1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
|
/* -------------------------------------------------------------------------- *
* SimTK Core: SimTK Simbody(tm) *
* -------------------------------------------------------------------------- *
* This is part of the SimTK Core biosimulation toolkit originating from *
* Simbios, the NIH National Center for Physics-Based Simulation of *
* Biological Structures at Stanford, funded under the NIH Roadmap for *
* Medical Research, grant U54 GM072970. See https://simtk.org. *
* *
* Portions copyright (c) 2006-7 Stanford University and the Authors. *
* Authors: Michael Sherman *
* Contributors: *
* *
* Permission is hereby granted, free of charge, to any person obtaining a *
* copy of this software and associated documentation files (the "Software"), *
* to deal in the Software without restriction, including without limitation *
* the rights to use, copy, modify, merge, publish, distribute, sublicense, *
* and/or sell copies of the Software, and to permit persons to whom the *
* Software is furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *
* THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, *
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR *
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE *
* USE OR OTHER DEALINGS IN THE SOFTWARE. *
* -------------------------------------------------------------------------- */
/**@file
* This is an outer block for simulating ethane in various ways with Simbody.
* This is about testing Simbody, *not* studying ethane!
*/
#include "Molmodel.h"
#include <string>
#include <iostream>
#include <exception>
#include <cmath>
using std::cout;
using std::endl;
using namespace SimTK;
using namespace DuMM; // for conversion constants
// mapping from atoms to Amber99 Charged Atom Types
enum {
A99EthaneCarbon = 13, // closest I could find in Amber99; not really right
A99EthaneHydrogen = 14,
ShermDoubleBondedOxygen = 9999
};
class MyMolecule {
public:
MyMolecule(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
const MolecularMechanicsSystem& mmSys)
: parentIx(pIx), mobilizerFrameOnParent(parentMobilizerFrame),
mmSystem(mmSys)
{ }
// Translate and rotation the molecule as a whole. Usually this just means move the base body,
// but some molecules may not have a single base, so they can override this default.
virtual void setMoleculeTransform(State& s, const Transform& pos) const
{
getMatter().getMobilizedBody(bodies[0]).setQToFitTransform(s, pos);
}
virtual void setMoleculeVelocity(State& s, const SpatialVec& vel) const
{
getMatter().getMobilizedBody(bodies[0]).setUToFitVelocity(s, vel);
}
// This routine must set the internal mobilities to their nominal values, both
// for position and velocity states. This State must have already been realized
// to at least Model stage.
virtual void setDefaultInternalState(State& s) const = 0;
int getNumAtoms() const {return (int)atoms.size();}
int getNumBodies() const {return (int)bodies.size();}
// return atomIndex of ith atom in MyMolecule
DuMM::AtomIndex getAtom(int i) const {return atoms[i];}
// return bodyNum of ith body; 0 is molecule's base body
MobilizedBodyIndex getBodyIndex(int i) const {return bodies[i];}
const SimbodyMatterSubsystem& getMatter() const {
return mmSystem.getMatterSubsystem();
}
const DuMMForceFieldSubsystem& getDuMM() const {
return mmSystem.getMolecularMechanicsForceSubsystem();
}
protected:
std::vector<DuMM::AtomIndex> atoms;
std::vector<MobilizedBodyIndex> bodies;
MobilizedBodyIndex parentIx;
Transform mobilizerFrameOnParent;
const MolecularMechanicsSystem& mmSystem;
};
//
// Ribose sugar ring for showing "pucker" modes.
//
// H5T--O5T H51
// \ /
// H52--C5
// |
// | O4
// | / \ O1--HO1
// | / \ |
// H4--C4 C1--H1
// \ /
// H3--C3------C2--H2
// | |
// H3T--O3T O2--HO2
//
// Atom Class ChargedAtomType
//
// 0 O5T 22 1232 -0.6223
// 1 H5T 31 1233 0.4295
// 2 C5 1 1002 0.0558
// 3 H51 35 1003 0.0679
// 4 H52 35 1004 0.0679
// -------
// -0.0012
//
// 5 O4 23 1096 -0.3548
// 6 C4 1 1094 0.1065
// 7 H4 35 1095 0.1174
// -------
// -0.1309
//
// 8 O3T 22 1237 -0.6541
// 9 H3T 31 1238 0.4376
//10 C3 1 1010 0.2022
//11 H3 35 1011 0.0615
// -------
// 0.0473
//
//12 O2 22 1237 -0.6541
//13 HO2 31 1238 0.4376
//14 C2 1 1010 0.2022
//15 H2 35 1011 0.0615
// -------
// 0.0473
//
//16 O1 22 1237 -0.6541
//17 HO1 31 1238 0.4376
//18 C1 1 1010 0.2022
//19 H1 35 1011 0.0615
// -------
// 0.0473
//
// ----------
// 0.0098
//
// Charged atom type assignments are cobbled together from Amber99.
