1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
// Copyright (c) Microsoft Open Technologies, Inc. All rights reserved. See License.txt in the project root for license information.
#if !NO_PERF
using System;
using System.Diagnostics;
using System.Reactive.Concurrency;
using System.Reactive.Disposables;
using System.Threading;
namespace System.Reactive.Linq.ObservableImpl
{
class Timer : Producer<long>
{
private readonly DateTimeOffset? _dueTimeA;
private readonly TimeSpan? _dueTimeR;
private readonly TimeSpan? _period;
private readonly IScheduler _scheduler;
public Timer(DateTimeOffset dueTime, TimeSpan? period, IScheduler scheduler)
{
_dueTimeA = dueTime;
_period = period;
_scheduler = scheduler;
}
public Timer(TimeSpan dueTime, TimeSpan? period, IScheduler scheduler)
{
_dueTimeR = dueTime;
_period = period;
_scheduler = scheduler;
}
protected override IDisposable Run(IObserver<long> observer, IDisposable cancel, Action<IDisposable> setSink)
{
if (_period.HasValue)
{
var sink = new TimerImpl(this, observer, cancel);
setSink(sink);
return sink.Run();
}
else
{
var sink = new _(this, observer, cancel);
setSink(sink);
return sink.Run();
}
}
class _ : Sink<long>
{
private readonly Timer _parent;
public _(Timer parent, IObserver<long> observer, IDisposable cancel)
: base(observer, cancel)
{
_parent = parent;
}
public IDisposable Run()
{
if (_parent._dueTimeA.HasValue)
{
return _parent._scheduler.Schedule(_parent._dueTimeA.Value, Invoke);
}
else
{
return _parent._scheduler.Schedule(_parent._dueTimeR.Value, Invoke);
}
}
private void Invoke()
{
base._observer.OnNext(0);
base._observer.OnCompleted();
base.Dispose();
}
}
class TimerImpl : Sink<long>
{
private readonly Timer _parent;
private readonly TimeSpan _period;
public TimerImpl(Timer parent, IObserver<long> observer, IDisposable cancel)
: base(observer, cancel)
{
_parent = parent;
_period = _parent._period.Value;
}
public IDisposable Run()
{
if (_parent._dueTimeA.HasValue)
{
var dueTime = _parent._dueTimeA.Value;
return _parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
}
else
{
var dueTime = _parent._dueTimeR.Value;
//
// Optimize for the case of Observable.Interval.
//
if (dueTime == _period)
{
return _parent._scheduler.SchedulePeriodic(0L, _period, (Func<long, long>)Tick);
}
return _parent._scheduler.Schedule(default(object), dueTime, InvokeStart);
}
}
//
// BREAKING CHANGE v2 > v1.x - No more correction for time drift based on absolute time. This
// didn't work for large period values anyway; the fractional
// error exceeded corrections. Also complicated dealing with system
// clock change conditions and caused numerous bugs.
//
// - For more precise scheduling, use a custom scheduler that measures TimeSpan values in a
// better way, e.g. spinning to make up for the last part of the period. Whether or not the
// values of the TimeSpan period match NT time or wall clock time is up to the scheduler.
//
// - For more accurate scheduling wrt the system clock, use Generate with DateTimeOffset time
// selectors. When the system clock changes, intervals will not be the same as diffs between
// consecutive absolute time values. The precision will be low (1s range by default).
//
private long Tick(long count)
{
base._observer.OnNext(count);
return unchecked(count + 1);
}
private int _pendingTickCount;
private IDisposable _periodic;
private IDisposable InvokeStart(IScheduler self, object state)
{
//
// Notice the first call to OnNext will introduce skew if it takes significantly long when
// using the following naive implementation:
//
// Code: base._observer.OnNext(0L);
// return self.SchedulePeriodicEmulated(1L, _period, (Func<long, long>)Tick);
//
// What we're saying here is that Observable.Timer(dueTime, period) is pretty much the same
// as writing Observable.Timer(dueTime).Concat(Observable.Interval(period)).
