1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
// btreeperf.cpp
/* Copyright 2010 10gen Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* Performance timing and space utilization testing for btree indexes.
*/
#include <iostream>
#include <boost/random/bernoulli_distribution.hpp>
#include <boost/random/geometric_distribution.hpp>
#include <boost/random/mersenne_twister.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/random/uniform_int.hpp>
#include "client/dbclient.h"
#include "../../util/timer.h"
using namespace std;
using namespace mongo;
using namespace boost;
const char *ns = "test.btreeperf";
const char *db = "test";
const char *index_collection = "btreeperf.$_id_";
// This random number generator has a much larger period than the default
// generator and is half as fast as the default. Given that we intend to
// generate large numbers of documents and will utilize more than one random
// sample per document, choosing this generator seems like a worthwhile tradeoff.
mt19937 randomNumberGenerator;
/**
* An interface for generating documents to be inserted and document specs for
* remove requests.
*/
class InsertAndRemoveStrategy {
public:
virtual ~InsertAndRemoveStrategy() {}
virtual BSONObj insertObj() = 0;
virtual BSONObj removeObj() = 0;
protected:
/**
* Helper functions for converting a sample value to a sample object with
* specified _id, to be inserted or removed.
*/
template< class T >
BSONObj insertObjWithVal( const T &val ) {
BSONObjBuilder b;
b.append( "_id", val );
return b.obj();
}
template< class T >
BSONObj removeObjWithVal( const T &val ) {
BSONObjBuilder b;
b.append( "_id", val );
return b.obj();
}
};
/**
* Manages a set of elements of type T. Supports inserting unique elements and
* sampling a random element without replacement.
*
* TODO In the contexts where this class is currently used, duplicate keys are
* either impossible or highly unlikely. And an occasional duplicate value will
* not much affect the procedure by wich a random element is chosen. We could
* stop checking for duplicates in push(), eliminate _set from the implementaiton,
* and potentially improve performance and memory requirements somewhat.
*/
template< class T >
class SetSampler {
public:
/** @param val Insert this value in the set if not already present. */
void push( const T& val ) {
if ( _set.insert( val ).second ) {
_vector.push_back( val );
}
}
/** @return a random element removed from the set */
T pull() {
if ( _vector.size() == 0 ) {
return T();
}
uniform_int< size_t > sizeRange( 0, _vector.size() - 1 );
variate_generator< mt19937&, uniform_int< size_t > > sizeGenerator( randomNumberGenerator, sizeRange );
size_t toRemove = sizeGenerator();
T val = _vector[ toRemove ];
// Replace the random element with the last element, then remove the
// last element.
_vector[ toRemove ] = _vector.back();
_vector.pop_back();
_set.erase( val );
return val;
}
private:
vector< T > _vector;
set< T > _set;
};
/**
* Tracks values that have been specified for insertion by the derived class's
* implementation of insertVal() and selects uniformally from among values that
* have been inserted but not yet removed for the next value to remove.
*
* The implementation is probabilistically sound, but may be resource intensive
* and slow due to the use of a SetSampler.
*/
template< class T >
class InsertAndUniformRemoveStrategy : public InsertAndRemoveStrategy {
public:
virtual BSONObj insertObj() {
T val = insertVal();
_sampler.push( val );
return insertObjWithVal( val );
}
virtual BSONObj removeObj() { return removeObjWithVal( _sampler.pull() ); }
protected:
/** @return value to insert. This is the only function a derived class need implement. */
virtual T insertVal() = 0;
private:
SetSampler< T > _sampler;
};
/**
* The derived class supplies keys to be inserted and removed. The key removal
* strategy is similar to the strategy for selecting a random element described
* in the MongoDB cookbook: the first key in the collection greater than or
* equal to the supplied removal key is removed. This allows selecting an
* exising key for removal without the overhead required by a SetSampler.
*
* While this ranged selection strategy can work well for selecting a random
* element, there are some theoretical and empirically observed shortcomings
* when the strategy is applied to removing nodes for btree performance measurement:
* 1 The likelihood that a given key is removed is proportional to the difference
* in value between it and the previous key. Because key deletion increases
* the difference in value between adjacent keys, neighboring keys will be
* more likely to be deleted than they would be in a true uniform distribution.
* 2 MongoDB 1.6 uses 'unused' nodes in the btree implementation. With a ranged
* removal strategy, those nodes must be traversed to find a node available
* for removal.
* 3 Ranged removal was observed to be biased against the balancing policy of
* MongoDB 1.7 in some cases, in terms of storage size. This may be a
* consequence of point 1 above.
* 4 Ranged removal was observed to be significantly biased against the btree
* implementation in MongoDB 1.6 in terms of performance. This is likely a
* consequence of point 2 above.
* 5 In some cases the biases described above were not evident in tests lasting
* several minutes, but were evident in tests lasting several hours.
