File: TestEthaneFromSimbody.cpp

package info (click to toggle)
molmodel 3.1.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 24,384 kB
  • sloc: cpp: 39,830; perl: 526; ansic: 107; makefile: 41
file content (1103 lines) | stat: -rw-r--r-- 46,906 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
/* -------------------------------------------------------------------------- *
 *                      SimTK Core: SimTK Simbody(tm)                         *
 * -------------------------------------------------------------------------- *
 * This is part of the SimTK Core biosimulation toolkit originating from      *
 * Simbios, the NIH National Center for Physics-Based Simulation of           *
 * Biological Structures at Stanford, funded under the NIH Roadmap for        *
 * Medical Research, grant U54 GM072970. See https://simtk.org.               *
 *                                                                            *
 * Portions copyright (c) 2006-7 Stanford University and the Authors.         *
 * Authors: Michael Sherman                                                   *
 * Contributors:                                                              *
 *                                                                            *
 * Permission is hereby granted, free of charge, to any person obtaining a    *
 * copy of this software and associated documentation files (the "Software"), *
 * to deal in the Software without restriction, including without limitation  *
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,   *
 * and/or sell copies of the Software, and to permit persons to whom the      *
 * Software is furnished to do so, subject to the following conditions:       *
 *                                                                            *
 * The above copyright notice and this permission notice shall be included in *
 * all copies or substantial portions of the Software.                        *
 *                                                                            *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,   *
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL    *
 * THE AUTHORS, CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,    *
 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR      *
 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE  *
 * USE OR OTHER DEALINGS IN THE SOFTWARE.                                     *
 * -------------------------------------------------------------------------- */

/**@file
 * This is an outer block for simulating ethane in various ways with Simbody.
 * This is about testing Simbody, *not* studying ethane!
 */

#include "Molmodel.h"

#include <string>
#include <iostream>
#include <exception>
#include <cmath>
using std::cout;
using std::endl;

using namespace SimTK;
using namespace DuMM; // for conversion constants

// mapping from atoms to Amber99 Charged Atom Types
enum {
    A99EthaneCarbon   = 13,    // closest I could find in Amber99; not really right
    A99EthaneHydrogen = 14,
    ShermDoubleBondedOxygen = 9999
};

class MyMolecule {
public:
    MyMolecule(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
             const MolecularMechanicsSystem& mmSys)
        : parentIx(pIx), mobilizerFrameOnParent(parentMobilizerFrame), 
          mmSystem(mmSys)
    { }

    // Translate and rotation the molecule as a whole. Usually this just means move the base body,
    // but some molecules may not have a single base, so they can override this default.
    virtual void setMoleculeTransform(State& s, const Transform& pos) const
    {
        getMatter().getMobilizedBody(bodies[0]).setQToFitTransform(s, pos);
    }

    virtual void setMoleculeVelocity(State& s, const SpatialVec& vel) const
    {
        getMatter().getMobilizedBody(bodies[0]).setUToFitVelocity(s, vel);
    }

    // This routine must set the internal mobilities to their nominal values, both
    // for position and velocity states. This State must have already been realized
    // to at least Model stage.
    virtual void setDefaultInternalState(State& s) const = 0; 

    int getNumAtoms()  const {return (int)atoms.size();}
    int getNumBodies() const {return (int)bodies.size();}

    // return atomIndex of ith atom in MyMolecule
    DuMM::AtomIndex getAtom(int i) const {return atoms[i];}

    // return bodyNum of ith body; 0 is molecule's base body
    MobilizedBodyIndex getBodyIndex(int i) const {return bodies[i];}

    const SimbodyMatterSubsystem& getMatter() const {
        return mmSystem.getMatterSubsystem();
    }
    const DuMMForceFieldSubsystem& getDuMM() const {
        return mmSystem.getMolecularMechanicsForceSubsystem();
    }
protected:
    std::vector<DuMM::AtomIndex>       atoms;
    std::vector<MobilizedBodyIndex>    bodies;
    MobilizedBodyIndex                 parentIx;
    Transform                          mobilizerFrameOnParent;
    const MolecularMechanicsSystem&    mmSystem;
};


//
// Ribose sugar ring for showing "pucker" modes.
//
//             H5T--O5T   H51
//                    \  / 
//                H52--C5  
//                     |             
//                     |      O4
//                     |    /    \   O1--HO1
//                     |  /        \ |
//                 H4--C4            C1--H1
//                       \          /
//                    H3--C3------C2--H2
//                        |       |
//                   H3T--O3T     O2--HO2
//
//  Atom  Class  ChargedAtomType
//
// 0 O5T    22     1232 -0.6223
// 1 H5T    31     1233  0.4295
// 2 C5     1      1002  0.0558
// 3 H51    35     1003  0.0679
// 4 H52    35     1004  0.0679
//                      -------
//                      -0.0012
//
// 5 O4     23     1096 -0.3548
// 6 C4     1      1094  0.1065
// 7 H4     35     1095  0.1174
//                      -------
//                      -0.1309
//
// 8 O3T    22     1237 -0.6541
// 9 H3T    31     1238  0.4376
//10 C3     1      1010  0.2022
//11 H3     35     1011  0.0615
//                      -------
//                       0.0473
//
//12 O2     22     1237 -0.6541
//13 HO2    31     1238  0.4376
//14 C2     1      1010  0.2022
//15 H2     35     1011  0.0615
//                      -------
//                       0.0473
//
//16 O1     22     1237 -0.6541
//17 HO1    31     1238  0.4376
//18 C1     1      1010  0.2022
//19 H1     35     1011  0.0615
//                      -------
//                       0.0473
//
//                   ----------
//                       0.0098
//
// Charged atom type assignments are cobbled together from Amber99.
//
class Ribose : public MyMolecule {
public:
    Ribose(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
           MolecularMechanicsSystem& mmSys) 
      : MyMolecule(pIx, parentMobilizerFrame, mmSys)
    {
        DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
        
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1232)); // 0
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1233)); // 1
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1002)); // 2
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1003)); // 3
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1004)); // 4

        mm.addBond(atoms[0],atoms[1]); mm.addBond(atoms[2],atoms[3]);
        mm.addBond(atoms[2],atoms[4]); mm.addBond(atoms[0],atoms[2]);