//
class Ribose : public MyMolecule {
public:
Ribose(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
MolecularMechanicsSystem& mmSys)
: MyMolecule(pIx, parentMobilizerFrame, mmSys)
{
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1232)); // 0
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1233)); // 1
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1002)); // 2
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1003)); // 3
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1004)); // 4
mm.addBond(atoms[0],atoms[1]); mm.addBond(atoms[2],atoms[3]);
mm.addBond(atoms[2],atoms[4]); mm.addBond(atoms[0],atoms[2]);
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1096)); // 5
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1094)); // 6
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1095)); // 7
mm.addBond(atoms[5],atoms[6]); mm.addBond(atoms[6],atoms[7]);
mm.addBond(atoms[2],atoms[6]);
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1237)); // 8
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1238)); // 9
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1010)); //10
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1011)); //11
mm.addBond(atoms[8],atoms[9]); mm.addBond(atoms[10],atoms[11]);
mm.addBond(atoms[8],atoms[10]);
mm.addBond(atoms[6],atoms[10]);
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1237)); //12
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1238)); //13
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1010)); //14
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1011)); //15
mm.addBond(atoms[12],atoms[13]); mm.addBond(atoms[14],atoms[15]);
mm.addBond(atoms[12],atoms[14]);
mm.addBond(atoms[10],atoms[14]);
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1237)); //16
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1238)); //17
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1010)); //18
atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1011)); //19
mm.addBond(atoms[16],atoms[17]); mm.addBond(atoms[18],atoms[19]);
mm.addBond(atoms[16],atoms[18]);
mm.addBond(atoms[14],atoms[18]);
mm.addBond(atoms[5],atoms[18]); // O4-C1
// Define the clusers.
//twoOxygens = mm.createCluster("two oxygens");
//mm.placeAtomInCluster(getO(0), twoOxygens, Vec3(0));
//mm.placeAtomInCluster(getO(1), twoOxygens, Vec3(0,0,getNominalOOBondLength()));
}
// Use body zero's frame as the "molecule frame" (call it "F" here). We'll move
// that one to F' and record the relative motion. Then we move all the others
// by the same relative transform.
void setMoleculeTransform(State& s, const Transform& X_GFprime) const
{
mmSystem.realize(s,Stage::Position);
const Transform X_GF = getMatter().getMobilizedBody(bodies[0]).getBodyTransform(s); // current
const Transform X_FFprime = ~X_GF * X_GFprime; // relative transform
for (int i=0; i < (int)bodies.size(); ++i) {
mmSystem.realize(s,Stage::Position);
const Transform& X_GB = getMatter().getMobilizedBody(bodies[i]).getBodyTransform(s);
const Transform X_FprimeBprime = ~X_GF * X_GB; // we want this to be the same as X_FB
const Transform X_FBprime = X_FFprime * X_FprimeBprime;
const Transform X_GBprime = X_GF*X_FBprime;
// This only works since the mobilizers are all ground-attached Cartesian.
// The Stage is reduced due to the change to the q's below.
getMatter().getMobilizedBody(bodies[i]).setQToFitTransform(s, X_GBprime);
}
}
protected:
//int twoOxygens; // cluster
};
class CartesianRibose : public Ribose {
public:
CartesianRibose(MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
: Ribose(pIx,Transform(),mmSys)
{
SimbodyMatterSubsystem& matter =
SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
MobilizedBody& parent = matter.updMobilizedBody(parentIx);
//bodies.push_back(GroundIndex);
//mm.attachAtomToBody(0,GroundIndex,Vec3(0));
for (int i=0; i<20; ++i) {
bodies.push_back(
MobilizedBody::Cartesian(parent, Transform(), // parent mobilizer frame
Body::Rigid(MassProperties(mm.getAtomMass(atoms[i]),Vec3(0),Inertia(0))),
Transform())); // inboard mobilizer frame
mm.attachAtomToBody(atoms[i],bodies.back(),Vec3(0));
}
}
void setDefaultInternalState(State& s) const {
//TODO: these are not right -- some of the pieces have the wrong chirality.
Real q[]={
0,0,0,
0.0159955,0.0930929,0.0179526,
0.0862463,-0.0788493,0.0804993,
0.188797,-0.0643956,0.0460469,
0.0793338,-0.048313,0.185042,
-0.0734023,-0.252303,0.137272,
0.0493894,-0.227588,0.0688814,
0.0372042,-0.251271,-0.0368623,
0.276019,-0.266582,0.172778-.1,
0.32527,-0.335729,0.218463-.1,
0.154191,-0.324668,0.12799-.1, //XXX
0.175325,-0.401742,0.0536479-.1,
0.121915,-0.521913,0.270613,
0.0560667,-0.560277,0.329768,
0.0800273,-0.388735,0.245242,
0.0915603,-0.326613,0.334268,
-0.156899,-0.38217,0.30165,
-0.220948,-0.313277,0.281256,
-0.0642466,-0.379147,0.196642,
-0.0852995,-0.45703,0.122944};
for (int i=0; i<20; ++i) {
const MobilizedBody& b = getMatter().getMobilizedBody(bodies[i]);
b.setQFromVector(s,Vector(3,q+3*i));
}
//for (int i=0; i<20; ++i) {
// if (bodies[i] != GroundIndex)
// getMatter().setMobilizerCoordsAsVec3(s,bodies[i],Vec3(i/10., i%5/10., i%2/2.));
// }
}
private:
};
// An oxygen (O2) molecule has just two atoms, with a maximum
// of 6 degrees of freedom. We provide the following models:
// CartesianO2 -- 3 dofs referred to the Ground origin
// InternalCartesianO2 -- the first oxygen is measured
// from ground origin, 2nd w.r.t. first
// InternalO2 -- same as Rigid, but adds a bond stretch
// mobility between the atoms.
// RigidO2 -- a single body with both atoms attached
// at a nominal bond length. The body then
// has *5* dofs w.r.t. ground (can't rotate
// around the line between the atoms).
