1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
#include "SimTKmolmodel.h"
#include "SimTKsimbody_aux.h"
#include <fstream>
#include <iostream>
#include <exception>
using namespace SimTK;
using namespace std;
class WritePdbReporter : public PeriodicEventReporter {
public:
WritePdbReporter(
const MultibodySystem& system,
std::ostream& outputStream,
Real interval)
: PeriodicEventReporter(interval),
system(system),
outputStream(outputStream),
currentModelNumber(1)
{}
void addCompound(const Compound& compound) {
compoundPointers.push_back(&compound);
}
void handleEvent(const State& state) const {
outputStream << "MODEL " << currentModelNumber << endl;
system.realize(state, Stage::Position);
for (int c = 0; c < (int)compoundPointers.size(); ++c)
compoundPointers[c]->writePdb(state, outputStream);
outputStream << "ENDMDL" << endl;
++currentModelNumber;
}
private:
mutable int currentModelNumber;
const MultibodySystem& system;
std::vector<const Compound*> compoundPointers;
std::ostream& outputStream;
};
void integrate(Real accuracy, BondMobility::Mobility mobility, int integratorIndex, std::ostream& os)
{
cout << "accuracy = " << accuracy << endl;
cout << "integrator index = " << integratorIndex << endl;
cout << "mobility index = " << mobility << endl;
cout << "constructing system..." << endl;
CompoundSystem system; // molecule-specialized simbody System
SimbodyMatterSubsystem matter(system);
DecorationSubsystem decorations(system);
TinkerDuMMForceFieldSubsystem dumm(system); // molecular force field
// Two very small proteins
Protein protein1("SPFAK");
Protein protein2("SPFAK");
protein1.setPdbChainId('A');
protein2.setPdbChainId('B');
// link proteins to forcefields
dumm.loadAmber99Parameters();
protein1.assignBiotypes();
protein2.assignBiotypes();
// Set mobility of all bonds in both structures
// For "Torsion" mobility, leave all bonds at default values
if (mobility != BondMobility::Torsion) {
for (Compound::BondIndex b(0); b < protein1.getNBonds(); ++b) {
protein1.setBondMobility(mobility, b);
}
for (Compound::BondIndex b(0); b < protein2.getNBonds(); ++b) {
protein2.setBondMobility(mobility, b);
}
}
system.adoptCompound(protein1);
system.adoptCompound(protein2, Vec3(0.5, 0.5, 0) );
// system.updDefaultSubsystem().addEventReporter(new VTKEventReporter(system, 0.010));
ofstream pdbStream("trajectory.pdb");
WritePdbReporter writePdbReporter(system, pdbStream, 0.010);
writePdbReporter.addCompound(protein1);
writePdbReporter.addCompound(protein2);
system.updDefaultSubsystem().addEventReporter(&writePdbReporter);
system.updDefaultSubsystem().addEventHandler(new VelocityRescalingThermostat(system, 293.15, 0.020));
system.modelCompounds(); // finalize multibody system
system.realizeTopology();
State& state = system.updDefaultState();
cout << "minimizing energy..." << endl;
LocalEnergyMinimizer::minimizeEnergy(system, state, 100.0);
// Choice of integrators
Integrator* integratorPtr;
switch (integratorIndex) {
case 0:
integratorPtr = new RungeKuttaMersonIntegrator(system);
break;
case 1:
integratorPtr = new VerletIntegrator(system);
break;
case 2:
integratorPtr = new CPodesIntegrator(system);
break;
case 3:
integratorPtr = new ExplicitEulerIntegrator(system);
break;
}
Integrator& study = *integratorPtr;
study.setAccuracy(accuracy);
TimeStepper timeStepper(system, study);
timeStepper.initialize(state);
// cause timeStepper to pause after each integration step
timeStepper.setReportAllSignificantStates(true);
study.setReturnEveryInternalStep(true);
cout << "integrating..." << endl;
long int previousForceEvaluationCount = dumm.getForceEvaluationCount();
std::vector<Real> integratorStepSizes;
Real endTime = 5.000; // picoseconds
// Real endTime = 0.050; // picoseconds - fast time for debugging
while(timeStepper.getTime() < endTime)
{
timeStepper.stepTo(endTime);
// store integrator step size
integratorStepSizes.push_back(study.getPreviousStepSizeTaken());
}
cout << "analyzing statistics..." << endl;
// Dump time steps
//ofstream stepsOut ("timeSteps.dat");
// for (int t = 0; t < (int)integratorStepSizes.size(); ++t) {
// stepsOut << integratorStepSizes[t] << endl;
//}
//stepsOut.close();
// Mean step time
Real meanTimeStep = 0.0;
for (int t = 0; t < (int)integratorStepSizes.size(); ++t) {
meanTimeStep += integratorStepSizes[t];
}
meanTimeStep /= integratorStepSizes.size();
// Standard deviation of step time
Real timeStepDev = 0.0;
for (int t = 0; t < (int)integratorStepSizes.size(); ++t) {
Real diff = meanTimeStep - integratorStepSizes[t];
timeStepDev += diff * diff;
}
timeStepDev /= (integratorStepSizes.size() - 1);
timeStepDev = sqrt(timeStepDev);
// Median
std::sort(integratorStepSizes.begin(), integratorStepSizes.end());
Real medianTimeStep = integratorStepSizes[(int)(integratorStepSizes.size() / 2)];
os << study.getMethodName();
os << "\t";
switch (mobility) {
case BondMobility::Free: os << "All atom"; break;
case BondMobility::Torsion: os << "Torsion"; break;
case BondMobility::Rigid: os << "Rigid"; break;
}
os << "\t";
os << accuracy;
os << "\t";
os << dumm.getForceEvaluationCount() - previousForceEvaluationCount;
os << "\t";
os << integratorStepSizes.size();
os << "\t";
os << 1000.0 * meanTimeStep;
os << "\t";
os << "" << 1000.0 * timeStepDev;
os << "\t";
os << 1000.0 * medianTimeStep;
os << std::endl;
delete integratorPtr;
cout << "Done." << endl;
}
int main() { try
{
ofstream os("integ.dat");
// Vary accuracy to measure effect on integrator step size
Real accuracyList[] = {1e-2, 3e-3, 1e-3, 3e-4, 1e-4, 3e-5, 1e-5, 3e-6, 1e-6};
// Real accuracyList[] = {3e-3, 1e-3, 3e-4}; // short list
// Compare different modeling strategies
BondMobility::Mobility mobilityList[] = {BondMobility::Free, BondMobility::Torsion, BondMobility::Rigid};
// Loop over integrators, accuracies, and mobilities
for (int integratorIndex = 0; integratorIndex <= 1; ++integratorIndex)
{
// skip CPODES, it's way too slow for molecules, taking >60 force evaluations per step
if (integratorIndex == 2) continue;
for (int mIx = 1; mIx <= 1; ++mIx)
{
BondMobility::Mobility mobility = mobilityList[mIx];
for (int aIx = 0; aIx <= 8; ++aIx)
{
integrate(accuracyList[aIx], mobility, integratorIndex, os);
// integrate(3e-3, mobility, integratorIndex, os);
}
}
}
os.close();
return 0;
}
catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
}
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" << std::endl;
return 1;
}
}
|