        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1096)); // 5
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1094)); // 6
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1095)); // 7

        mm.addBond(atoms[5],atoms[6]); mm.addBond(atoms[6],atoms[7]);
        mm.addBond(atoms[2],atoms[6]);

        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1237)); // 8
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1238)); // 9
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1010)); //10
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1011)); //11
        mm.addBond(atoms[8],atoms[9]); mm.addBond(atoms[10],atoms[11]);
        mm.addBond(atoms[8],atoms[10]); 
        mm.addBond(atoms[6],atoms[10]);

        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1237)); //12
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1238)); //13
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1010)); //14
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1011)); //15
        mm.addBond(atoms[12],atoms[13]); mm.addBond(atoms[14],atoms[15]);
        mm.addBond(atoms[12],atoms[14]);
        mm.addBond(atoms[10],atoms[14]);

        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1237)); //16
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1238)); //17
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1010)); //18
        atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)1011)); //19
        mm.addBond(atoms[16],atoms[17]); mm.addBond(atoms[18],atoms[19]);
        mm.addBond(atoms[16],atoms[18]);
        mm.addBond(atoms[14],atoms[18]);
        mm.addBond(atoms[5],atoms[18]); // O4-C1

        // Define the clusers.
        //twoOxygens = mm.createCluster("two oxygens");
        //mm.placeAtomInCluster(getO(0), twoOxygens, Vec3(0));
        //mm.placeAtomInCluster(getO(1), twoOxygens, Vec3(0,0,getNominalOOBondLength()));
    }

    // Use body zero's frame as the "molecule frame" (call it "F" here). We'll move
    // that one to F' and record the relative motion. Then we move all the others
    // by the same relative transform.
    void setMoleculeTransform(State& s, const Transform& X_GFprime) const
    {
        mmSystem.realize(s,Stage::Position);
        const Transform X_GF = getMatter().getMobilizedBody(bodies[0]).getBodyTransform(s); // current
        const Transform X_FFprime = ~X_GF * X_GFprime; // relative transform

        for (int i=0; i < (int)bodies.size(); ++i) {
            mmSystem.realize(s,Stage::Position);
            const Transform& X_GB = getMatter().getMobilizedBody(bodies[i]).getBodyTransform(s);
            const Transform  X_FprimeBprime = ~X_GF * X_GB; // we want this to be the same as X_FB
            const Transform  X_FBprime = X_FFprime * X_FprimeBprime;
            const Transform  X_GBprime = X_GF*X_FBprime;
            // This only works since the mobilizers are all ground-attached Cartesian.
            // The Stage is reduced due to the change to the q's below.
            getMatter().getMobilizedBody(bodies[i]).setQToFitTransform(s, X_GBprime);
        }
    }

protected:
    //int twoOxygens; // cluster
};

class CartesianRibose : public Ribose {
public:
    CartesianRibose(MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
      : Ribose(pIx,Transform(),mmSys)
    {
        SimbodyMatterSubsystem&  matter = 
            SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
        DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();

        MobilizedBody& parent = matter.updMobilizedBody(parentIx);

        //bodies.push_back(GroundIndex);
        //mm.attachAtomToBody(0,GroundIndex,Vec3(0));
        for (int i=0; i<20; ++i) {
            bodies.push_back(
                MobilizedBody::Cartesian(parent, Transform(),    // parent mobilizer frame
                                         Body::Rigid(MassProperties(mm.getAtomMass(atoms[i]),Vec3(0),Inertia(0))),
                                         Transform()));          // inboard mobilizer frame
            mm.attachAtomToBody(atoms[i],bodies.back(),Vec3(0));
        }
    }

    void setDefaultInternalState(State& s) const {
        //TODO: these are not right -- some of the pieces have the wrong chirality.
        Real q[]={
            0,0,0,
            0.0159955,0.0930929,0.0179526,
            0.0862463,-0.0788493,0.0804993,
            0.188797,-0.0643956,0.0460469,
            0.0793338,-0.048313,0.185042,
            -0.0734023,-0.252303,0.137272,
            0.0493894,-0.227588,0.0688814,
            0.0372042,-0.251271,-0.0368623,
            0.276019,-0.266582,0.172778-.1,
            0.32527,-0.335729,0.218463-.1,
            0.154191,-0.324668,0.12799-.1, //XXX
            0.175325,-0.401742,0.0536479-.1,
            0.121915,-0.521913,0.270613,
            0.0560667,-0.560277,0.329768,
            0.0800273,-0.388735,0.245242,
            0.0915603,-0.326613,0.334268,
            -0.156899,-0.38217,0.30165,
            -0.220948,-0.313277,0.281256,
            -0.0642466,-0.379147,0.196642,
            -0.0852995,-0.45703,0.122944};
        for (int i=0; i<20; ++i) {
            const MobilizedBody& b = getMatter().getMobilizedBody(bodies[i]);
            b.setQFromVector(s,Vector(3,q+3*i));
        }

        //for (int i=0; i<20; ++i) {
         //   if (bodies[i] != GroundIndex)
         //       getMatter().setMobilizerCoordsAsVec3(s,bodies[i],Vec3(i/10., i%5/10., i%2/2.));
       // }
    }


private:
};

// An oxygen (O2) molecule has just two atoms, with a maximum
// of 6 degrees of freedom. We provide the following models:
//   CartesianO2 -- 3 dofs referred to the Ground origin
//   InternalCartesianO2 -- the first oxygen is measured
//        from ground origin, 2nd w.r.t. first
//   InternalO2 -- same as Rigid, but adds a bond stretch
//                 mobility between the atoms.
//   RigidO2 -- a single body with both atoms attached
//              at a nominal bond length. The body then
//              has *5* dofs w.r.t. ground (can't rotate
//              around the line between the atoms).
// The first three models are equivalent; they just use
// different parameterization for the 6 dofs. The RigidO2
// model has one fewer degree of freedom. Specifically, the
// very high frequency O=O stretch term has been eliminated.