// The first three models are equivalent; they just use
// different parameterization for the 6 dofs. The RigidO2
// model has one fewer degree of freedom. Specifically, the
// very high frequency O=O stretch term has been eliminated.
class OxygenMolecule : public MyMolecule {
public:
OxygenMolecule(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
MolecularMechanicsSystem& mmSys)
: MyMolecule(pIx, parentMobilizerFrame, mmSys)
{
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
// Create the atoms and bonds. Atom 0 is O0, atom 1 is O1. O0 will serve
// as the base frame for the molecule.
for (int i=0;i<2;++i) atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)ShermDoubleBondedOxygen));
mm.addBond(getO(0),getO(1));
// Define the clusers.
twoOxygens = mm.createCluster("two oxygens");
mm.placeAtomInCluster(getO(0), twoOxygens, Vec3(0));
mm.placeAtomInCluster(getO(1), twoOxygens, Vec3(0,0,getNominalOOBondLength()));
}
// Get the atom number for each oxygen.
DuMM::AtomIndex getO(int i) const {assert(i==0||i==1); return getAtom(i);}
Real getNominalOOBondLength() const {
return 1.21 * Ang2Nm;
}
protected:
DuMM::ClusterIndex twoOxygens; // cluster
};
class RigidO2 : public OxygenMolecule {
public:
RigidO2(MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
: OxygenMolecule(pIx,Transform(),mmSys)
{
SimbodyMatterSubsystem& matter =
SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
MobilizedBody& parent = matter.updMobilizedBody(parentIx);
// Align cluster reference frame with body's. (5 dofs!)
// FreeLine prevents rotation about Z, so make sure the body has its
// O=O axis arranged along Z (or rotate the frame here).
/* This doesn't work:
bodies.push_back(
matter.addRigidBody(
MassProperties(0,Vec3(0),Inertia(0)),
Transform(), // inboard mobilizer frame
parent, Transform(), // parent mobilizer frame
Mobilizer::Cartesian()));
// y
bodies.push_back(
matter.addRigidBody(
MassProperties(0,Vec3(0),Inertia(0)),
Transform(Rotation(-90*DuMM::Deg2Rad,XAxis)), // inboard mobilizer frame
bodies.back(), Transform(Rotation(-90*DuMM::Deg2Rad,XAxis)), // parent mobilizer frame
Mobilizer::Pin()));
// x
MassProperties mprops = mm.calcClusterMassProperties(twoOxygens, Transform());
cout << "Inertia:" << mprops.getInertia();
cout << "inertia kludge:" << mprops.getInertia()+Inertia(0,0,.4);
MassProperties mpropsKludge(mprops.getMass(), mprops.getMassCenter(), mprops.getInertia() + Inertia(0,0,.4));
bodies.push_back(
matter.addRigidBody(
mpropsKludge,
Transform(Rotation(90*DuMM::Deg2Rad,YAxis)), // inboard mobilizer frame
bodies.back(), Transform(Rotation(90*DuMM::Deg2Rad,YAxis)), // parent mobilizer frame
Mobilizer::Pin()));
*/
MassProperties mprops = mm.calcClusterMassProperties(twoOxygens, Transform());
MassProperties mpropsKludge(mprops.getMass(), mprops.getMassCenter(),
mprops.getInertia() + Inertia(0,0,.01));
bodies.push_back(
MobilizedBody::FreeLine(
parent, Transform(0*Vec3(.1,.7,.19)), // parent mobilizer frame
Body::Rigid(mprops),
Transform(0*Vec3(0,0,.3)))); // inboard mobilizer frame
mm.attachClusterToBody(twoOxygens, bodies.back(), Transform());
}
void setDefaultInternalState(State& s) const { } // none
};
// ethane:
// atom 0 is carbon0
// atoms 2,3,4 are attached to carbon0
// atom 1 is carbon1
// atoms 5,6,7 are attached to carbon1
//
// pre-built rigid clusters:
// the two carbons
// methyl 1 (atom 0) and hydrogens 1,2,3
// methyl 2 (atom 4) and hydrogens 5,6,7
// Any cluster or individual atom can be assigned to a body, provided
// the resulting set of assignments represents a partitioning of
// the atoms across the bodies.
//
// Ethane has 8 atoms, modeled as point masses. Consequently there
// can be a maximum of 24 dofs. Choosing one atom as a "base", the
// maximum number of internal coordinates is 21. If the base has
// 6 dofs instead of three, then the maximal internal set is 18.
// We provide a variety of models below as examples of what can
// be done with Simbody, not necessarily because these are good
// models!
class EthaneMolecule : public MyMolecule {
public:
EthaneMolecule(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
MolecularMechanicsSystem&);
// find the atoms
DuMM::AtomIndex getC(int i) const {assert(i==0||i==1); return getAtom(i);}
DuMM::AtomIndex getH(int whichCarbon, int whichHydrogen) const {
assert(0<=whichCarbon&&whichCarbon<=1);
assert(0<=whichHydrogen&&whichHydrogen<=2);
return getAtom(2+whichCarbon*3+whichHydrogen);
}
Real getNominalCCBondLength() const {
return 1.53688 * Ang2Nm;
}
Real getNominalCHBondLength() const {
return 1.09 * Ang2Nm;
}
Real getNominalHCCBondAngle() const {
return 109.5 * SimTK::Deg2Rad;
}
protected:
// Some pre-built atom clusters.
