc, u8 *buf, i64 len);
std::vector<u8> crc32_solve(u32 current, u32 desired);

//
// compress.cc
//

class Compressor {
public:
  virtual void write_to(u8 *buf) = 0;
  virtual ~Compressor();
  i64 compressed_size = 0;

protected:
  std::vector<std::span<u8>> shards;
};

class ZlibCompressor : public Compressor {
public:
  ZlibCompressor(u8 *buf, i64 size);
  void write_to(u8 *buf) override;

private:
  u32 checksum = 0;
};

class ZstdCompressor : public Compressor {
public:
  ZstdCompressor(u8 *buf, i64 size);
  void write_to(u8 *buf) override;
};

//
// tar.cc
//

// TarFile is a class to create a tar file.
//
// If you pass `--repro` to mold, mold collects all input files and
// put them into `<output-file-path>.repro.tar`, so that it is easy to
// run the same command with the same command line arguments.
class TarWriter {
public:
  static std::unique_ptr<TarWriter>
  open(std::string output_path, std::string basedir);

  ~TarWriter();
  void append(std::string path, std::string_view data);

private:
  TarWriter(FILE *out, std::string basedir) : out(out), basedir(basedir) {}

  FILE *out = nullptr;
  std::string basedir;
};

} // namespace mold