class OxygenMolecule : public MyMolecule {
public:
    OxygenMolecule(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
                   MolecularMechanicsSystem& mmSys) 
      : MyMolecule(pIx, parentMobilizerFrame, mmSys)
    {
        DuMMForceFieldSubsystem& mm = mmSys.updMolecularMechanicsForceSubsystem();
        
        // Create the atoms and bonds. Atom 0 is O0, atom 1 is O1. O0 will serve
        // as the base frame for the molecule.
        for (int i=0;i<2;++i) atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)ShermDoubleBondedOxygen));
        mm.addBond(getO(0),getO(1));

        // Define the clusers.
        twoOxygens = mm.createCluster("two oxygens");

        mm.placeAtomInCluster(getO(0), twoOxygens, Vec3(0));
        mm.placeAtomInCluster(getO(1), twoOxygens, Vec3(0,0,getNominalOOBondLength()));
    }

    // Get the atom number for each oxygen.
    DuMM::AtomIndex getO(int i) const {assert(i==0||i==1); return getAtom(i);}

    Real getNominalOOBondLength() const {
        return 1.21 * Ang2Nm;
    }
protected:
    DuMM::ClusterIndex twoOxygens; // cluster
};

class RigidO2 : public OxygenMolecule {
public:
    RigidO2(MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
      : OxygenMolecule(pIx,Transform(),mmSys)
    {
        SimbodyMatterSubsystem&  matter = 
            SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
        DuMMForceFieldSubsystem& mm     = mmSys.updMolecularMechanicsForceSubsystem();

        MobilizedBody& parent = matter.updMobilizedBody(parentIx);

        // Align cluster reference frame with body's. (5 dofs!)
        // FreeLine prevents rotation about Z, so make sure the body has its
        // O=O axis arranged along Z (or rotate the frame here).
        /* This doesn't work: 
        bodies.push_back(
            matter.addRigidBody(
                MassProperties(0,Vec3(0),Inertia(0)),
                Transform(),            // inboard mobilizer frame
                parent, Transform(),    // parent mobilizer frame
                Mobilizer::Cartesian()));
        // y
        bodies.push_back(
            matter.addRigidBody(
                MassProperties(0,Vec3(0),Inertia(0)),
                Transform(Rotation(-90*DuMM::Deg2Rad,XAxis)),            // inboard mobilizer frame
                bodies.back(), Transform(Rotation(-90*DuMM::Deg2Rad,XAxis)),    // parent mobilizer frame
                Mobilizer::Pin()));
        // x
        MassProperties mprops = mm.calcClusterMassProperties(twoOxygens, Transform());
        cout << "Inertia:" << mprops.getInertia();
        cout << "inertia kludge:" << mprops.getInertia()+Inertia(0,0,.4);
        MassProperties mpropsKludge(mprops.getMass(), mprops.getMassCenter(), mprops.getInertia() + Inertia(0,0,.4));
        bodies.push_back(
            matter.addRigidBody(
                mpropsKludge,
                Transform(Rotation(90*DuMM::Deg2Rad,YAxis)),            // inboard mobilizer frame
                bodies.back(), Transform(Rotation(90*DuMM::Deg2Rad,YAxis)),    // parent mobilizer frame
                Mobilizer::Pin()));
        
        */
        MassProperties mprops = mm.calcClusterMassProperties(twoOxygens, Transform());
        MassProperties mpropsKludge(mprops.getMass(), mprops.getMassCenter(), 
                                    mprops.getInertia() + Inertia(0,0,.01));

        bodies.push_back(
            MobilizedBody::FreeLine(
                parent, Transform(0*Vec3(.1,.7,.19)),    // parent mobilizer frame
                Body::Rigid(mprops),
                Transform(0*Vec3(0,0,.3))));             // inboard mobilizer frame

        mm.attachClusterToBody(twoOxygens, bodies.back(), Transform()); 
    }

    void setDefaultInternalState(State& s) const { } // none
};

// ethane:
// atom 0 is carbon0
// atoms 2,3,4 are attached to carbon0
// atom 1 is carbon1
// atoms 5,6,7 are attached to carbon1
//
// pre-built rigid clusters:
//   the two carbons
//   methyl 1 (atom 0) and hydrogens 1,2,3
//   methyl 2 (atom 4) and hydrogens 5,6,7
// Any cluster or individual atom can be assigned to a body, provided
// the resulting set of assignments represents a partitioning of
// the atoms across the bodies.
//
// Ethane has 8 atoms, modeled as point masses. Consequently there
// can be a maximum of 24 dofs. Choosing one atom as a "base", the
// maximum number of internal coordinates is 21. If the base has
// 6 dofs instead of three, then the maximal internal set is 18.
// We provide a variety of models below as examples of what can
// be done with Simbody, not necessarily because these are good
// models!

class EthaneMolecule : public MyMolecule {
public:
    EthaneMolecule(MobilizedBodyIndex pIx, const Transform& parentMobilizerFrame,
                   MolecularMechanicsSystem&);

    // find the atoms
    DuMM::AtomIndex getC(int i) const {assert(i==0||i==1); return getAtom(i);}
    DuMM::AtomIndex getH(int whichCarbon, int whichHydrogen) const {
        assert(0<=whichCarbon&&whichCarbon<=1);
        assert(0<=whichHydrogen&&whichHydrogen<=2);
        return getAtom(2+whichCarbon*3+whichHydrogen);
    }

    Real getNominalCCBondLength() const {
        return 1.53688 * Ang2Nm;
    }
    Real getNominalCHBondLength() const {
        return 1.09 * Ang2Nm;
    }
    Real getNominalHCCBondAngle() const {
        return 109.5 * SimTK::Deg2Rad;
    }

protected:
    // Some pre-built atom clusters.
    DuMM::ClusterIndex twoCarbons;
    DuMM::ClusterIndex methyl[2];
};

class OneDofEthane : public EthaneMolecule {
public:
    OneDofEthane(bool allowStretch, MobilizedBodyIndex pIx, MolecularMechanicsSystem&);

    void setDefaultInternalState(State& s) const {
        const MobilizedBody& b = getMatter().getMobilizedBody(getBodyIndex(1));
        const int ndof = b.getNumU(s);
        for (int i=0; i<ndof; ++i) {
            b.setOneQ(s, i, 0);
            b.setOneU(s, i, 0);
        }
    }

