1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
/* -------------------------------------------------------------------------- *
* SimTK Molmodel Example: Fold Polyalanine *
* -------------------------------------------------------------------------- *
* This example attempts to fold polyalanine from an extended configuration. *
* We expect a sequence of alanines to form a helix. *
* *
* The strategy we'll follow here is a crude annealing protocol in which *
* we'll start at a high temperature and progressively lower the temperature *
* as we simulate. We hope to see the polyalanine settle into a helix *
* when the temperature gets low enough. As we go along we'll track the *
* potential energy and save the lowest-energy state we've seen so far. In *
* the end we'll report that state as the result. *
* *
* This example demonstrates *
* - modeling a protein directly from sequence *
* - the Nose-Hoover thermostat *
* - use of an event handler to interrupt the simulation to make *
* discontinuous changes (here lowering the requested temperature) *
* - how to use OpenMM for GPU acceleration if it is available, falling *
* back to multithreading otherwise *
* - how to remove overall rigid body momentum to keep the molecule from *
* drifting *
* - how to generate a live movie using the Simbody Visualizer and how to *
* write to a pdb file for later visualization in VMD or another advanced *
* molecule visualizer *
* - use of Simbody's CPU and real timers, and Pathname class to find out *
* what directory we're running in (that's where the pdb file will be). *
* *
* Author: Michael Sherman *
* -------------------------------------------------------------------------- */
#include "Molmodel.h"
#include <iostream>
#include <fstream>
#include <exception>
using namespace SimTK;
// Comment this out if it causes trouble for you.
#define TRY_TO_USE_OPENMM
// See below.
static Real startCPU, startRT; // timers
static State minState;
static Real minPE = Infinity;
// This is a reporter so we can get some output during the simulation and
// capture the lowest-energy state we've seen so far.
class SaySomething : public PeriodicEventReporter {
public:
SaySomething(const CompoundSystem& system,
const NoseHooverThermostat& thermo,
Real reportInterval)
: PeriodicEventReporter(reportInterval), system(system), thermo(thermo) {}
void handleEvent(const State& state) const {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
system.realize(state, Stage::Dynamics);
const Real pe = system.calcPotentialEnergy(state);
std::cout << "TIME = " << state.getTime()
<< " PE=" << pe
<< " T=" << thermo.getCurrentTemperature(state)
<< " RT=" << realTime()-startRT << "s"
<< " CPU=" << cpuTime()-startCPU << "s\n";
if (pe < minPE) {
std::cout << "***** best so far *****\n";
minState = state;
minPE = pe;
}
}
private:
const CompoundSystem& system;
const NoseHooverThermostat& thermo;
};
// This event handler implements the annealing protocol by changing
// the temperature of the thermal bath that interacts with our peptide.
class ChangeTemperature : public PeriodicEventHandler {
public:
ChangeTemperature(const CompoundSystem& system,
const NoseHooverThermostat& thermo,
Real interval,
Real frac=.75, // fraction by which we reduce T
Real minT=10) // temperature at which we'll quit
: PeriodicEventHandler(interval), system(system), thermo(thermo),
frac(frac), minT(minT) {}
// The Simbody TimeStepper invokes this method periodically, based on
// the time interval that was provided in the constructor.
void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const
{
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
const Real bathT = thermo.getBathTemperature(state);
if (state.getTime() == 0) {
std::cout << "STARTING T=" << bathT << "K. Reduce to " << frac << " every "
<< getEventInterval() << "ps until " << minT << "K." << std::endl;
return;
}
const Real newBathT = std::max(minT, bathT*frac);
if (bathT == newBathT) {
if (bathT <= minT) shouldTerminate=true;
return;
}
thermo.setBathTemperature(state, newBathT);
std::cout << "Changed bath T to " << newBathT << std::endl;
}
private:
const CompoundSystem& system;
const NoseHooverThermostat& thermo;
const Real frac;
const Real minT;
};
int main() {
try {
// molecule-specialized Simbody System
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
DecorationSubsystem decorations(system);
// Molecular force field. GBSA solvation is used by default.
DuMMForceFieldSubsystem forceField(system);
forceField.loadAmber99Parameters();
// optional -- try OpenMM accelerations
#ifdef TRY_TO_USE_OPENMM
forceField.setUseOpenMMAcceleration(true);
#endif
// This causes tracing even if we aren't trying to use OpenMM.
forceField.setTracing(true); // log OpenMM info to console
// Multithreading is used by default unless you disable it.
