1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#include "SimTKmolmodel.h"
#include "molmodel/internal/VanderWallSphere.h"
#include "molmodel/internal/PeriodicVmdReporter.h"
#include <iostream>
#include <exception>
#include <fstream>
using namespace SimTK;
using namespace std;
class PeriodicTorsionMeasurer : public PeriodicEventReporter {
public:
PeriodicTorsionMeasurer(
std::vector<Angle>& torsions,
const Compound& compound,
const char* atom1Name,
const char* atom2Name,
const char* atom3Name,
const char* atom4Name,
Real interval)
: PeriodicEventReporter(interval),
torsions(torsions),
compound(compound),
atom1Index( compound.getAtomIndex(atom1Name) ),
atom2Index( compound.getAtomIndex(atom2Name) ),
atom3Index( compound.getAtomIndex(atom3Name) ),
atom4Index( compound.getAtomIndex(atom4Name) )
{
}
void handleEvent(const State& state) const
{
Vec3 p1 = compound.calcAtomLocationInGroundFrame(state, atom1Index);
Vec3 p2 = compound.calcAtomLocationInGroundFrame(state, atom2Index);
Vec3 p3 = compound.calcAtomLocationInGroundFrame(state, atom3Index);
Vec3 p4 = compound.calcAtomLocationInGroundFrame(state, atom4Index);
torsions.push_back( calcDihedralAngle(p1, p2, p3, p4) );
}
private:
const Compound& compound;
Compound::AtomIndex atom1Index;
Compound::AtomIndex atom2Index;
Compound::AtomIndex atom3Index;
Compound::AtomIndex atom4Index;
std::vector<Angle>& torsions;
};
std::ostream& printHistogram(const std::vector<Angle>& torsions, std::ostream& os)
{
int nBins = 30;
std::vector<int> bin(nBins);
// initialize counts to zero
for (int b = 0; b < nBins; ++b) bin[b] = 0;
// accumulate counts
Angle binWidth = 360.0 / nBins;
int maxBinSize = 0;
for (size_t t = 0; t < torsions.size(); ++t)
{
Angle torsion = torsions[t] * Rad2Deg;
while (torsion < 0) torsion += 360.0;
while (torsion >= 360.0) torsion -= 360.0;
int binNumber = static_cast<int>((torsion / 360.0) * nBins);
++bin[binNumber];
if (bin[binNumber] > maxBinSize) maxBinSize = bin[binNumber];
}
// print histogram
// counts per hash mark
float poundSize = maxBinSize / 40.0f;
for (int b = 0; b < nBins; ++b)
{
os << setw(6) << fixed << setprecision(1) << b * binWidth;
os << " -- ";
os << setw(6) << fixed << setprecision(1) << (b + 1) * binWidth;
os << " ";
os << setw(5) << bin[b];
os << " ";
for (int h = 0; h < (int)(bin[b] / poundSize); ++h )
os << "#";
os << std::endl;
}
return os;
}
int main() { try
{
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DuMMForceFieldSubsystem dumm(system);
// Atom classes are available, but not charged atom types for ethane
// in standard Amber force field
dumm.loadAmber99Parameters();
GeneralForceSubsystem forces(system);
// Sulfur vdw params are 0.2 nm, 1.046
VanderWallSphere boundary(forces, dumm, Vec3(0,0,0), 1.00, 0.2, 1.046);
if (! Biotype::exists("ethane", "C"))
Biotype::defineBiotype(Element::getBySymbol("C"), 4, "ethane", "C");
if (! Biotype::exists("ethane", "H"))
Biotype::defineBiotype(Element::getBySymbol("H"), 1, "ethane", "H");
dumm.defineChargedAtomType(
DuMM::ChargedAtomTypeIndex(5000),
"ethane C",
DuMM::AtomClassIndex(1), // "CT" type in amber
-0.060 // made up
);
dumm.setBiotypeChargedAtomType( DuMM::ChargedAtomTypeIndex(5000), Biotype::get("ethane", "C").getIndex() );
dumm.defineChargedAtomType(
DuMM::ChargedAtomTypeIndex(5001),
"ethane H",
DuMM::AtomClassIndex(34), // "HC" type in amber
0.020 // made up, use net neutral charge
);
dumm.setBiotypeChargedAtomType( DuMM::ChargedAtomTypeIndex(5001), Biotype::get("ethane", "H").getIndex() );
Ethane ethane1, ethane2;
ethane2.setPdbResidueNumber(2);
// place first ethane, units are nanometers
// skew it a little to break strict symmetry
system.adoptCompound(ethane1, Transform(Vec3(-0.5, 0, 0)) * Transform(Rotation(0.1, YAxis)) );
// place second ethane, units are nanometers
system.adoptCompound(ethane2, Vec3( 0.5, 0, 0));
// Write PDB coordinates to the screen
/*
system.addEventReporter(new PeriodicPdbWriter(system, std::cout, 0.050));
/* */
system.addEventHandler(
new VelocityRescalingThermostat(system, 5000.0, 0.100));
std::vector<Angle> torsions;
system.addEventReporter(
new PeriodicTorsionMeasurer(torsions, ethane1, "H1", "C1", "C2", "H4", 0.030) );
// Send coordinates to VMD visualization program
/*
system.addEventReporter(
new PeriodicVmdReporter(system, 0.008, 3001, true) );
/* */
system.modelCompounds(); // finalize multibody system
State state = system.realizeTopology();
// Simulate it.
VerletIntegrator integ(system);
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(0.200);
printHistogram(torsions, cerr);
return 0;
}
catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
}
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" << std::endl;
return 1;
}
}
|