1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
|
#pragma once
#include "atomics.h"
#include "integers.h"
#include "bitvector.h"
#include <array>
#include <atomic>
#include <bit>
#include <bitset>
#include <cassert>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fcntl.h>
#include <filesystem>
#include <iostream>
#include <mutex>
#include <optional>
#include <span>
#include <sstream>
#include <string>
#include <string_view>
#include <sys/stat.h>
#include <sys/types.h>
#include <tbb/concurrent_vector.h>
#include <tbb/enumerable_thread_specific.h>
#include <tbb/parallel_for.h>
#include <vector>
#ifdef _WIN32
# include <io.h>
#else
# include <sys/mman.h>
# include <unistd.h>
#endif
#define XXH_INLINE_ALL 1
#include "../third-party/xxhash/xxhash.h"
#ifdef NDEBUG
# define unreachable() __builtin_unreachable()
#else
# define unreachable() assert(0 && "unreachable")
#endif
inline uint64_t hash_string(std::string_view str) {
return XXH3_64bits(str.data(), str.size());
}
class HashCmp {
public:
static size_t hash(const std::string_view &k) {
return hash_string(k);
}
static bool equal(const std::string_view &k1, const std::string_view &k2) {
return k1 == k2;
}
};
namespace mold {
namespace ranges = std::ranges;
using namespace std::literals::string_literals;
using namespace std::literals::string_view_literals;
inline u64 combine_hash(u64 a, u64 b) {
return a ^ (b + 0x9e3779b9 + (a << 6) + (a >> 2));
}
//
// perf.cc
//
// Counter is used to collect statistics numbers.
class Counter {
public:
Counter(std::string_view name, i64 value = 0) : name(name), values(value) {
static std::mutex mu;
std::scoped_lock lock(mu);
instances.push_back(this);
}
Counter &operator++(int) {
if (enabled) [[unlikely]]
values.local()++;
return *this;
}
Counter &operator+=(int delta) {
if (enabled) [[unlikely]]
values.local() += delta;
return *this;
}
static void print();
static inline bool enabled = false;
private:
i64 get_value();
std::string_view name;
tbb::enumerable_thread_specific<i64> values;
static inline std::vector<Counter *> instances;
};
// Timer and TimeRecord records elapsed time (wall clock time)
// used by each pass of the linker.
struct TimerRecord {
TimerRecord(std::string name, TimerRecord *parent = nullptr);
void stop();
std::string name;
TimerRecord *parent;
tbb::concurrent_vector<TimerRecord *> children;
i64 start;
i64 end;
i64 user;
i64 sys;
bool stopped = false;
};
void
print_timer_records(tbb::concurrent_vector<std::unique_ptr<TimerRecord>> &);
template <typename Context>
class Timer {
public:
Timer(Context &ctx, std::string name, Timer *parent = nullptr) {
record = new TimerRecord(name, parent ? parent->record : nullptr);
ctx.timer_records.emplace_back(record);
}
Timer(const Timer &) = delete;
~Timer() {
record->stop();
}
void stop() {
record->stop();
}
private:
TimerRecord *record;
};
//
// Utility functions
//
// Some C++ libraries haven't implemented std::has_single_bit yet.
inline bool has_single_bit(u64 val) {
return std::popcount(val) == 1;
}
// Some C++ libraries haven't implemented std::bit_ceil yet.
inline u64 bit_ceil(u64 val) {
if (has_single_bit(val))
return val;
return 1LL << (64 - std::countl_zero(val));
}
inline u64 align_to(u64 val, u64 align) {
if (align == 0)
return val;
assert(has_single_bit(align));
return (val + align - 1) & ~(align - 1);
}
inline u64 align_down(u64 val, u64 align) {
assert(has_single_bit(align));
return val & ~(align - 1);
}
inline u64 bit(u64 val, i64 pos) {
return (val >> pos) & 1;
};
// Returns [hi:lo] bits of val.
inline u64 bits(u64 val, u64 hi, u64 lo) {
return (val >> lo) & ((1LL << (hi - lo + 1)) - 1);
}
// Cast val to a signed N bit integer.