//forceField.setUseMultithreadedComputation(false);
forceField.setNumThreadsRequested(0); // default
// You can change to vacuum by uncommenting this line.
//forceField.setGbsaGlobalScaleFactor(0);
std::cout << "num threads before realizeTopology (should be zero): "
<< forceField.getNumThreadsInUse() << std::endl;
// The Protein constructor always adds neutral end caps unless
// you suppress them.
//Protein protein("SIMTK");
//Protein protein("AAAAAA"); // 6
//Protein protein("AAAAAAAAAA"); // 10
//Protein protein("AAAAAAAAAAAA"); // 12
Protein protein("AAAAAAAAAAAAAAA"); // 15
// This is the Tryptophan cage 1L2Y.pdb.
// (ACE) ASN LEU TYR ILE GLN TRP LEU LYS ASP GLY GLY PRO SER
// SER GLY ARG PRO PRO PRO SER (NAC)
//Protein protein("NLYIQWLKDGGPSSGRPPPS");
protein.assignBiotypes();
system.adoptCompound(protein);
// finalize multibody system
system.modelCompounds();
// Create a PeriodicPdbWriter (a Molmodel-provided Reporter) for
// generating pdb frames. We'll keep a pointer to it here so we can generate
// a few frames before and after the simulation. We'll ask the TimeStepper
// to call this every 100fs.
std::cout << "\nNOTE: Writing pdb file 'polyalanine.pdb' in "
<< Pathname::getCurrentWorkingDirectory() << "\n\n";
std::ofstream pdbFile; pdbFile.open("polyalanine.pdb");
PeriodicPdbWriter* pdbWriter = new PeriodicPdbWriter(system, pdbFile, 0.1);
system.addEventReporter(pdbWriter); // System takes ownership
// Create a Visualizer for live animation while simulating and ask
// the TimeStepper to invoke it every 100fs.
Visualizer viz(system);
system.addEventReporter(new Visualizer::Reporter(viz, 0.1) );
const Real startT = 1000;
NoseHooverThermostat thermo(forces, matter, startT, .5);
// We'll stay at a given temperature for a time proportional to
// the number of residues we're trying to fold.
const Real timePerResidue = 1.; // ps
system.addEventHandler(
new ChangeTemperature(system, thermo,
timePerResidue*protein.getNumResidues(),
0.9, // reduce by setting newT = 90% * oldT
150)); // stop when we get to this temperature
// We'll remove overall rigid body momentum every 10ps so the
// molecule doesn't run off the screen.
system.addEventHandler(new MassCenterMotionRemover(system, 10));
// Output some stats every 1ps, and remember the lowest energy
// state we've seen.
system.addEventReporter(new SaySomething(system, thermo, 1));
// Instantiate Simbody model
system.realizeTopology();
State state = system.getDefaultState();
std::cout << "num threads in use after realizeTopology: "
<< forceField.getNumThreadsInUse() << std::endl;
system.realize(state, Stage::Position);
viz.report(state); // first animation frame
pdbWriter->handleEvent(state); // pdb frame
// Relax the structure before dynamics run
LocalEnergyMinimizer::minimizeEnergy(system, state, 10);
system.realize(state, Stage::Position);
viz.report(state); // post-relaxation frame
pdbWriter->handleEvent(state); // pdb frame
startCPU = cpuTime(); // start the cpu timer
startRT = realTime(); // and the real timer
// Simulate it.
//VerletIntegrator integ(system);
RungeKuttaMersonIntegrator integ(system);
integ.setAccuracy(1e-2);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(1000.0);
std::cout << "Done. " << integ.getTime() << "ps in elapsed(s)="
<< realTime()-startRT << " CPU=" << cpuTime()-startCPU
<< std::endl;
State finalState = minState;
system.realize(finalState, Stage::Dynamics);
std::cout << "Best PE=" << system.calcPotentialEnergy(finalState) << std::endl;
viz.report(finalState); // show best conformation
pdbWriter->handleEvent(finalState); // pdb frame
LocalEnergyMinimizer::minimizeEnergy(system, finalState, 5);
system.realize(finalState, Stage::Dynamics);
std::cout << "Final PE=" << system.calcPotentialEnergy(finalState) << std::endl;
viz.report(finalState); // post-minimization animation frame
pdbWriter->handleEvent(finalState); // final pdb frame
pdbFile.close();
std::cout << "\nWrote pdb file "
<< Pathname::getCurrentWorkingDirectory() << "polyalanine.pdb\n";
return 0;
}
catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
}
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" << std::endl;
return 1;
}
}
|