*/
template< class T >
class InsertAndRangedRemoveStrategy : public InsertAndRemoveStrategy {
public:
virtual BSONObj insertObj() { return insertObjWithVal( insertVal() ); }
virtual BSONObj removeObj() { return rangedRemoveObjWithVal( removeVal() ); }
protected:
/** Small likelihood that this removal spec will not match any document */
template< class U >
BSONObj rangedRemoveObjWithVal( const U &val ) {
BSONObjBuilder b1;
BSONObjBuilder b2( b1.subobjStart( "_id" ) );
b2.append( "$gte", val );
b2.done();
return b1.obj();
}
virtual T insertVal() = 0;
virtual T removeVal() = 0;
};
/**
* Integer Keys
* Uniform Inserts
* Uniform Removes
*/
class UniformInsertRangedUniformRemoveInteger : public InsertAndRangedRemoveStrategy< long long > {
public:
UniformInsertRangedUniformRemoveInteger() :
_uniform_int( 0ULL, ~0ULL ),
_nextLongLong( randomNumberGenerator, _uniform_int ) {
}
/** Small likelihood of duplicates */
virtual long long insertVal() { return _nextLongLong(); }
virtual long long removeVal() { return _nextLongLong(); }
private:
uniform_int< unsigned long long > _uniform_int;
variate_generator< mt19937&, uniform_int< unsigned long long > > _nextLongLong;
};
class UniformInsertUniformRemoveInteger : public InsertAndUniformRemoveStrategy< long long > {
public:
virtual long long insertVal() { return _gen.insertVal(); }
private:
UniformInsertRangedUniformRemoveInteger _gen;
};
/**
* String Keys
* Uniform Inserts
* Uniform Removes
*/
class UniformInsertRangedUniformRemoveString : public InsertAndRangedRemoveStrategy< string > {
public:
UniformInsertRangedUniformRemoveString() :
_geometric_distribution( 0.9 ),
_nextLength( randomNumberGenerator, _geometric_distribution ),
_uniform_char( 'a', 'z' ),
_nextChar( randomNumberGenerator, _uniform_char ) {
}
/** Small likelihood of duplicates */
virtual string insertVal() { return nextString(); }
virtual string removeVal() { return nextString(); }
private:
string nextString() {
// The longer the minimum string length, the lower the likelihood of duplicates
int len = _nextLength() + 5;
len = len > 100 ? 100 : len;
string ret( len, 'x' );
for( int i = 0; i < len; ++i ) {
ret[ i ] = _nextChar();
}
return ret;
}
geometric_distribution<> _geometric_distribution;
variate_generator< mt19937&, geometric_distribution<> > _nextLength;
uniform_int< char > _uniform_char;
variate_generator< mt19937&, uniform_int< char > > _nextChar;
};
class UniformInsertUniformRemoveString : public InsertAndUniformRemoveStrategy< string > {
public:
virtual string insertVal() { return _gen.insertVal(); }
private:
UniformInsertRangedUniformRemoveString _gen;
};
/**
* OID Keys
* Increasing Inserts
* Uniform Removes
*/
class IncreasingInsertRangedUniformRemoveOID : public InsertAndRangedRemoveStrategy< OID > {
public:
IncreasingInsertRangedUniformRemoveOID() :
_max( -1 ) {
}
virtual OID insertVal() { return oidFromULL( ++_max ); }
virtual OID removeVal() {
uniform_int< unsigned long long > distribution( 0, _max > 0 ? _max : 0 );
variate_generator< mt19937&, uniform_int< unsigned long long > > generator( randomNumberGenerator, distribution );
return oidFromULL( generator() );
}
private:
static OID oidFromULL( unsigned long long val ) {
val = __builtin_bswap64( val );
OID oid;
oid.clear();
memcpy( (char*)&oid + 4, &val, 8 );
return oid;
}
long long _max;
};
class IncreasingInsertUniformRemoveOID : public InsertAndUniformRemoveStrategy< OID > {
public:
virtual OID insertVal() { return _gen.insertVal(); }
private:
IncreasingInsertRangedUniformRemoveOID _gen;
};
/**
* Integer Keys
* Increasing Inserts
* Increasing Removes (on remove, the lowest key is always removed)
*/
class IncreasingInsertIncreasingRemoveInteger : public InsertAndRemoveStrategy {
public:
IncreasingInsertIncreasingRemoveInteger() :
// Start with a large value so data type will be preserved if we round
// trip through json.
_min( 1LL << 32 ),
_max( 1LL << 32 ) {
}
virtual BSONObj insertObj() { return insertObjWithVal( ++_max ); }
virtual BSONObj removeObj() { return removeObjWithVal( _min < _max ? ++_min : _min ); }
private:
long long _min;
long long _max;
};
/** Generate a random boolean value. */
class BernoulliGenerator {
public:
/**
* @param excessFalsePercent This specifies the desired rate of false values
* vs true values. If we want false to be 5% more likely than true, we
* specify 5 for this argument.