    // Set stretch around the nominal length.
    void setCCStretch(Real stretchInNm, State& s) const {
        const MobilizedBody& b1 = getMatter().getMobilizedBody(getBodyIndex(1));
        assert(b1.getNumU(s) == 2);    // must have been build with Cylinder mobilizer
        const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
        const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
        b.setOneQ(s, 1, stretchInNm);
    }

    void setTorsionAngleDeg(Real angleInDeg, State& s) const {
        const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
        const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
        b.setOneQ(s, 0, angleInDeg*DuMM::Deg2Rad);
    }

    // Rate is rad/ps
    void setTorsionRate(Real rateInRadPerPs, State& s) const {
        const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
        const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
        b.setOneU(s, 0, rateInRadPerPs);
    }
};

class RigidEthane : public EthaneMolecule {
public:
    RigidEthane(Real torsionAngleInDeg, MobilizedBodyIndex pIx, MolecularMechanicsSystem&);
    void setDefaultInternalState(State& s) const { } // doesn't have any
};

// Here is a model of ethane with 14 internal coordinates: stretch & torsion
// between the carbons, and bend-stretch for the connection between the 
// hydrogens and their carbons. That is, for each hydrogen, we are
// modeling the CH stretch term, and the HCC bend term. However, we
// are *not* permitting HCH bending, so the hydrogens will always be
// found arranged exactly 120 degrees apart. 
class FloppyEthane : public EthaneMolecule {
public:
    FloppyEthane(MobilizedBodyIndex pIx, MolecularMechanicsSystem&);

    void setDefaultInternalState(State& s) const;

    // Set stretch around the nominal length.
    void setCCStretch(Real stretchInNm, State& s) const {
        const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
        const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
        b.setOneQ(s, 1, stretchInNm);
    }

    void setTorsionAngleDeg(Real angleInDeg, State& s) const {
        const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
        const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
        b.setOneQ(s, 0, angleInDeg*DuMM::Deg2Rad);
    }

    // Rate is rad/ps
    void setTorsionRate(Real rateInRadPerPs, State& s) const {
        const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
        const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
        b.setOneU(s, 0, rateInRadPerPs);
    }
};

static const Transform BodyFrame;   // identity transform on any body

// How it actually looks now:
int main() {
try
  {
    MolecularMechanicsSystem mbs;

    SimbodyMatterSubsystem   matter(mbs);
    DuMMForceFieldSubsystem  mm(mbs);
    GeneralForceSubsystem    forces(mbs);
    DecorationSubsystem      artwork(mbs);

    // No, thank you.
    matter.setShowDefaultGeometry(false);

    Real accuracy = 1e-2;
    Real outputInterval = .01;
    Real simulationLength = 10;

    const Real torsControlGain = /*100000*/0;
    const Real desiredTorsAngle = /*Pi/3*/0;

    Force::UniformGravity gravity(forces, matter, Vec3(0,0,0));
    Force::GlobalDamper(forces, matter, .01);


    // AMBER 99

    mm.setVdw14ScaleFactor(1/2.); // reduce energy by these factors
    mm.setCoulomb14ScaleFactor(1/1.2);

    mm.defineAtomClass_KA(1,  "Amber99 CT", 6, 4, 1.9080, 0.1094);
    mm.defineAtomClass_KA(2,  "Amber99 C",  6, 3, 1.9080, 0.0860);
    mm.defineAtomClass_KA(3,  "Amber99 CA", 6, 3, 1.9080, 0.0860);
    mm.defineAtomClass_KA(4,  "Amber99 CM", 6, 3, 1.9080, 0.0860);

    mm.defineAtomClass_KA(9,  "Amber99 CB", 6, 3, 1.9080, 0.0860);
    mm.defineAtomClass_KA(22, "Amber99 OH", 8, 2, 1.7210, 0.2104);
    mm.defineAtomClass_KA(23, "Amber99 OS", 8, 2, 1.6837, 0.1700);

    mm.defineAtomClass_KA(24, "Amber99 O",  8, 1, 1.6612, 0.2100);
    mm.defineAtomClass_KA(25, "Amber99 O2", 8, 1, 1.6612, 0.2100); 

    mm.defineAtomClass_KA(31, "Amber99 HO", 1, 1, 0.0001, 0.0000);
    //mm.defineAtomClass_KA(31, "Amber99 HO", 1, 1, 1., 0.1);//KLUDGE

    mm.defineAtomClass_KA(34, "Amber99 HC", 1, 1, 1.4870, 0.0157); 
    mm.defineAtomClass_KA(35, "Amber99 H1", 1, 1, 1.3870, 0.0157);

    mm.defineChargedAtomType_KA(13, "Amber99 Alanine CB", 1, -0.1825);
    mm.defineChargedAtomType_KA(14, "Amber99 Alanine HB", 34, 0.0603);

    mm.defineChargedAtomType_KA(1002, "Amber99 R-Adenosine C5'",   1,  0.0558);
    mm.defineChargedAtomType_KA(1003, "Amber99 R-Adenosine H5'1", 35,  0.0679);
    mm.defineChargedAtomType_KA(1004, "Amber99 R-Adenosine H5'2", 35,  0.0679);
    mm.defineChargedAtomType_KA(1006, "Amber99 R-Adenosine H4'",  35,  0.1174);
    mm.defineChargedAtomType_KA(1007, "Amber99 R-Adenosine O4'",  23, -0.3548);

    mm.defineChargedAtomType_KA(1010, "Amber99 R-Adenosine C3'",   1,  0.2022);
    mm.defineChargedAtomType_KA(1011, "Amber99 R-Adenosine H3'",  35,  0.0615);

    mm.defineChargedAtomType_KA(1094, "Amber99 R-Uracil C4'",   1,  0.1065);
    mm.defineChargedAtomType_KA(1095, "Amber99 R-Uracil H4'",  35,  0.1174);
    mm.defineChargedAtomType_KA(1096, "Amber99 R-Uracil O4'",  23, -0.3548);