DuMM::ClusterIndex twoCarbons;
DuMM::ClusterIndex methyl[2];
};
class OneDofEthane : public EthaneMolecule {
public:
OneDofEthane(bool allowStretch, MobilizedBodyIndex pIx, MolecularMechanicsSystem&);
void setDefaultInternalState(State& s) const {
const MobilizedBody& b = getMatter().getMobilizedBody(getBodyIndex(1));
const int ndof = b.getNumU(s);
for (int i=0; i<ndof; ++i) {
b.setOneQ(s, i, 0);
b.setOneU(s, i, 0);
}
}
// Set stretch around the nominal length.
void setCCStretch(Real stretchInNm, State& s) const {
const MobilizedBody& b1 = getMatter().getMobilizedBody(getBodyIndex(1));
assert(b1.getNumU(s) == 2); // must have been build with Cylinder mobilizer
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneQ(s, 1, stretchInNm);
}
void setTorsionAngleDeg(Real angleInDeg, State& s) const {
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneQ(s, 0, angleInDeg*DuMM::Deg2Rad);
}
// Rate is rad/ps
void setTorsionRate(Real rateInRadPerPs, State& s) const {
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneU(s, 0, rateInRadPerPs);
}
};
class RigidEthane : public EthaneMolecule {
public:
RigidEthane(Real torsionAngleInDeg, MobilizedBodyIndex pIx, MolecularMechanicsSystem&);
void setDefaultInternalState(State& s) const { } // doesn't have any
};
// Here is a model of ethane with 14 internal coordinates: stretch & torsion
// between the carbons, and bend-stretch for the connection between the
// hydrogens and their carbons. That is, for each hydrogen, we are
// modeling the CH stretch term, and the HCC bend term. However, we
// are *not* permitting HCH bending, so the hydrogens will always be
// found arranged exactly 120 degrees apart.
class FloppyEthane : public EthaneMolecule {
public:
FloppyEthane(MobilizedBodyIndex pIx, MolecularMechanicsSystem&);
void setDefaultInternalState(State& s) const;
// Set stretch around the nominal length.
void setCCStretch(Real stretchInNm, State& s) const {
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneQ(s, 1, stretchInNm);
}
void setTorsionAngleDeg(Real angleInDeg, State& s) const {
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneQ(s, 0, angleInDeg*DuMM::Deg2Rad);
}
// Rate is rad/ps
void setTorsionRate(Real rateInRadPerPs, State& s) const {
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneU(s, 0, rateInRadPerPs);
}
};
static const Transform BodyFrame; // identity transform on any body
// How it actually looks now:
int main() {
try
{
MolecularMechanicsSystem mbs;
SimbodyMatterSubsystem matter(mbs);
DuMMForceFieldSubsystem mm(mbs);
GeneralForceSubsystem forces(mbs);
DecorationSubsystem artwork(mbs);
// No, thank you.
matter.setShowDefaultGeometry(false);
Real accuracy = 1e-2;
Real outputInterval = .01;
Real simulationLength = 10;
const Real torsControlGain = /*100000*/0;
const Real desiredTorsAngle = /*Pi/3*/0;
Force::UniformGravity gravity(forces, matter, Vec3(0,0,0));
Force::GlobalDamper(forces, matter, .01);
// AMBER 99
mm.setVdw14ScaleFactor(1/2.); // reduce energy by these factors
mm.setCoulomb14ScaleFactor(1/1.2);
mm.defineAtomClass_KA(1, "Amber99 CT", 6, 4, 1.9080, 0.1094);
mm.defineAtomClass_KA(2, "Amber99 C", 6, 3, 1.9080, 0.0860);
mm.defineAtomClass_KA(3, "Amber99 CA", 6, 3, 1.9080, 0.0860);
mm.defineAtomClass_KA(4, "Amber99 CM", 6, 3, 1.9080, 0.0860);
mm.defineAtomClass_KA(9, "Amber99 CB", 6, 3, 1.9080, 0.0860);
mm.defineAtomClass_KA(22, "Amber99 OH", 8, 2, 1.7210, 0.2104);
mm.defineAtomClass_KA(23, "Amber99 OS", 8, 2, 1.6837, 0.1700);
mm.defineAtomClass_KA(24, "Amber99 O", 8, 1, 1.6612, 0.2100);
mm.defineAtomClass_KA(25, "Amber99 O2", 8, 1, 1.6612, 0.2100);
mm.defineAtomClass_KA(31, "Amber99 HO", 1, 1, 0.0001, 0.0000);
//mm.defineAtomClass_KA(31, "Amber99 HO", 1, 1, 1., 0.1);//KLUDGE
mm.defineAtomClass_KA(34, "Amber99 HC", 1, 1, 1.4870, 0.0157);
mm.defineAtomClass_KA(35, "Amber99 H1", 1, 1, 1.3870, 0.0157);
mm.defineChargedAtomType_KA(13, "Amber99 Alanine CB", 1, -0.1825);
mm.defineChargedAtomType_KA(14, "Amber99 Alanine HB", 34, 0.0603);
mm.defineChargedAtomType_KA(1002, "Amber99 R-Adenosine C5'", 1, 0.0558);
mm.defineChargedAtomType_KA(1003, "Amber99 R-Adenosine H5'1", 35, 0.0679);
mm.defineChargedAtomType_KA(1004, "Amber99 R-Adenosine H5'2", 35, 0.0679);
mm.defineChargedAtomType_KA(1006, "Amber99 R-Adenosine H4'", 35, 0.1174);
mm.defineChargedAtomType_KA(1007, "Amber99 R-Adenosine O4'", 23, -0.3548);
mm.defineChargedAtomType_KA(1010, "Amber99 R-Adenosine C3'", 1, 0.2022);
mm.defineChargedAtomType_KA(1011, "Amber99 R-Adenosine H3'", 35, 0.0615);
mm.defineChargedAtomType_KA(1094, "Amber99 R-Uracil C4'", 1, 0.1065);
mm.defineChargedAtomType_KA(1095, "Amber99 R-Uracil H4'", 35, 0.1174);
mm.defineChargedAtomType_KA(1096, "Amber99 R-Uracil O4'", 23, -0.3548);
mm.defineChargedAtomType_KA(1101, "Amber99 R-Uracil C2'", 1, 0.0670);
mm.defineChargedAtomType_KA(1102, "Amber99 R-Uracil H2'1", 35, 0.0972);
mm.defineChargedAtomType_KA(1103, "Amber99 R-Uracil O2'", 22, -0.6139);
mm.defineChargedAtomType_KA(1104, "Amber99 R-Uracil HO'2", 31, 0.4186);
mm.defineChargedAtomType_KA(1232, "Amber99 R-5'-Hydroxyl O5'", 22, -0.6223);
mm.defineChargedAtomType_KA(1233, "Amber99 R-5'-Hydroxyl H5T", 31, 0.4295);
mm.defineChargedAtomType_KA(1237, "Amber99 R-5'-Hydroxyl O3'", 22, -0.6541);
mm.defineChargedAtomType_KA(1238, "Amber99 R-5'-Hydroxyl H3T", 31, 0.4376);
mm.defineBondStretch_KA( 1, 1, 310., 1.5260);
mm.defineBondStretch_KA( 1,22, 320., 1.4100);
mm.defineBondStretch_KA( 1,23, 320., 1.4100);
mm.defineBondStretch_KA( 1,34, 340., 1.09);
mm.defineBondStretch_KA( 1,35, 340., 1.09);
mm.defineBondStretch_KA(22,31, 553., 0.9600);
// I'm making this one up -- couldn't find O2 in Amber99
mm.defineChargedAtomType_KA(9999, "Sherm's O2", 25, 0); // must be neutral by symmetry
mm.defineBondStretch_KA(25,25, 570., 1.21); // bond length is right, stiffness is from C=O.