// For example, sign_extend(x, 32) == (i32)x for any integer x.
inline i64 sign_extend(u64 val, i64 n) {
return (i64)(val << (64 - n)) >> (64 - n);
}
inline bool is_int(u64 val, i64 n) {
return sign_extend(val, n) == val;
}
template <typename T, typename Compare = std::less<T>>
void update_minimum(std::atomic<T> &atomic, u64 new_val, Compare cmp = {}) {
T old_val = atomic.load(std::memory_order_relaxed);
while (cmp(new_val, old_val) &&
!atomic.compare_exchange_weak(old_val, new_val,
std::memory_order_relaxed));
}
template <typename T, typename Compare = std::less<T>>
void update_maximum(std::atomic<T> &atomic, u64 new_val, Compare cmp = {}) {
T old_val = atomic.load(std::memory_order_relaxed);
while (cmp(old_val, new_val) &&
!atomic.compare_exchange_weak(old_val, new_val,
std::memory_order_relaxed));
}
template <typename T>
inline void append(std::vector<T> &x, const auto &y) {
x.insert(x.end(), y.begin(), y.end());
}
template <typename T>
inline std::vector<T> flatten(std::vector<std::vector<T>> &vec) {
i64 size = 0;
for (std::vector<T> &v : vec)
size += v.size();
std::vector<T> ret;
ret.reserve(size);
for (std::vector<T> &v : vec)
append(ret, v);
return ret;
}
template <typename T>
inline void remove_duplicates(std::vector<T> &vec) {
vec.erase(std::unique(vec.begin(), vec.end()), vec.end());
}
inline i64 write_string(void *buf, std::string_view str) {
memcpy(buf, str.data(), str.size());
*((u8 *)buf + str.size()) = '\0';
return str.size() + 1;
}
template <typename T>
inline void write_vector(void *buf, const std::vector<T> &vec) {
if (!vec.empty())
memcpy(buf, vec.data(), vec.size() * sizeof(T));
}
inline void encode_uleb(std::vector<u8> &vec, u64 val) {
do {
u8 byte = val & 0x7f;
val >>= 7;
vec.push_back(val ? (byte | 0x80) : byte);
} while (val);
}
inline void encode_sleb(std::vector<u8> &vec, i64 val) {
for (;;) {
u8 byte = val & 0x7f;
val >>= 7;
bool neg = (byte & 0x40);
if ((val == 0 && !neg) || (val == -1 && neg)) {
vec.push_back(byte);
break;
}
vec.push_back(byte | 0x80);
}
}
inline i64 write_uleb(u8 *buf, u64 val) {
i64 i = 0;
do {
u8 byte = val & 0x7f;
val >>= 7;
buf[i++] = val ? (byte | 0x80) : byte;
} while (val);
return i;
}
inline u64 read_uleb(u8 **buf) {
u64 val = 0;
u8 shift = 0;
u8 byte;
do {
byte = *(*buf)++;
val |= (byte & 0x7f) << shift;
shift += 7;
} while (byte & 0x80);
return val;
}
inline u64 read_uleb(u8 *buf) {
u8 *tmp = buf;
return read_uleb(&tmp);
}
inline i64 read_sleb(u8 **buf) {
u64 val = 0;
u8 shift = 0;
u8 byte;
do {
byte = *(*buf)++;
val |= (byte & 0x7f) << shift;
shift += 7;
} while (byte & 0x80);
return sign_extend(val, shift);
}
inline i64 read_sleb(u8 *buf) {
u8 *tmp = buf;
return read_sleb(&tmp);
}
inline u64 read_uleb(std::string_view *str) {
u8 *start = (u8 *)str->data();
u8 *ptr = start;
u64 val = read_uleb(&ptr);
*str = str->substr(ptr - start);
return val;
}
inline u64 read_uleb(std::string_view str) {
std::string_view tmp = str;
return read_uleb(&tmp);
}
inline i64 uleb_size(u64 val) {
for (int i = 1; i < 9; i++)
if (val < (1LL << (7 * i)))
return i;
return 9;
}
inline void overwrite_uleb(u8 *loc, u64 val) {
while (*loc & 0b1000'0000) {
*loc++ = 0b1000'0000 | (val & 0b0111'1111);
val >>= 7;
}
*loc = val & 0b0111'1111;
}
static inline void pause() {
#if defined(__x86_64__)
asm volatile("pause");
#elif defined(__aarch64__)
asm volatile("yield");
#elif defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_8A__)
asm volatile("yield");
#endif
}
//
// Concurrent Map
//
// This is an implementation of a fast concurrent hash map. Unlike
// ordinary hash tables, this impl just aborts if it becomes full.
