1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
/* This example removes overall system momentum using an optimizer -- that works,
but it is a very bad way to do it. Instead, use the CompoundSystem method
removeSystemRigidBodyMomentum() which does it analytically. (That is actually
inherited from CompoundSystem's parent class.)
*/
#include "Molmodel.h"
#include <iostream>
#include <exception>
#include <fstream>
#include <ctime>
#define SIMDURATION 1000 // ps
using namespace SimTK;
using std::cout; using std::endl;
// See below.
static void removeSystemMomentum(const CompoundSystem& system, State& state);
static std::clock_t start = 0;
// This is a reporter so we can get some output during the simulation.
// Watch the COM velocity.
class SaySomething : public PeriodicEventReporter {
public:
SaySomething(CompoundSystem& system, Real reportInterval)
: PeriodicEventReporter(reportInterval), system(system) {}
void handleEvent(const State& state) const {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
// This realize() is here to make sure we can reference
// velocity-related quantities.
system.realize(state, Stage::Velocity);
const Real KE = system.calcKineticEnergy(state);
const int N = matter.getNumMobilities(); // total # of dofs
const Real T = (2*KE)/(N*SimTK_BOLTZMANN_CONSTANT_MD);
const Vec3 Vcom = matter.calcSystemMassCenterVelocityInGround(state);
std::cout << "TIME = " << state.getTime() << " TEMP=" << T
<< " Elapsed(s)=" << double(std::clock()-start)/CLOCKS_PER_SEC
<< std::endl;
std::cout << " COM vel=" << Vcom.norm() << endl;
}
private:
CompoundSystem& system;
};
// This is an event handler that can be called periodically to remove
// most of the rigid body linear and angular momentum. If you allow this
// to build up you might also want a handler that shifts the COM back
// to (0,0,0) once in a while.
class KillMomentum : public PeriodicEventHandler {
public:
KillMomentum(CompoundSystem& system, Real interval)
: PeriodicEventHandler(interval), system(system) {}
// For convenience.
void killMomentum(State& state) {
bool dummy;
handleEvent(state, 0, dummy);
}
void handleEvent(State& state, Real accuracy, bool& shouldTerminate) const
{
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
system.realize(state, Stage::Velocity);
// A SpatialVec has both an angular and linear subcomponent.
SpatialVec sysMom = matter.calcSystemMomentumAboutGroundOrigin(state);
cout << "REMOVING MOMENTUM before=" << sysMom.norm() << endl;
removeSystemMomentum(system, state);
system.realize(state, Stage::Velocity);
sysMom = matter.calcSystemMomentumAboutGroundOrigin(state);
cout << "... after=" << sysMom.norm() << endl;
}
private:
CompoundSystem& system;
};
int main() {
try {
// Load the PDB file and construct the system ... and specify the forcefield
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
DecorationSubsystem decorations(system);
DuMMForceFieldSubsystem forceField(system);
forceField.loadAmber99Parameters();
//forceField.setAllGlobalScaleFactors(0);
//PDBReader pdb("20ala.min.pdb");
//pdb.createCompounds(system);
Protein pdb("AAAAA");
system.adoptCompound(pdb);
system.modelCompounds();
const Real temp = 300;
KillMomentum* killer = new KillMomentum(system, 10); // once per 10 ps
system.addEventHandler(killer);
system.addEventHandler(new VelocityRescalingThermostat(system, temp, 0.1));
// Show me a movie
Visualizer viz(system);
system.addEventReporter( new Visualizer::Reporter(viz, 0.010) );
system.addEventReporter(new SaySomething(system,1.));
// write output to pdb
std::ofstream pdbfile;
pdbfile.open("c:/temp/output.pdb");
system.addEventReporter(new PeriodicPdbWriter(system, pdbfile, 0.1));
system.realizeTopology();
// Create an initial state for the simulation.
State state = system.getDefaultState();
//pdb.createState(system, state);
LocalEnergyMinimizer::minimizeEnergy(system, state, 15.0);
// Set all generalized speeds to random values to test
// the momentum killer.
Random::Uniform random;
for (int i=0; i < state.getNU(); ++i)
state.updU() = random.getValue();
// Kill any rigid body linear or angular momentum.
killer->killMomentum(state);
start = std::clock(); // start the wallclock timer
// Choose an integrator.
// Note: Verlet at low accuracy is a very poor integrator.
// You get about the same amount of drift with RK4 at 1e-2
// accuracy as Verlet at 1e-4.
//VerletIntegrator integ(system); integ.setAccuracy(1e-4);
RungeKuttaMersonIntegrator integ(system); integ.setAccuracy(1e-2);
// Simulate.
TimeStepper ts(system, integ);
ts.initialize(state);
ts.stepTo(SIMDURATION);
std::cout << "Done. " << SIMDURATION << " ps in elapsed(s)="
<< double(std::clock()-start)/CLOCKS_PER_SEC
<< endl;
pdbfile.close();
return 0;
}
catch(const std::exception& e) {
std::cerr << "ERROR: " << e.what() << std::endl;
return 1;
}
catch(...) {
std::cerr << "ERROR: An unknown exception was raised" << std::endl;
return 1;
}
}
// This satisfies the interface required by SimTK::Optimizer for an
// objective function to optimize. This one takes six scalar parameters
// (the base body angular and linear velocities) and uses them to drive
// the overall system momentum to zero.
class RemoveSystemMomentum : public OptimizerSystem {
public:
RemoveSystemMomentum(const CompoundSystem& system, const State& initState) :
OptimizerSystem(6), system(system), state(initState) {
}
int objectiveFunc(const Vector& parameters, bool new_parameters, Real& f) const {
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
const MobilizedBody& baseBody = matter.getMobilizedBody(MobilizedBodyIndex(1));
baseBody.setUFromVector(state, parameters);
system.realize(state, Stage::Velocity);
const SpatialVec sysMom = matter.calcSystemMomentumAboutGroundOrigin(state);
f = sysMom.norm();
return 0;
}
private:
const CompoundSystem& system;
mutable State state; // a temporary state for use while optimizing
};
// This static function invokes the Optimizer on the above objective.
static void removeSystemMomentum(const CompoundSystem& system, State& state) {
RemoveSystemMomentum objective(system,state);
Optimizer opt(objective);
opt.useNumericalGradient(true);
// Get initial base body generalized speeds.
const SimbodyMatterSubsystem& matter = system.getMatterSubsystem();
const MobilizedBody& baseBody = matter.getMobilizedBody(MobilizedBodyIndex(1));
Vector vel = baseBody.getUAsVector(state);
// Optimize.
try {opt.optimize(vel);} catch (...) {}
// Copy optimized parameters back into base body generalized speeds.
baseBody.setUFromVector(state, vel);
system.realize(state, Stage::Velocity);
}
|