1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
#include "Molmodel.h"
#include <iostream>
#if defined (__linux__)
# include <sys/sysinfo.h>
#include <unistd.h>
#elif defined(__APPLE__)
# include <mach/task.h>
# include <mach/mach_init.h>
#elif defined(_WINDOWS)
# include <windows.h>
# include "psapi.h"
#else
# include <sys/resource.h>
#endif
/// The amount of memory currently being used by this process, in bytes.
/// By default, returns the full virtual arena, but if resident=true,
/// it will report just the resident set in RAM (if supported on that OS).
size_t memory_used (bool resident=false)
{
#if defined(__linux__)
// Ugh, getrusage doesn't work well on Linux. Try grabbing info
// directly from the /proc pseudo-filesystem. Reading from
// /proc/self/statm gives info on your own process, as one line of
// numbers that are: virtual mem program size, resident set size,
// shared pages, text/code, data/stack, library, dirty pages. The
// mem sizes should all be multiplied by the page size.
size_t size = 0;
FILE *file = fopen("/proc/self/statm", "r");
if (file) {
unsigned long vm = 0;
fscanf (file, "%ul", &vm); // Just need the first num: vm size
fclose (file);
size = (size_t)vm * getpagesize();
}
return size;
#elif defined(__APPLE__)
// Inspired by:
// http://miknight.blogspot.com/2005/11/resident-set-size-in-mac-os-x.html
struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;
task_info(current_task(), TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count);
size_t size = (resident ? t_info.resident_size : t_info.virtual_size);
return size;
#elif defined(_WINDOWS)
// According to MSDN...
PROCESS_MEMORY_COUNTERS count;
if (GetProcessMemoryInfo (GetCurrentProcess(), &count, sizeof (count)))
return count.PagefileUsage;
else return 0;
#else
// No idea what platform this is
return 0; // Punt
#endif
}
#include <cstring>
#include <ctime>
using namespace SimTK;
using namespace std;
void testRnaResources(int sequenceLength)
{
time_t initialTime; time(&initialTime);
size_t initialMemFootprint = memory_used();
char resBuf[100];
RNA rna("", false);
for (int b = 0; b < sequenceLength; ++b) {
// itoa(b+1, resBuf, 10);
sprintf(resBuf, "%d", b+1);
rna.appendResidue(resBuf, RibonucleotideResidue::Adenylate().withPhosphodiester());
}
time_t compoundTime; time(&compoundTime);
size_t compoundMemFootprint = memory_used();
CompoundSystem system;
SimbodyMatterSubsystem matter(system);
GeneralForceSubsystem forces(system);
DuMMForceFieldSubsystem dumm(system);
dumm.loadAmber99Parameters();
dumm.setAllGlobalScaleFactors(0);
dumm.setBondTorsionGlobalScaleFactor(1);
rna.assignBiotypes();
system.adoptCompound(rna);
time_t preModelTime; time(&preModelTime);
system.modelCompounds();
time_t postModelTime; time(&postModelTime);
State state = system.realizeTopology();
system.realize(state, Stage::Position);
VerletIntegrator integrator(system, 1e-3);
TimeStepper timeStepper(system, integrator);
timeStepper.initialize(state);
timeStepper.stepTo(0.020);
time_t simTime; time(&simTime);
size_t systemMemFootprint = memory_used();
printf("Compound: %.2f Mb/%d bases", (compoundMemFootprint - initialMemFootprint)/1e6, sequenceLength);
printf("\tSystem: %.2f Mb/%d bases\n", (systemMemFootprint - compoundMemFootprint)/1e6, sequenceLength);
printf("Compound: %.2f s/%d bases", difftime(preModelTime, initialTime), sequenceLength);
printf("\tModel: %.2f s/%d bases", difftime(postModelTime, preModelTime), sequenceLength);
printf("\tSimulation: %.2f s/%d bases /0.020 ps\n", difftime(simTime, postModelTime), sequenceLength);
}
void testMemoryUse()
{
// testRnaResources(1);
testRnaResources(10);
// testRnaResources(100);
// testRnaResources(200);
testRnaResources(400);
// testRnaResources(800);
// testRnaResources(1600);
// testRnaResources(2000);
// testRnaResources(2200);
// testRnaResources(2300);
// testRnaResources(3000);
// testRnaResources(6000);
// testRnaResources(6200);
// testRnaResources(6250);
// testRnaResources(6260);
// testRnaResources(6270);
// testRnaResources(6280);
// testRnaResources(6282);
// testRnaResources(6284);
// testRnaResources(6285);
// testRnaResources(6286);
// testRnaResources(6288);
// testRnaResources(6290);
// testRnaResources(6300);
// testRnaResources(6350);
// testRnaResources(6400);
// testRnaResources(6450);
// testRnaResources(6500);
// testRnaResources(6700);
// testRnaResources(7000);
// testRnaResources(8000);
// testRnaResources(9000);
// testRnaResources(10000);
// testRnaResources(50000);
}
int main() {
try {
testMemoryUse();
cout << "PASSED" << endl;
return 0;
}
catch (const std::exception& e)
{
printf("EXCEPTION THROWN: %s\n", e.what());
return 1;
}
catch (...)
{
printf("UNKNOWN EXCEPTION THROWN\n");
} return 1;
}
|