// So you need to give a correct estimation of the final size before
// using it. We use this hash map to uniquify pieces of data in
// mergeable sections.
//
// We've implemented this ourselves because the performance of
// conrurent hash map is critical for our linker.
template <typename T>
class ConcurrentMap {
public:
ConcurrentMap() = default;
ConcurrentMap(i64 nbuckets) {
resize(nbuckets);
}
~ConcurrentMap() {
if (entries) {
#ifdef _WIN32
_aligned_free(entries);
#else
munmap(entries, sizeof(Entry) * nbuckets);
#endif
}
}
// In order to avoid unnecessary cache-line false sharing, we want
// to make this object to be aligned to a reasonably large
// power-of-two address.
struct alignas(32) Entry {
Atomic<const char *> key;
u32 keylen;
T value;
};
void resize(i64 nbuckets) {
assert(!entries);
this->nbuckets = std::max<i64>(MIN_NBUCKETS, bit_ceil(nbuckets));
i64 bufsize = sizeof(Entry) * this->nbuckets;
// Allocate a zero-initialized buffer. We use mmap() if available
// because it's faster than malloc() and memset().
#ifdef _WIN32
entries = (Entry *)_aligned_malloc(bufsize, alignof(Entry));
memset((void *)entries, 0, bufsize);
#else
entries = (Entry *)mmap(nullptr, bufsize, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
#endif
}
std::pair<T *, bool> insert(std::string_view key, u64 hash, const T &val) {
assert(has_single_bit(nbuckets));
u64 begin = hash & (nbuckets - 1);
u64 mask = nbuckets / NUM_SHARDS - 1;
for (i64 i = 0; i < MAX_RETRY; i++) {
u64 idx = (begin & ~mask) | ((begin + i) & mask);
Entry &ent = entries[idx];
// It seems avoiding compare-and-swap is faster overall at least
// on my Zen4 machine, so do it.
if (const char *ptr = ent.key.load(std::memory_order_acquire);
ptr != nullptr && ptr != (char *)-1) {
if (key == std::string_view(ptr, ent.keylen))
return {&ent.value, false};
continue;
}
// Otherwise, use CAS to atomically claim the ownership of the slot.
const char *ptr = nullptr;
bool claimed = ent.key.compare_exchange_strong(ptr, (char *)-1,
std::memory_order_acquire);
// If we successfully claimed the ownership of the slot,
// copy values to it.
if (claimed) {
new (&ent.value) T(val);
ent.keylen = key.size();
ent.key.store(key.data(), std::memory_order_release);
return {&ent.value, true};
}
// If someone is copying values to the slot, do busy wait.
while (ptr == (char *)-1) {
pause();
ptr = ent.key.load(std::memory_order_acquire);
}
// If the same key is already present, this is the slot we are
// looking for.
if (key == std::string_view(ptr, ent.keylen))
return {&ent.value, false};
}
std::cerr << "ConcurrentMap is full\n";
abort();
}
i64 get_idx(T *value) const {
uintptr_t addr = (uintptr_t)value - (uintptr_t)value % sizeof(Entry);
return (Entry *)addr - entries;
}
// Return a list of map entries sorted in a deterministic order.
std::vector<Entry *> get_sorted_entries(i64 shard_idx) {
if (nbuckets == 0)
return {};
i64 shard_size = nbuckets / NUM_SHARDS;
i64 begin = shard_idx * shard_size;
i64 end = begin + shard_size;
i64 sz = 0;
for (i64 i = begin; i < end; i++)
if (entries[i].key)
sz++;
std::vector<Entry *> vec;
vec.reserve(sz);
// Since the shard is circular, we need to handle the last entries
// as if they were next to the first entries.
while (begin < end && entries[end - 1].key)
vec.push_back(entries + --end);
// Find entries contiguous in the buckets and sort them.