    mm.defineChargedAtomType_KA(1101, "Amber99 R-Uracil C2'",   1,   0.0670);
    mm.defineChargedAtomType_KA(1102, "Amber99 R-Uracil H2'1",  35,  0.0972);
    mm.defineChargedAtomType_KA(1103, "Amber99 R-Uracil O2'",   22, -0.6139);
    mm.defineChargedAtomType_KA(1104, "Amber99 R-Uracil HO'2",  31,  0.4186);

    mm.defineChargedAtomType_KA(1232, "Amber99 R-5'-Hydroxyl O5'",  22, -0.6223);
    mm.defineChargedAtomType_KA(1233, "Amber99 R-5'-Hydroxyl H5T",  31,  0.4295);
    mm.defineChargedAtomType_KA(1237, "Amber99 R-5'-Hydroxyl O3'",  22, -0.6541);
    mm.defineChargedAtomType_KA(1238, "Amber99 R-5'-Hydroxyl H3T",  31,  0.4376);

    mm.defineBondStretch_KA( 1, 1, 310., 1.5260);
    mm.defineBondStretch_KA( 1,22, 320., 1.4100);
    mm.defineBondStretch_KA( 1,23, 320., 1.4100);
    mm.defineBondStretch_KA( 1,34, 340., 1.09);
    mm.defineBondStretch_KA( 1,35, 340., 1.09);
    mm.defineBondStretch_KA(22,31, 553., 0.9600);

    // I'm making this one up -- couldn't find O2 in Amber99
    mm.defineChargedAtomType_KA(9999, "Sherm's O2", 25, 0); // must be neutral by symmetry
    mm.defineBondStretch_KA(25,25, 570., 1.21); // bond length is right, stiffness is from C=O.

    mm.defineBondBend_KA( 1, 1, 1, 40., 109.5);
    mm.defineBondBend_KA( 1, 1,22, 50., 109.5);
    mm.defineBondBend_KA( 1, 1,23, 50., 109.5);
    mm.defineBondBend_KA( 1, 1,34, 50., 109.5);
    mm.defineBondBend_KA( 1, 1,35, 50., 109.5);
    mm.defineBondBend_KA( 1,22,31, 55., 108.5);
    mm.defineBondBend_KA( 1,23, 1, 60., 109.5);
    mm.defineBondBend_KA(22, 1,23, 50., 109.5); // made up (sherm)
    mm.defineBondBend_KA(22, 1,35, 50., 109.5);
    mm.defineBondBend_KA(22,31, 1, 50., 109.5);
    mm.defineBondBend_KA(23, 1,35, 50., 109.5);
    mm.defineBondBend_KA(34, 1,34, 35., 109.5);
    mm.defineBondBend_KA(35, 1,35, 35., 109.5);

    mm.defineBondTorsion_KA( 1, 1, 1, 1, 1, 0.2,  180.,
                                         2, 0.25, 180.,
                                         3, 0.18,   0.);
    mm.defineBondTorsion_KA( 1, 1, 1,22, 3, 0.156,  0.);
    mm.defineBondTorsion_KA( 1, 1, 1,23, 3, 0.156,  0.);
    mm.defineBondTorsion_KA( 1, 1, 1,34, 3, 0.160,  0.);
    mm.defineBondTorsion_KA( 1, 1, 1,35, 3, 0.156,  0.);
    mm.defineBondTorsion_KA( 1, 1,22,31, 1, 0.025,  0.,
                                         3, 0.160,  0.);
    mm.defineBondTorsion_KA( 1, 1,23, 1, 2, 0.100,180.,
                                         3, 0.383,  0.);


    // Equivalent to previous torsion (1,1,23,1), but with different params => causes error!!!
    // mm.defineBondTorsion_KA( 1,23, 1, 1, 2, 0.850,180.,
    //                                     3, 0.100,  0.);


    mm.defineBondTorsion_KA( 1,23, 1,22, 1, 1.350,180.,
                                         2, 0.850,180.,
                                         3, 0.100,  0.);
    mm.defineBondTorsion_KA( 1,23, 1,23, 2, 0.850,180.,
                                         3, 0.100,  0.);
    mm.defineBondTorsion_KA( 1,23, 1,35, 3, 0.383,  0.);
    mm.defineBondTorsion_KA(22, 1, 1,23, 2, 1.175,  0.,
                                         3, 0.144,  0.);
    mm.defineBondTorsion_KA(22, 1, 1,22, 2, 1.175,  0.,
                                         3, 0.144,  0.);
    mm.defineBondTorsion_KA(22, 1, 1,35, 3, 0.156,  0.);
    mm.defineBondTorsion_KA(23, 1, 1,35, 3, 0.156,  0.);
    mm.defineBondTorsion_KA(23, 1,22,31, 3, 0.156,  0.); // made up
    mm.defineBondTorsion_KA(31,22, 1,35, 3, 0.167,  0.);

    mm.defineBondTorsion_KA(34, 1, 1,34, 3, 0.150,  0.);
    mm.defineBondTorsion_KA(35, 1, 1,35, 3, 0.156,  0.);

    mm.setVdwMixingRule( DuMMForceFieldSubsystem::LorentzBerthelot );

    // These are just for playing around with the force field terms.
    mm.setVdwGlobalScaleFactor(1);
    mm.setCoulombGlobalScaleFactor(1);
    mm.setBondStretchGlobalScaleFactor(1);
    mm.setBondBendGlobalScaleFactor(1);
    mm.setBondTorsionGlobalScaleFactor(1);


    //mbs.addForceSubsystem(gravity);

    /*

    const OneDofEthane ethane1(allowStretch, GroundIndex, mbs);
    const OneDofEthane ethane2(allowStretch, ethane1.getBodyIndex(0), mbs);
    const OneDofEthane ethane3(allowStretch, ethane2.getBodyIndex(0), mbs);
    const OneDofEthane ethane4(allowStretch, ethane3.getBodyIndex(0), mbs);
    const RigidEthane  rethane1(0, GroundIndex, mbs);
    const RigidEthane  rethane2(60, GroundIndex, mbs);
    */
    const bool allowStretch = false;
    const OneDofEthane ethane1(allowStretch, GroundIndex, mbs);
    const RigidEthane  rethane1(0, GroundIndex, mbs);
    const RigidEthane  rethane2(60, GroundIndex, mbs);
    const FloppyEthane floppy1(GroundIndex, mbs);
    const RigidO2      rigidO2(GroundIndex, mbs);

    const CartesianRibose cribose(GroundIndex, mbs);