*/
BernoulliGenerator( int excessFalsePercent ) :
_bernoulli_distribution( 1.0 / ( 2.0 + excessFalsePercent / 100.0 ) ),
_generator( randomNumberGenerator, _bernoulli_distribution ) {
}
bool operator()() { return _generator(); }
private:
bernoulli_distribution<> _bernoulli_distribution;
variate_generator< mt19937&, bernoulli_distribution<> > _generator;
};
/** Runs a strategy on a connection, with specified mix of inserts and removes. */
class InsertAndRemoveRunner {
public:
InsertAndRemoveRunner( DBClientConnection &conn, InsertAndRemoveStrategy &strategy, int excessInsertPercent ) :
_conn( conn ),
_strategy( strategy ),
_nextOpTypeRemove( excessInsertPercent ) {
}
void writeOne() {
if ( _nextOpTypeRemove() ) {
_conn.remove( ns, _strategy.removeObj(), true );
}
else {
_conn.insert( ns, _strategy.insertObj() );
}
}
private:
DBClientConnection &_conn;
InsertAndRemoveStrategy &_strategy;
BernoulliGenerator _nextOpTypeRemove;
};
/**
* Writes a test script to cout based on a strategy and specified mix of inserts
* and removes. The script can be subsequently executed by InsertAndRemoveRunner.
* Script generation is intended for strategies that are memory or cpu intensive
* and might either divert resources from a mongod instance being analyzed on the
* same machine or fail to generate requests as quickly as the mongod might
* accept them.
* The script contains one line per operation. Each line begins
* with a letter indicating the operation type, followed by a space. Next
* follows the json representation of a document for the specified operation
* type.
*/
class InsertAndRemoveScriptGenerator {
public:
InsertAndRemoveScriptGenerator( InsertAndRemoveStrategy &strategy, int excessInsertPercent ) :
_strategy( strategy ),
_nextOpTypeRemove( excessInsertPercent ) {
}
void writeOne() {
if ( _nextOpTypeRemove() ) {
cout << "r " << _strategy.removeObj().jsonString() << endl;
}
else {
cout << "i " << _strategy.insertObj().jsonString() << endl;
}
}
private:
InsertAndRemoveStrategy &_strategy;
BernoulliGenerator _nextOpTypeRemove;
};
/**
* Run a test script from cin that was generated by
* InsertAndRemoveScriptGenerator. Running the script is intended to be
* lightweight in terms of memory and cpu usage, and fast.
*/
class InsertAndRemoveScriptRunner {
public:
InsertAndRemoveScriptRunner( DBClientConnection &conn ) :
_conn( conn ) {
}
void writeOne() {
cin.getline( _buf, 1024 );
BSONObj val = fromjson( _buf + 2 );
if ( _buf[ 0 ] == 'r' ) {
_conn.remove( ns, val, true );
}
else {
_conn.insert( ns, val );
}
}
private:
DBClientConnection &_conn;
char _buf[ 1024 ];
};
int main( int argc, const char **argv ) {
DBClientConnection conn;
conn.connect( "127.0.0.1:27017" );
conn.dropCollection( ns );
// UniformInsertRangedUniformRemoveInteger strategy;
// UniformInsertUniformRemoveInteger strategy;
// UniformInsertRangedUniformRemoveString strategy;
// UniformInsertUniformRemoveString strategy;
// IncreasingInsertRangedUniformRemoveOID strategy;
// IncreasingInsertUniformRemoveOID strategy;
// IncreasingInsertIncreasingRemoveInteger strategy;
// InsertAndRemoveScriptGenerator runner( strategy, 5 );
InsertAndRemoveScriptRunner runner( conn );
Timer t;
BSONObj statsCmd = BSON( "collstats" << index_collection );
// Print header, unless we are generating a script (in that case, comment this out).
cout << "ops,milliseconds,docs,totalBucketSize" << endl;
long long i = 0;
long long n = 10000000000;
while( i < n ) {
runner.writeOne();
// Print statistics, unless we are generating a script (in that case, comment this out).
// The stats collection requests below provide regular read operations,
// ensuring we are caught up with the progress being made by the mongod
// under analysis.
if ( ++i % 50000 == 0 ) {
// The total number of documents present.
long long docs = conn.count( ns );
BSONObj result;
conn.runCommand( db, statsCmd, result );
// The total number of bytes used for all allocated 8K buckets of the
// btree.
long long totalBucketSize = result.getField( "count" ).numberLong() * 8192;
cout << i << ',' << t.millis() << ',' << docs << ',' << totalBucketSize << endl;
}
}
}
|