1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
#include "Molmodel.h"
#include <iostream>
#include <exception>
#include <fstream>
#include <ctime>
#include <cmath>
#define SIMDURATION 1000 // ps
using namespace SimTK;
using std::cout; using std::endl;
// See below.
static std::clock_t start = 0;
// This is a reporter so we can get some output during the simulation.
// Watch the COM velocity.
class SaySomething : public PeriodicEventReporter {
public:
SaySomething(const CompoundSystem& system, const VelocityRescalingThermostat& rescaler, Real reportInterval)
: PeriodicEventReporter(reportInterval), system(system), rescaler(rescaler) {}
void handleEvent(const State& state) const {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
// This realize() is here to make sure we can reference
// velocity-related quantities.
system.realize(state, Stage::Velocity);
const Real T = rescaler.calcCurrentTemperature(state);
const Vec3 com = system.calcSystemMassCenterLocation(state);
const Vec3 Vcom = matter.calcSystemMassCenterVelocityInGround(state);
std::cout << "TIME = " << state.getTime() << " TEMP=" << T
<< " Elapsed(s)=" << double(std::clock()-start)/CLOCKS_PER_SEC
<< std::endl;
std::cout << " COM pos=" << com << " |vel|=" << Vcom.norm() << endl;
}
private:
const CompoundSystem& system;
const VelocityRescalingThermostat& rescaler;
};
class SaveState : public PeriodicEventReporter {
public:
SaveState(Real reportInterval)
: PeriodicEventReporter(reportInterval)
{saved.reserve(5000);}
void clear() {saved.clear(); saved.reserve(5000);}
void handleEvent(const State& state) const {
saved.push_back(state);
}
const std::vector<State>& getStates() const {return saved;}
private:
mutable std::vector<State> saved;
};
// Where we want the molecule's COM to stay.
static Vec3 WantCOM(1,2,3);
int main() {
try {
// Load the PDB file and construct the system ... and specify the forcefield
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
DecorationSubsystem decorations(system);
DuMMForceFieldSubsystem forceField(system);
forceField.loadAmber99Parameters();
//forceField.setAllGlobalScaleFactors(0);
//PDBReader pdb("20ala.min.pdb");
//pdb.createCompounds(system);
//Protein pdb("AEEEA");
//pdb.setTopLevelTransform (Transform(Rotation(Pi/3, Vec3(1,2,3)), Vec3(10,5,6)));
//system.adoptCompound(pdb);
//Protein pdb2("AAAAA");
//pdb2.setTopLevelTransform(Transform(Rotation(Pi/6, Vec3(.1,2,.3)), Vec3(8,5,6)));
//system.adoptCompound(pdb2);
//Protein pdb3("AAAAA");
//pdb3.setTopLevelTransform(Transform(Rotation(Pi/4, Vec3(1,.2,3)), Vec3(8,6,6)));
//system.adoptCompound(pdb3);
Protein pdb4("KKK");
pdb4.setTopLevelTransform(Transform(Rotation(Pi/5, Vec3(1,2,.03)), Vec3(10,4,6)));
system.adoptCompound(pdb4);
system.modelCompounds();
matter.updGround().addBodyDecoration(WantCOM, DecorativeFrame().setColor(Red));
//forceField.setUseOpenMMAcceleration(true);
//forceField.setTraceOpenMM(true);
const Real temp = 300;
MassCenterMotionRemover& remover =
*new MassCenterMotionRemover(system, 10);
system.addEventHandler(&remover);
remover.setDesiredMassCenterLocation(WantCOM);
remover.setMassCenterLocationTolerance(1e-3);
//remover.disableAngularMomentumRemoval(true);
remover.enableMassCenterCorrection(true);
VelocityRescalingThermostat& rescaler =
*new VelocityRescalingThermostat(system, temp, 0.1, 6);
system.addEventHandler(&rescaler);
//NoseHooverThermostat noseHoover(forces,matter, temp, 1, 6);
// Show me a movie
Visualizer viz(system);
system.addEventReporter( new Visualizer::Reporter(viz, 0.050) );
SaveState* saveState = new SaveState(.05);
//system.addEventReporter(saveState);
system.addEventReporter(new SaySomething(system,rescaler,1.));
// write output to pdb
std::ofstream pdbfile;
pdbfile.open("c:/temp/output.pdb");
//system.addEventReporter(new PeriodicPdbWriter(system, pdbfile, 0.1));
system.realizeTopology();
// Create an initial state for the simulation.
State state = system.getDefaultState();
//pdb.createState(system, state);
LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);
system.realize(state, Stage::Velocity);
cout << "Num thermal dofs=" << rescaler.calcNumThermalDofs(state)
<< " after excluding " << rescaler.getNumExcludedDofs()
<< " rigid body dofs\n";
cout << "BEFORE u=" << state.getU()
<< "\nTemp=" << rescaler.calcCurrentTemperature(state)
<< " |mom|=" << matter.calcSystemCentralMomentum(state).norm() << endl;
rescaler.rescale(state); // randomizes initially
system.realize(state, Stage::Velocity);
cout << "RESCALED u=" << state.getU()
<< "\nTemp=" << rescaler.calcCurrentTemperature(state)
<< " |mom|=" << matter.calcSystemCentralMomentum(state).norm() << endl;
SpatialVec sysCMOM = matter.calcSystemCentralMomentum(state);
cout << "Central mom=" << sysCMOM << endl;
// Kill any rigid body linear or angular momentum.
remover.removeSystemMomentum(state);
system.realize(state, Stage::Velocity);
sysCMOM = matter.calcSystemCentralMomentum(state);
cout << "Now central mom=" << sysCMOM << endl;
cout << "NO MOMENTUM u=" << state.getU()
<< "\nTemp=" << rescaler.calcCurrentTemperature(state)
<< " |mom|=" << matter.calcSystemCentralMomentum(state).norm() << endl;
rescaler.rescale(state);
system.realize(state, Stage::Velocity);
cout << "FINAL RESCALED u=" << state.getU()
<< "\nTemp=" << rescaler.calcCurrentTemperature(state)
<< " |mom|=" << matter.calcSystemCentralMomentum(state).norm() << endl;
start = std::clock(); // start the wallclock timer
// Choose an integrator.
// Note: Verlet at low accuracy is a very poor integrator.
// You get about the same amount of drift with RK4 at 1e-2
// accuracy as Verlet at 1e-4. But we want lots of drift here to
// show the COM mover working!
VerletIntegrator integ(system); integ.setAccuracy(1e-1);
//RungeKuttaMersonIntegrator integ(system); integ.setAccuracy(1e-2);
// Simulate.
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(SIMDURATION);
std::cout << "Done. " << SIMDURATION << " ps in elapsed(s)="
<< double(std::clock()-start)/CLOCKS_PER_SEC
<< endl;
pdbfile.close();
for (unsigned frame=0; frame < saveState->getStates().size(); ++frame)
viz.report(saveState->getStates()[frame]);
return 0;
}
catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
}
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" << std::endl;
return 1;
}
}
|