    /* Cartesian:  
    for (int i=0; i < mm.getNumAtoms(); ++i) {
        MobilizedBodyIndex b = ethane.addRigidBody(
            MassProperties(mm.getAtomMass(i), Vec3(0), Inertia(0)), Transform(),
            GroundIndex, Transform(),
            Mobilizer::Cartesian());
        mm.attachAtomToBody(i, b, Vec3(0));
    }
    /**/

    //if (useCartesian && useRigid && wantConstraint) {
    //    int theConstraint =
    //           ethane.addConstantDistanceConstraint(firstCartesianBody-1, Vec3(0),
    //                                                firstCartesianBody, Vec3(0), 1.5);
    //    DecorativeLine purpleLine; purpleLine.setColor(Purple).setLineThickness(3);
    //    artwork.addRubberBandLine(firstCartesianBody-1, Vec3(0),
    //                              firstCartesianBody, Vec3(0), purpleLine);
    //}

    DecorativeLine crossBodyBond; crossBodyBond.setColor(Orange).setLineThickness(5);

    for (DuMM::BondIndex i = (DuMM::BondIndex)0; i < (DuMM::BondIndex)mm.getNumBonds(); ++i) {
        const DuMM::AtomIndex    a1 = mm.getBondAtom(i,0), a2 = mm.getBondAtom(i,1);
        const MobilizedBodyIndex b1 = mm.getAtomBody(a1),  b2 = mm.getAtomBody(a2);
        if (b1==b2)
            artwork.addBodyFixedDecoration(b1, Transform(),
                                           DecorativeLine(mm.getAtomStationOnBody(a1), mm.getAtomStationOnBody(a2))
                                             .setColor(Gray).setLineThickness(3));
        else
            artwork.addRubberBandLine(b1, mm.getAtomStationOnBody(a1),
                                      b2, mm.getAtomStationOnBody(a2), crossBodyBond);
    }

    for (DuMM::AtomIndex anum = (DuMM::AtomIndex)0; anum < (DuMM::AtomIndex)mm.getNumAtoms(); ++anum) {
        Real shrink = 0.25, opacity = mm.getAtomElement(anum)==1?0.5:1;
        Real r = mm.getAtomRadius(anum);
        if (r<.001) r=0.1; //nm
        //opacity=0.5;//XXX
        artwork.addBodyFixedDecoration(mm.getAtomBody(anum), mm.getAtomStationOnBody(anum),
            DecorativeSphere(shrink*r)
                .setColor(mm.getAtomDefaultColor(anum)).setOpacity(opacity).setResolution(3));
    }

    State s = mbs.realizeTopology();
    //matter.setUseEulerAngles(s,true);
    mbs.realizeModel(s);
   // gravity.setZeroHeight(s, -100);

    cribose.setDefaultInternalState(s);
    cribose.setMoleculeTransform(s, Transform( Rotation(Pi/2,ZAxis), Vec3(0,1,0)));

    floppy1.setDefaultInternalState(s);
    floppy1.setMoleculeTransform(s,Vec3(-1,0,0));
    floppy1.setCCStretch(.1,s);
    floppy1.setTorsionAngleDeg(80,s);
    floppy1.setTorsionRate(10,s);

    ethane1.setDefaultInternalState(s);
    ethane1.setMoleculeTransform(s,Vec3(1,0,0));

    rethane1.setDefaultInternalState(s);
    rethane1.setMoleculeTransform(s,Vec3(0,0,-1));

    rethane2.setDefaultInternalState(s);
    rethane2.setMoleculeTransform(s,Vec3(-1,0,-1));

    rigidO2.setDefaultInternalState(s);

    const Transform o2pos( Rotation( BodyRotationSequence, 0.5*Pi/2, XAxis, 0.5*Pi/2, YAxis ),  Vec3(1,0,-1) );
    rigidO2.setMoleculeTransform(s,o2pos);
    rigidO2.setMoleculeVelocity(s,SpatialVec(0*Vec3(1.1,1.2,3), Vec3(-.2,0,0)));

    /*

    if (allowStretch) ethane1.setCCStretch(0.03, s);
    ethane1.setTorsionAngleDeg(5, s);

    if (allowStretch) ethane2.setCCStretch(0.03, s);
    ethane2.setMoleculeTransform(s,Vec3(0,1,0));

    if (allowStretch) ethane3.setCCStretch(-0.03, s);
    ethane3.setMoleculeTransform(s,Transform( Rotation(Pi/2,ZAxis), Vec3(1,0,1)),);

    if (allowStretch) ethane4.setCCStretch(-0.03, s);
    ethane4.setMoleculeTransform(s,Vec3(-1,0,0));


   */

    /* Cartesian: 
    for (int i=0; i < mm.getNumAtoms(); ++i) {
        int b = mm.getAtomBody(i);
        ethane.setMobilizerTransform(s, b, 
            Transform(mm.getAtomStationInCluster(i, wholeEthaneEclipsed)));
    }
    /**/


    mm.dump();

    Visualizer display(mbs);

    RungeKuttaMersonIntegrator study(mbs);

    const Real h = outputInterval;
    const int interval = 1;
    const Real tstart = 0.;
    const Real tmax = simulationLength; //ps

    s.updTime() = tstart;
    display.report(s);

    study.setAccuracy(accuracy);

    // "study" makes a copy of the given State and then modifies
    // the copy internally.
    study.initialize(s); 