//
// Expected: dueTime
// |
// 0--period--1--period--2--period--3--period--4--...
// |
// +-OnNext(0L)-|
//
// Actual: dueTime
// |
// 0------------#--period--1--period--2--period--3--period--4--...
// |
// +-OnNext(0L)-|
//
// Different solutions for this behavior have different problems:
//
// 1. Scheduling the periodic job first and using an AsyncLock to serialize the OnNext calls
// has the drawback that InvokeStart may never return. This happens when every callback
// doesn't meet the period's deadline, hence the periodic job keeps queueing stuff up. In
// this case, InvokeStart stays the owner of the AsyncLock and the call to Wait will never
// return, thus not allowing any interleaving of work on this scheduler's logical thread.
//
// 2. Scheduling the periodic job first and using a (blocking) synchronization primitive to
// signal completion of the OnNext(0L) call to the Tick call requires quite a bit of state
// and careful handling of the case when OnNext(0L) throws. What's worse is the blocking
// behavior inside Tick.
//
// In order to avoid blocking behavior, we need a scheme much like SchedulePeriodic emulation
// where work to dispatch OnNext(n + 1) is delegated to a catch up loop in case OnNext(n) was
// still running. Because SchedulePeriodic emulation exhibits such behavior in all cases, we
// only need to deal with the overlap of OnNext(0L) with future periodic OnNext(n) dispatch
// jobs. In the worst case where every callback takes longer than the deadline implied by the
// period, the periodic job will just queue up work that's dispatched by the tail-recursive
// catch up loop. In the best case, all work will be dispatched on the periodic scheduler.
//
//
// We start with one tick pending because we're about to start doing OnNext(0L).
//
_pendingTickCount = 1;
var d = new SingleAssignmentDisposable();
_periodic = d;
d.Disposable = self.SchedulePeriodic(1L, _period, (Func<long, long>)Tock);
try
{
base._observer.OnNext(0L);
}
catch (Exception e)
{
d.Dispose();
e.Throw();
}
//
// If the periodic scheduling job already ran before we finished dispatching the OnNext(0L)
// call, we'll find pendingTickCount to be > 1. In this case, we need to catch up by dispatching
// subsequent calls to OnNext as fast as possible, but without running a loop in order to ensure
// fair play with the scheduler. So, we run a tail-recursive loop in CatchUp instead.
//
if (Interlocked.Decrement(ref _pendingTickCount) > 0)
{
var c = new SingleAssignmentDisposable();
c.Disposable = self.Schedule(1L, CatchUp);
return new CompositeDisposable(2) { d, c };
}
return d;
}
private long Tock(long count)
{
//
// Notice the handler for (emulated) periodic scheduling is non-reentrant.
//
// When there's no overlap with the OnNext(0L) call, the following code will cycle through
// pendingTickCount 0 -> 1 -> 0 for the remainder of the timer's execution.
//
// If there's overlap with the OnNext(0L) call, pendingTickCount will increase to record
// the number of catch up OnNext calls required, which will be dispatched by the recursive
// scheduling loop in CatchUp (which quits when it reaches 0 pending ticks).
//
if (Interlocked.Increment(ref _pendingTickCount) == 1)
{
base._observer.OnNext(count);
Interlocked.Decrement(ref _pendingTickCount);
}
return unchecked(count + 1);
}
private void CatchUp(long count, Action<long> recurse)
{
try
{
base._observer.OnNext(count);
}
catch (Exception e)
{
_periodic.Dispose();
e.Throw();
}
//
// We can simply bail out if we decreased the tick count to 0. In that case, the Tock
// method will take over when it sees the 0 -> 1 transition.
//
if (Interlocked.Decrement(ref _pendingTickCount) > 0)
{
recurse(unchecked(count + 1));
}
}
}
}
}
#endif
|