mm.defineBondBend_KA( 1, 1, 1, 40., 109.5);
mm.defineBondBend_KA( 1, 1,22, 50., 109.5);
mm.defineBondBend_KA( 1, 1,23, 50., 109.5);
mm.defineBondBend_KA( 1, 1,34, 50., 109.5);
mm.defineBondBend_KA( 1, 1,35, 50., 109.5);
mm.defineBondBend_KA( 1,22,31, 55., 108.5);
mm.defineBondBend_KA( 1,23, 1, 60., 109.5);
mm.defineBondBend_KA(22, 1,23, 50., 109.5); // made up (sherm)
mm.defineBondBend_KA(22, 1,35, 50., 109.5);
mm.defineBondBend_KA(22,31, 1, 50., 109.5);
mm.defineBondBend_KA(23, 1,35, 50., 109.5);
mm.defineBondBend_KA(34, 1,34, 35., 109.5);
mm.defineBondBend_KA(35, 1,35, 35., 109.5);
mm.defineBondTorsion_KA( 1, 1, 1, 1, 1, 0.2, 180.,
2, 0.25, 180.,
3, 0.18, 0.);
mm.defineBondTorsion_KA( 1, 1, 1,22, 3, 0.156, 0.);
mm.defineBondTorsion_KA( 1, 1, 1,23, 3, 0.156, 0.);
mm.defineBondTorsion_KA( 1, 1, 1,34, 3, 0.160, 0.);
mm.defineBondTorsion_KA( 1, 1, 1,35, 3, 0.156, 0.);
mm.defineBondTorsion_KA( 1, 1,22,31, 1, 0.025, 0.,
3, 0.160, 0.);
mm.defineBondTorsion_KA( 1, 1,23, 1, 2, 0.100,180.,
3, 0.383, 0.);
// Equivalent to previous torsion (1,1,23,1), but with different params => causes error!!!
// mm.defineBondTorsion_KA( 1,23, 1, 1, 2, 0.850,180.,
// 3, 0.100, 0.);
mm.defineBondTorsion_KA( 1,23, 1,22, 1, 1.350,180.,
2, 0.850,180.,
3, 0.100, 0.);
mm.defineBondTorsion_KA( 1,23, 1,23, 2, 0.850,180.,
3, 0.100, 0.);
mm.defineBondTorsion_KA( 1,23, 1,35, 3, 0.383, 0.);
mm.defineBondTorsion_KA(22, 1, 1,23, 2, 1.175, 0.,
3, 0.144, 0.);
mm.defineBondTorsion_KA(22, 1, 1,22, 2, 1.175, 0.,
3, 0.144, 0.);
mm.defineBondTorsion_KA(22, 1, 1,35, 3, 0.156, 0.);
mm.defineBondTorsion_KA(23, 1, 1,35, 3, 0.156, 0.);
mm.defineBondTorsion_KA(23, 1,22,31, 3, 0.156, 0.); // made up
mm.defineBondTorsion_KA(31,22, 1,35, 3, 0.167, 0.);
mm.defineBondTorsion_KA(34, 1, 1,34, 3, 0.150, 0.);
mm.defineBondTorsion_KA(35, 1, 1,35, 3, 0.156, 0.);
mm.setVdwMixingRule( DuMMForceFieldSubsystem::LorentzBerthelot );
// These are just for playing around with the force field terms.