    // Copy the integrator's internal State in case it changed.
    s = study.getState();

    std::vector<State> saveEm;
    saveEm.push_back(s);
    for (int i=0; i<100; ++i)
        saveEm.push_back(s);    // delay
    display.report(s);

    mbs.realize(s);
    const Real Estart = mbs.calcEnergy(s);

    int step = 0; bool flag=false;
    while (study.getTime() <= tmax) {
        const State& s = study.getState(); // not the same s as above
        mbs.realize(s);

        cout << s.getTime();
        cout << " deltaE=" << 100*(mbs.calcEnergy(s)-Estart)
                                /(std::abs(Estart)+TinyReal) 
             << "% pe(kcal)=" << mbs.calcPotentialEnergy(s)*KJ2Kcal
             << ", ke(kcal)=" << mbs.calcKineticEnergy(s)*KJ2Kcal
             << " hNext(fs)=" << 1000*study.getPredictedNextStepSize();

        cout << "\n  System COM loc=" << matter.calcSystemMassCenterLocationInGround(s);
        cout << "\n  System COM vel=" << matter.calcSystemMassCenterVelocityInGround(s);
        cout << "\n  System COM acc=" << matter.calcSystemMassCenterAccelerationInGround(s);
        cout << endl;

        if (!(step % interval)) {
            display.report(s);
            saveEm.push_back(s);
        }

        study.stepTo(s.getTime() + h);
        ++step;
    }

    while(true) {
        for (int i=0; i < (int)saveEm.size(); ++i) {
            display.report(saveEm[i]);
            //display.report(saveEm[i]); // half speed
        }
        getchar();
    }

  }
catch (const std::exception& e)
  {
    printf("EXCEPTION THROWN: %s\n", e.what());
  }
    return 0;
}

EthaneMolecule::EthaneMolecule(MobilizedBodyIndex pIx, const Transform& parentTransform,
                               MolecularMechanicsSystem& mmSys)
  : MyMolecule(pIx,parentTransform,mmSys)
{
    SimbodyMatterSubsystem&  matter = 
        SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
    DuMMForceFieldSubsystem& mm     = mmSys.updMolecularMechanicsForceSubsystem();

    twoCarbons = methyl[0] = methyl[1] = DuMM::InvalidClusterIndex;

    // Create the atoms and bonds. Atom 0 is C0, atom 1 is C1, 2-4 are the
    // hydrogens attached to C0, 5-7 are the hydrogens attached to C1.
    for (int i=0;i<2;++i) atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)A99EthaneCarbon));
    for (int i=0;i<6;++i) atoms.push_back(mm.addAtom((DuMM::ChargedAtomTypeIndex)A99EthaneHydrogen));

    mm.addBond(getC(0),getC(1));
    for (int c=0; c<2; ++c)
        for (int h=0; h<3; ++h)
            mm.addBond(getC(c),getH(c,h));

    // Define the clusers.
    twoCarbons = mm.createCluster("two carbons");
    methyl[0] =  mm.createCluster("methyl 0");
    methyl[1] =  mm.createCluster("methyl 1");
    
    // The "twoCarbons" cluster looks like this:        
    //          y
    //          |
    //          C0 --> ---- C1
    //         /     x
    //        z 
    // That is, the 1st carbon is at the origin, the 2nd is out along the +x
    // axis by the nominal C-C bond length.

    mm.placeAtomInCluster(getC(0), twoCarbons, Vec3(0));
    mm.placeAtomInCluster(getC(1), twoCarbons, Vec3(getNominalCCBondLength(),0,0));

    // Now build two identical methyl clusters. We'll worry about getting them
    // oriented properly when we place them onto bodies.
    // The methyl clusters should look like this:
    //
    //          H0     
    //           \   y
    //            \  |
    //             . C --> x
    //      (H2) .  /      
    //         *   z    
    //       H1
    //
    //
    // That is, H0 is in the (-x,+y) plane, tipped by the nominal
    // H-C-C bend angle. Then H1 is the H0 vector 
    // rotated +120 degrees about x (that is, out of the screen).
    // H2 is the H0 vector rotated 240 (=-120) degrees about x (into the
    // screen, not shown).

    const Vec3 H1pos = Rotation(getNominalHCCBondAngle(),ZAxis)
                          * Vec3(getNominalCHBondLength(),0,0);

    for (int c=0; c<2; ++c) {
        mm.placeAtomInCluster(getC(c), methyl[c], Vec3(0));
        for (int h=0; h<3; ++h) {
            const Vec3 Hpos = Rotation(h*120*DuMM::Deg2Rad,XAxis) * H1pos;
            mm.placeAtomInCluster(getH(c,h), methyl[c], Hpos);
        }
    }
}

OneDofEthane::OneDofEthane(bool allowStretch, MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
  : EthaneMolecule(pIx,Transform(),mmSys)
{
    SimbodyMatterSubsystem&  matter = 
        SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
    DuMMForceFieldSubsystem& mm     = mmSys.updMolecularMechanicsForceSubsystem();

    MobilizedBody& parent = matter.updMobilizedBody(parentIx);

    const Rotation PinAboutX = Rotation(90*DuMM::Deg2Rad,YAxis); // move z to +x

    // Mount the methyls onto bodies, methyl[0] first. Connect
    // them by either a pin or cylinder depending on allowStretch.

    const MassProperties m0mp(mm.calcClusterMassProperties(methyl[0], Transform()));
    const MassProperties m1mp(mm.calcClusterMassProperties(methyl[1], Transform()));

    bodies.push_back(
        MobilizedBody::Free( parent, Transform(),    // parent mobilizer frmae
            Body::Rigid(m0mp), Transform()));           // inboard mobilizer frame

    if (allowStretch) {
        bodies.push_back(
            MobilizedBody::Cylinder(
                matter.updMobilizedBody(getBodyIndex(0)), 
                Transform(PinAboutX, Vec3(getNominalCCBondLength(),0,0)),
                Body::Rigid(m1mp), Transform(PinAboutX, Vec3(0))));
    } else {
        bodies.push_back(
            MobilizedBody::Pin(
                matter.updMobilizedBody(getBodyIndex(0)),
                Transform(PinAboutX, Vec3(getNominalCCBondLength(),0,0)),
                Body::Rigid(m1mp), Transform(PinAboutX, Vec3(0))));
    }

    mm.attachClusterToBody(methyl[0], bodies[0], Transform());
    mm.attachClusterToBody(methyl[1], bodies[1], Transform( Rotation(180*DuMM::Deg2Rad,YAxis) ));
}