i64 last = 0;
for (i64 i = begin; i < end;) {
while (i < end && entries[i].key)
vec.push_back(entries + i++);
std::sort(vec.begin() + last, vec.end(), [](Entry *a, Entry *b) {
if (a->keylen != b->keylen)
return a->keylen < b->keylen;
return memcmp(a->key, b->key, a->keylen) < 0;
});
last = vec.size();
while (i < end && !entries[i].key)
i++;
}
return vec;
}
std::vector<Entry *> get_sorted_entries_all() {
std::vector<std::vector<Entry *>> vec(NUM_SHARDS);
tbb::parallel_for((i64)0, NUM_SHARDS, [&](i64 i) {
vec[i] = get_sorted_entries(i);
});
return flatten(vec);
}
static constexpr i64 MIN_NBUCKETS = 4096;
static constexpr i64 NUM_SHARDS = 16;
static constexpr i64 MAX_RETRY = 256;
Entry *entries = nullptr;
u64 nbuckets = 0;
};
//
// random.cc
//
void get_random_bytes(u8 *buf, i64 size);
//
// hyperloglog.cc
//
class HyperLogLog {
public:
void insert(u64 hash) {
update_maximum(buckets[hash & (NBUCKETS - 1)], std::countl_zero(hash) + 1);
}
i64 get_cardinality() const;
void merge(const HyperLogLog &other) {
for (i64 i = 0; i < NBUCKETS; i++)
update_maximum(buckets[i], other.buckets[i]);
}
private:
static constexpr i64 NBUCKETS = 2048;
static constexpr double ALPHA = 0.79402;
Atomic<u8> buckets[NBUCKETS];
};
//
// aho-corasick.cc
//
class AhoCorasick {
public:
bool add(std::string_view pat, i64 val);
bool empty() const { return nodes.empty(); }
void compile();
i64 find(std::string_view str);
static bool can_handle(std::string_view str);
private:
struct TrieNode {
TrieNode() { children.fill(-1); }
i64 value = -1;
i32 suffix_link = -1;
std::array<i32, 256> children;
};
void fix_suffix_links(i64 idx);
void fix_values();
std::vector<TrieNode> nodes;
};
//
// glob.cc
//
class MultiGlob {
public:
bool add(std::string_view pat, i64 val);
bool empty() const { return patterns.empty(); }
void compile();
i64 find(std::string_view str);
struct State {
std::bitset<256> incoming_edge;
bool is_star = false;
};
struct GlobPattern {
std::vector<State> states;
i64 value = -1;
};
private:
std::vector<GlobPattern> patterns;
Bitvector start_states;
Bitvector star_mask;
Bitvector char_mask[256];
};
class Glob {
public:
bool add(std::string_view pat, i64 val);
bool empty() const { return multi_glob.empty() && aho_corasick.empty(); }
i64 find(std::string_view str);
private:
std::once_flag once;
bool is_compiled = false;
MultiGlob multi_glob;
AhoCorasick aho_corasick;
};
//
// filepath.cc
//
inline std::filesystem::path path_dirname(std::string_view path) {
return std::filesystem::path(path).parent_path();
}
inline std::string path_filename(std::string_view path) {
return std::filesystem::path(path).filename().string();
}
inline std::string path_clean(std::string_view path) {
return std::filesystem::path(path).lexically_normal().string();
}
std::string get_self_path();
//
// demangle.cc
//
std::optional<std::string_view> demangle_cpp(std::string_view name);
std::optional<std::string_view> demangle_rust(std::string_view name);
//
// crc32.cc
//
u32 compute_crc32(u32 crc, u8 *buf, i64 len);
std::vector<u8> crc32_solve(u32 current, u32 desired);
//
// compress.cc
//
class Compressor {
public:
virtual void write_to(u8 *buf) = 0;
virtual ~Compressor();
i64 compressed_size = 0;
protected:
std::vector<std::span<u8>> shards;
};
class ZlibCompressor : public Compressor {
public:
ZlibCompressor(u8 *buf, i64 size);
void write_to(u8 *buf) override;
private:
u32 checksum = 0;
};
class ZstdCompressor : public Compressor {
public:
ZstdCompressor(u8 *buf, i64 size);
void write_to(u8 *buf) override;
};
//
// tar.cc
//
// TarFile is a class to create a tar file.
//
// If you pass `--repro` to mold, mold collects all input files and
// put them into `<output-file-path>.repro.tar`, so that it is easy to
// run the same command with the same command line arguments.
class TarWriter {
public:
static std::unique_ptr<TarWriter>
open(std::string output_path, std::string basedir);
~TarWriter();
void append(std::string path, std::string_view data);
private:
TarWriter(FILE *out, std::string basedir) : out(out), basedir(basedir) {}
FILE *out = nullptr;
std::string basedir;
};
} // namespace mold
|