mm.setVdwGlobalScaleFactor(1);
mm.setCoulombGlobalScaleFactor(1);
mm.setBondStretchGlobalScaleFactor(1);
mm.setBondBendGlobalScaleFactor(1);
mm.setBondTorsionGlobalScaleFactor(1);
//mbs.addForceSubsystem(gravity);
/*
const OneDofEthane ethane1(allowStretch, GroundIndex, mbs);
const OneDofEthane ethane2(allowStretch, ethane1.getBodyIndex(0), mbs);
const OneDofEthane ethane3(allowStretch, ethane2.getBodyIndex(0), mbs);
const OneDofEthane ethane4(allowStretch, ethane3.getBodyIndex(0), mbs);
const RigidEthane rethane1(0, GroundIndex, mbs);
const RigidEthane rethane2(60, GroundIndex, mbs);
*/
const bool allowStretch = false;
const OneDofEthane ethane1(allowStretch, GroundIndex, mbs);
const RigidEthane rethane1(0, GroundIndex, mbs);
const RigidEthane rethane2(60, GroundIndex, mbs);
const FloppyEthane floppy1(GroundIndex, mbs);
const RigidO2 rigidO2(GroundIndex, mbs);
const CartesianRibose cribose(GroundIndex, mbs);
/* Cartesian:
for (int i=0; i < mm.getNumAtoms(); ++i) {
MobilizedBodyIndex b = ethane.addRigidBody(
MassProperties(mm.getAtomMass(i), Vec3(0), Inertia(0)), Transform(),
GroundIndex, Transform(),
Mobilizer::Cartesian());
mm.attachAtomToBody(i, b, Vec3(0));
}
/**/
//if (useCartesian && useRigid && wantConstraint) {
// int theConstraint =
// ethane.addConstantDistanceConstraint(firstCartesianBody-1, Vec3(0),
// firstCartesianBody, Vec3(0), 1.5);
// DecorativeLine purpleLine; purpleLine.setColor(Purple).setLineThickness(3);
// artwork.addRubberBandLine(firstCartesianBody-1, Vec3(0),
// firstCartesianBody, Vec3(0), purpleLine);
//}
DecorativeLine crossBodyBond; crossBodyBond.setColor(Orange).setLineThickness(5);
for (DuMM::BondIndex i = (DuMM::BondIndex)0; i < (DuMM::BondIndex)mm.getNumBonds(); ++i) {
const DuMM::AtomIndex a1 = mm.getBondAtom(i,0), a2 = mm.getBondAtom(i,1);
const MobilizedBodyIndex b1 = mm.getAtomBody(a1), b2 = mm.getAtomBody(a2);
if (b1==b2)
artwork.addBodyFixedDecoration(b1, Transform(),
DecorativeLine(mm.getAtomStationOnBody(a1), mm.getAtomStationOnBody(a2))
.setColor(Gray).setLineThickness(3));
else
artwork.addRubberBandLine(b1, mm.getAtomStationOnBody(a1),
b2, mm.getAtomStationOnBody(a2), crossBodyBond);
}
for (DuMM::AtomIndex anum = (DuMM::AtomIndex)0; anum < (DuMM::AtomIndex)mm.getNumAtoms(); ++anum) {
Real shrink = 0.25, opacity = mm.getAtomElement(anum)==1?0.5:1;
Real r = mm.getAtomRadius(anum);
if (r<.001) r=0.1; //nm
//opacity=0.5;//XXX
artwork.addBodyFixedDecoration(mm.getAtomBody(anum), mm.getAtomStationOnBody(anum),
DecorativeSphere(shrink*r)
.setColor(mm.getAtomDefaultColor(anum)).setOpacity(opacity).setResolution(3));
}
State s = mbs.realizeTopology();
//matter.setUseEulerAngles(s,true);
mbs.realizeModel(s);
// gravity.setZeroHeight(s, -100);
cribose.setDefaultInternalState(s);
cribose.setMoleculeTransform(s, Transform( Rotation(Pi/2,ZAxis), Vec3(0,1,0)));
floppy1.setDefaultInternalState(s);
floppy1.setMoleculeTransform(s,Vec3(-1,0,0));
floppy1.setCCStretch(.1,s);
floppy1.setTorsionAngleDeg(80,s);
floppy1.setTorsionRate(10,s);
ethane1.setDefaultInternalState(s);
ethane1.setMoleculeTransform(s,Vec3(1,0,0));
rethane1.setDefaultInternalState(s);
rethane1.setMoleculeTransform(s,Vec3(0,0,-1));
rethane2.setDefaultInternalState(s);
rethane2.setMoleculeTransform(s,Vec3(-1,0,-1));
rigidO2.setDefaultInternalState(s);
const Transform o2pos( Rotation( BodyRotationSequence, 0.5*Pi/2, XAxis, 0.5*Pi/2, YAxis ), Vec3(1,0,-1) );
rigidO2.setMoleculeTransform(s,o2pos);
rigidO2.setMoleculeVelocity(s,SpatialVec(0*Vec3(1.1,1.2,3), Vec3(-.2,0,0)));
/*
if (allowStretch) ethane1.setCCStretch(0.03, s);
ethane1.setTorsionAngleDeg(5, s);
if (allowStretch) ethane2.setCCStretch(0.03, s);
ethane2.setMoleculeTransform(s,Vec3(0,1,0));
if (allowStretch) ethane3.setCCStretch(-0.03, s);
ethane3.setMoleculeTransform(s,Transform( Rotation(Pi/2,ZAxis), Vec3(1,0,1)),);
if (allowStretch) ethane4.setCCStretch(-0.03, s);
ethane4.setMoleculeTransform(s,Vec3(-1,0,0));
*/
/* Cartesian:
for (int i=0; i < mm.getNumAtoms(); ++i) {
int b = mm.getAtomBody(i);
ethane.setMobilizerTransform(s, b,
Transform(mm.getAtomStationInCluster(i, wholeEthaneEclipsed)));
}
/**/
mm.dump();
Visualizer display(mbs);
RungeKuttaMersonIntegrator study(mbs);
const Real h = outputInterval;
const int interval = 1;
const Real tstart = 0.;
const Real tmax = simulationLength; //ps
s.updTime() = tstart;
display.report(s);
study.setAccuracy(accuracy);
// "study" makes a copy of the given State and then modifies
// the copy internally.