RigidEthane::RigidEthane(Real torsionAngleInDeg, MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
  : EthaneMolecule(pIx,Transform(),mmSys)
{
    SimbodyMatterSubsystem&  matter = 
        SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
    DuMMForceFieldSubsystem& mm     = mmSys.updMolecularMechanicsForceSubsystem();

    MobilizedBody& parent = matter.updMobilizedBody(parentIx);

    const DuMM::ClusterIndex wholeEthaneCluster = mm.createCluster("rigid ethane");

    // If we choose to treat the entire ethane molecule as a rigid body, we'll align 
    // the 1st methyl group's reference frame with the body frame, and transform the
    // second by rotating it 180 degrees about y and shifting it by the nominal C-C
    // bond length in the +x direction. We'll then rotate about x to produce
    // a desired conformation.    
    //    H00                        H10
    //      \   y            y1 z1   /
    //       \  |             | /  /
    //          C0 --> -- <-- C1  
    //         /     x    x1
    //        z 
    mm.placeClusterInCluster(methyl[0], wholeEthaneCluster,  Transform());
    mm.placeClusterInCluster(methyl[1], wholeEthaneCluster, 
        Transform( Rotation( SpaceRotationSequence, 180*DuMM::Deg2Rad, YAxis, torsionAngleInDeg, XAxis ),
                  Vec3(getNominalCCBondLength(),0,0)));

    // Align cluster reference frame with body's.
    bodies.push_back(
        MobilizedBody::Free(parent, Transform(),    // parent mobilizer frame Mb
            Body::Rigid(mm.calcClusterMassProperties(wholeEthaneCluster, Transform())), 
            Transform()));                          // body mobilizer frame M

    mm.attachClusterToBody(wholeEthaneCluster, bodies[0], Transform()); 
}

// We will orient the carbon atom's body frames in opposite 
// directions, rotating 180 degrees about Y.
//    H00                        H10
//      \   y0           y1 z1   /
//       \  |             | /  /
//          C0 --> -- <-- C1  
//         /     x0   x1
//        z0 
// The cylinder joint between C0 & C1 will be defined along the +x0 direction (-x1).
// The bend-stretch joints connecting the H's to their C's will bend around their C's
// z axis, so that a bend of +109.5 yields the nominal H angle on either side. The
// stretch coordinate then operates along the outboard (child) body's NEW x axis
// direction.
//
// Warning: the reference configuration (all coordinates 0) has all the atoms
// on top of one another; don't realize past the Model stage until you have called
// setDefaultInternalState().
//
// The "molecule frame" is considered to be identical with C0's body frame.
//
FloppyEthane::FloppyEthane(MobilizedBodyIndex pIx, MolecularMechanicsSystem& mmSys)
  : EthaneMolecule(pIx,Transform(),mmSys)
{
    SimbodyMatterSubsystem&  matter = 
        SimbodyMatterSubsystem::updDowncast(mmSys.updMatterSubsystem());
    DuMMForceFieldSubsystem& mm     = mmSys.updMolecularMechanicsForceSubsystem();

    MobilizedBody& parent = matter.updMobilizedBody(parentIx);

    // For C-C cylinder joint; rotation and translation are about the
    // Mobilizer frames' common Z axis.
    const Transform C0CylMobFrame( Rotation( 90*DuMM::Deg2Rad,YAxis) ); // move z to x0 direction
    const Transform C1CylMobFrame( Rotation(-90*DuMM::Deg2Rad,YAxis) ); // move z to -x1 direction
    const Transform HMobFrame;  // same as body frame for all H's

    // C0 is our base body, attached to parent by 6 dof joint
    bodies.push_back(
        MobilizedBody::Free(
            parent, Transform(),    // use parent body frame as reference
            Body::Rigid(MassProperties(mm.getAtomMass(getC(0)), Vec3(0), Inertia(0))),
            Transform()));          // use C0 body frame for Free mobilizer
    mm.attachAtomToBody(getC(0), bodies.back());

    // C1 is body 1, connected to C0 by a cylinder joint
    bodies.push_back(
        MobilizedBody::Cylinder(
            matter.updMobilizedBody(bodies[0]), C0CylMobFrame, 
            Body::Rigid(MassProperties(mm.getAtomMass(getC(1)), Vec3(0), Inertia(0))),
            C1CylMobFrame));
    mm.attachAtomToBody(getC(1), bodies.back());
           
    // Now attach 3 Hs to each C.
    for (int c=0; c<2; ++c) {
        const MobilizedBodyIndex Cbody = mm.getAtomBody(getC(c));
        for (int h=0; h<3; ++h) {
            const Transform CBendStretchMob(Rotation(h*120*DuMM::Deg2Rad,XAxis));
            bodies.push_back(
                MobilizedBody::BendStretch(
                    matter.updMobilizedBody(Cbody), CBendStretchMob,
                    Body::Rigid(MassProperties(mm.getAtomMass(getH(c,h)), Vec3(0), Inertia(0))),
                    HMobFrame));
            mm.attachAtomToBody(getH(c,h), bodies.back());
        }
    }
}

void FloppyEthane::setDefaultInternalState(State& s) const {
    // All the bodies (1 per atom) except the 0th are internal. We'll set all internal q's
    // to the appropriate nominal values for generic EthaneMolecules, and
    // set all the internal u's to zero

    // C1
    const MobilizedBodyIndex CBody = getDuMM().getAtomBody(getC(1));
    const MobilizedBody& b = getMatter().getMobilizedBody(CBody);
    b.setOneQ(s, 0, 0); // torsion;
    b.setOneQ(s, 1, getNominalCCBondLength()); // stretch
    b.setOneU(s, 0, 0); // torsion rate
    b.setOneU(s, 1, 0); // stretch rate

    // H (bend,stretch)
    for (int c=0; c<2; ++c)
        for (int h=0; h<3; ++h) {
            const MobilizedBodyIndex HBody = getDuMM().getAtomBody(getH(c,h));
            const MobilizedBody& b = getMatter().getMobilizedBody(HBody);
            b.setOneQ(s, 0, getNominalHCCBondAngle());
            b.setOneQ(s, 1, getNominalCHBondLength());
            b.setOneU(s, 0, 0);
            b.setOneU(s, 1, 0);
        }
}