study.initialize(s);
// Copy the integrator's internal State in case it changed.
s = study.getState();
std::vector<State> saveEm;
saveEm.push_back(s);
for (int i=0; i<100; ++i)
saveEm.push_back(s); // delay
display.report(s);
mbs.realize(s);
const Real Estart = mbs.calcEnergy(s);
int step = 0; bool flag=false;
while (study.getTime() <= tmax) {
const State& s = study.getState(); // not the same s as above
mbs.realize(s);
cout << s.getTime();
cout << " deltaE=" << 100*(mbs.calcEnergy(s)-Estart)
/(std::abs(Estart)+TinyReal)
<< "% pe(kcal)=" << mbs.calcPotentialEnergy(s)*KJ2Kcal
<< ", ke(kcal)=" << mbs.calcKineticEnergy(s)*KJ2Kcal
<< " hNext(fs)=" << 1000*study.getPredictedNextStepSize();
cout << "\n System COM loc=" << matter.calcSystemMassCenterLocationInGround(s);
cout << "\n System COM vel=" << matter.calcSystemMassCenterVelocityInGround(s);
cout << "\n System COM acc=" << matter.calcSystemMassCenterAccelerationInGround(s);
cout << endl;
if (!(step % interval)) {
display.report(s);
saveEm.push_back(s);
}
study.stepTo(s.getTime() + h);
++step;
}
while(true) {
for (int i=0; i < (int)saveEm.size(); ++i) {
display.report(saveEm[i]);
//display.report(saveEm[i]); // half speed
}
getchar();
}
}
catch (const std::exception& e)
{
printf("EXCEPTION THROWN: %s\n", e.what());
}
return 0;
}
EthaneMolecule::EthaneMolecule(MobilizedBodyIndex pIx, const Transform& parentTransform,
MolecularMechanicsSystem& mmSys)
: MyMolecule(pIx,parentTransform,mmSys)
{
SimbodyMatterSubsystem& matter =
SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
twoCarbons = methyl[0] = methyl[1] = DuMM::InvalidClusterIndex;
// Create the atoms and bonds. Atom 0 is C0, atom 1 is C1, 2-4 are the
// hydrogens attached to C0, 5-7 are the hydrogens attached to C1.
for (int i=0;i<2;++i) atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)A99EthaneCarbon));
for (int i=0;i<6;++i) atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)A99EthaneHydrogen));
mm.addBond(getC(0),getC(1));
for (int c=0; c<2; ++c)
for (int h=0; h<3; ++h)
mm.addBond(getC(c),getH(c,h));
// Define the clusers.
twoCarbons = mm.createCluster("two carbons");
methyl[0] = mm.createCluster("methyl 0");
methyl[1] = mm.createCluster("methyl 1");
// The "twoCarbons" cluster looks like this:
// y
// |
// C0 --> ---- C1
// / x
// z
// That is, the 1st carbon is at the origin, the 2nd is out along the +x
// axis by the nominal C-C bond length.
mm.placeAtomInCluster(getC(0), twoCarbons, Vec3(0));
mm.placeAtomInCluster(getC(1), twoCarbons, Vec3(getNominalCCBondLength(),0,0));
// Now build two identical methyl clusters. We'll worry about getting them
// oriented properly when we place them onto bodies.
// The methyl clusters should look like this:
//
// H0
// \ y
// \ |
// . C --> x
// (H2) . /
// * z
// H1
//
//
// That is, H0 is in the (-x,+y) plane, tipped by the nominal
// H-C-C bend angle. Then H1 is the H0 vector
// rotated +120 degrees about x (that is, out of the screen).
// H2 is the H0 vector rotated 240 (=-120) degrees about x (into the
// screen, not shown).
const Vec3 H1pos = Rotation(getNominalHCCBondAngle(),ZAxis)
* Vec3(getNominalCHBondLength(),0,0);
for (int c=0; c<2; ++c) {
mm.placeAtomInCluster(getC(c), methyl[c], Vec3(0));
for (int h=0; h<3; ++h) {
const Vec3 Hpos = Rotation(h*120*DuMM::Deg2Rad,XAxis) * H1pos;
mm.placeAtomInCluster(getH(c,h), methyl[c], Hpos);
}
}
}
OneDofEthane::OneDofEthane(bool allowStretch, MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
: EthaneMolecule(pIx,Transform(),mmSys)
{
SimbodyMatterSubsystem& matter =
SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
MobilizedBody& parent = matter.updMobilizedBody(parentIx);
const Rotation PinAboutX = Rotation(90*DuMM::Deg2Rad,YAxis); // move z to +x
// Mount the methyls onto bodies, methyl[0] first. Connect
// them by either a pin or cylinder depending on allowStretch.
const MassProperties m0mp(mm.calcClusterMassProperties(methyl[0], Transform()));
const MassProperties m1mp(mm.calcClusterMassProperties(methyl[1], Transform()));
bodies.push_back(
MobilizedBody::Free( parent, Transform(), // parent mobilizer frmae
Body::Rigid(m0mp), Transform())); // inboard mobilizer frame
if (allowStretch) {
bodies.push_back(
MobilizedBody::Cylinder(
matter.updMobilizedBody(getBodyIndex(0)),
Transform(PinAboutX, Vec3(getNominalCCBondLength(),0,0)),
Body::Rigid(m1mp), Transform(PinAboutX, Vec3(0))));
} else {
bodies.push_back(
MobilizedBody::Pin(
matter.updMobilizedBody(getBodyIndex(0)),
Transform(PinAboutX, Vec3(getNominalCCBondLength(),0,0)),
Body::Rigid(m1mp), Transform(PinAboutX, Vec3(0))));
}
mm.attachClusterToBody(methyl[0], bodies[0], Transform());
mm.attachClusterToBody(methyl[1], bodies[1], Transform( Rotation(180*DuMM::Deg2Rad,YAxis) ));
}
RigidEthane::RigidEthane(Real torsionAngleInDeg, MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
: EthaneMolecule(pIx,Transform(),mmSys)
{
SimbodyMatterSubsystem& matter =
SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
MobilizedBody& parent = matter.updMobilizedBody(parentIx);
const DuMM::ClusterIndex wholeEthaneCluster = mm.createCluster("rigid ethane");
// If we choose to treat the entire ethane molecule as a rigid body, we'll align
// the 1st methyl group's reference frame with the body frame, and transform the
// second by rotating it 180 degrees about y and shifting it by the nominal C-C
// bond length in the +x direction. We'll then rotate about x to produce
// a desired conformation.
// H00 H10
// \ y y1 z1 /
// \ | | / /
// C0 --> -- <-- C1
// / x x1
// z
mm.placeClusterInCluster(methyl[0], wholeEthaneCluster, Transform());
mm.placeClusterInCluster(methyl[1], wholeEthaneCluster,
Transform( Rotation( SpaceRotationSequence, 180*DuMM::Deg2Rad, YAxis, torsionAngleInDeg, XAxis ),
Vec3(getNominalCCBondLength(),0,0)));
// Align cluster reference frame with body's.
bodies.push_back(
MobilizedBody::Free(parent, Transform(), // parent mobilizer frame Mb
Body::Rigid(mm.calcClusterMassProperties(wholeEthaneCluster, Transform())),
Transform())); // body mobilizer frame M
mm.attachClusterToBody(wholeEthaneCluster, bodies[0], Transform());
}
// We will orient the carbon atom's body frames in opposite
// directions, rotating 180 degrees about Y.
// H00 H10
// \ y0 y1 z1 /
// \ | | / /
// C0 --> -- <-- C1
// / x0 x1
// z0
// The cylinder joint between C0 & C1 will be defined along the +x0 direction (-x1).
// The bend-stretch joints connecting the H's to their C's will bend around their C's
// z axis, so that a bend of +109.5 yields the nominal H angle on either side. The
// stretch coordinate then operates along the outboard (child) body's NEW x axis
// direction.
//
// Warning: the reference configuration (all coordinates 0) has all the atoms
// on top of one another; don't realize past the Model stage until you have called
// setDefaultInternalState().
//
// The "molecule frame" is considered to be identical with C0's body frame.
//
FloppyEthane::FloppyEthane(MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
: EthaneMolecule(pIx,Transform(),mmSys)
{
SimbodyMatterSubsystem& matter =
SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
MobilizedBody& parent = matter.updMobilizedBody(parentIx);
// For C-C cylinder joint; rotation and translation are about the
// Mobilizer frames' common Z axis.
const Transform C0CylMobFrame( Rotation( 90*DuMM::Deg2Rad,YAxis) ); // move z to x0 direction
const Transform C1CylMobFrame( Rotation(-90*DuMM::Deg2Rad,YAxis) ); // move z to -x1 direction
const Transform HMobFrame; // same as body frame for all H's
// C0 is our base body, attached to parent by 6 dof joint
bodies.push_back(
MobilizedBody::Free(
parent, Transform(), // use parent body frame as reference
Body::Rigid(MassProperties(mm.getAtomMass(getC(0)), Vec3(0), Inertia(0))),
Transform())); // use C0 body frame for Free mobilizer
mm.attachAtomToBody(getC(0), bodies.back());
// C1 is body 1, connected to C0 by a cylinder joint
bodies.push_back(
MobilizedBody::Cylinder(
matter.updMobilizedBody(bodies[0]), C0CylMobFrame,
Body::Rigid(MassProperties(mm.getAtomMass(getC(1)), Vec3(0), Inertia(0))),
C1CylMobFrame));
mm.attachAtomToBody(getC(1), bodies.back());
// Now attach 3 Hs to each C.
for (int c=0; c<2; ++c) {
const MobilizedBodyIndex Cbody = mm.getAtomBody(getC(c));
for (int h=0; h<3; ++h) {
const Transform CBendStretchMob(Rotation(h*120*DuMM::Deg2Rad,XAxis));
bodies.push_back(
MobilizedBody::BendStretch(
matter.updMobilizedBody(Cbody), CBendStretchMob,
Body::Rigid(MassProperties(mm.getAtomMass(getH(c,h)), Vec3(0), Inertia(0))),
HMobFrame));
mm.attachAtomToBody(getH(c,h), bodies.back());
}
}
}
void FloppyEthane::setDefaultInternalState(State& s) const {
// All the bodies (1 per atom) except the 0th are internal. We'll set all internal q's
// to the appropriate nominal values for generic EthaneMolecules, and
// set all the internal u's to zero
// C1
const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
b.setOneQ(s, 0, 0); // torsion;
b.setOneQ(s, 1, getNominalCCBondLength()); // stretch
b.setOneU(s, 0, 0); // torsion rate
b.setOneU(s, 1, 0); // stretch rate
// H (bend,stretch)
for (int c=0; c<2; ++c)
for (int h=0; h<3; ++h) {
const MobilizedBodyIndex HBody = getDuMM().getAtomBody(getH(c,h));
const MobilizedBody& b = getMatter().getMobilizedBody(HBody);
b.setOneQ(s, 0, getNominalHCCBondAngle());
b.setOneQ(s, 1, getNominalCHBondLength());
b.setOneU(s, 0, 0);
b.setOneU(s, 1, 0);
}
}
|