File: ReaderWriterLockSlim.cs

package info (click to toggle)
mono-reference-assemblies 3.12.1%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 604,240 kB
  • ctags: 625,505
  • sloc: cs: 3,967,741; xml: 2,793,081; ansic: 418,042; java: 60,435; sh: 14,833; makefile: 11,576; sql: 7,956; perl: 1,467; cpp: 1,446; yacc: 1,203; python: 598; asm: 422; sed: 16; php: 1
file content (588 lines) | stat: -rw-r--r-- 17,828 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
//
// System.Threading.ReaderWriterLockSlim.cs
//
// Author:
//       Jérémie "Garuma" Laval <jeremie.laval@gmail.com>
//
// Copyright (c) 2010 Jérémie "Garuma" Laval
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
// 
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//

using System;
using System.Collections;
using System.Collections.Generic;
using System.Security.Permissions;
using System.Diagnostics;
using System.Threading;
using System.Runtime.CompilerServices;

namespace System.Threading {

	[HostProtectionAttribute(SecurityAction.LinkDemand, MayLeakOnAbort = true)]
	[HostProtectionAttribute(SecurityAction.LinkDemand, Synchronization = true, ExternalThreading = true)]
	public class ReaderWriterLockSlim : IDisposable
	{
		/* Position of each bit isn't really important 
		 * but their relative order is
		 */
		const int RwReadBit = 3;

		/* These values are used to manipulate the corresponding flags in rwlock field
		 */
		const int RwWait = 1;
		const int RwWaitUpgrade = 2;
		const int RwWrite = 4;
		const int RwRead = 8;

		/* Some explanations: this field is the central point of the lock and keep track of all the requests
		 * that are being made. The 3 lowest bits are used as flag to track "destructive" lock entries
		 * (i.e attempting to take the write lock with or without having acquired an upgradeable lock beforehand).
		 * All the remaining bits are intepreted as the actual number of reader currently using the lock
		 * (which mean the lock is limited to 2^29 concurrent readers but since it's a high number there
		 * is no overflow safe guard to remain simple).
		 */
		int rwlock;
		
		readonly LockRecursionPolicy recursionPolicy;
		readonly bool noRecursion;

		AtomicBoolean upgradableTaken = new AtomicBoolean ();

		/* These events are just here for the sake of having a CPU-efficient sleep
		 * when the wait for acquiring the lock is too long
		 */
#if NET_4_0
		ManualResetEventSlim upgradableEvent = new ManualResetEventSlim (true);
		ManualResetEventSlim writerDoneEvent = new ManualResetEventSlim (true);
		ManualResetEventSlim readerDoneEvent = new ManualResetEventSlim (true);
#else
		ManualResetEvent upgradableEvent = new ManualResetEvent (true);
		ManualResetEvent writerDoneEvent = new ManualResetEvent (true);
		ManualResetEvent readerDoneEvent = new ManualResetEvent (true);
#endif

		// This Stopwatch instance is used for all threads since .Elapsed is thread-safe
		readonly static Stopwatch sw = Stopwatch.StartNew ();

		/* For performance sake, these numbers are manipulated via classic increment and
		 * decrement operations and thus are (as hinted by MSDN) not meant to be precise
		 */
		int numReadWaiters, numUpgradeWaiters, numWriteWaiters;
		bool disposed;

		static int idPool = int.MinValue;
		readonly int id = Interlocked.Increment (ref idPool);

		/* This dictionary is instanciated per thread for all existing ReaderWriterLockSlim instance.
		 * Each instance is defined by an internal integer id value used as a key in the dictionary.
		 * to avoid keeping unneeded reference to the instance and getting in the way of the GC.
		 * Since there is no LockCookie type here, all the useful per-thread infos concerning each
		 * instance are kept here.
		 */
		[ThreadStatic]
		static Dictionary<int, ThreadLockState> currentThreadState;

		/* Rwls tries to use this array as much as possible to quickly retrieve the thread-local
		 * informations so that it ends up being only an array lookup. When the number of thread
		 * using the instance goes past the length of the array, the code fallback to the normal
		 * dictionary
		 */
		ThreadLockState[] fastStateCache = new ThreadLockState[64];

		public ReaderWriterLockSlim () : this (LockRecursionPolicy.NoRecursion)
		{
		}

		public ReaderWriterLockSlim (LockRecursionPolicy recursionPolicy)
		{
			this.recursionPolicy = recursionPolicy;
			this.noRecursion = recursionPolicy == LockRecursionPolicy.NoRecursion;
		}

		public void EnterReadLock ()
		{
			TryEnterReadLock (-1);
		}

		public bool TryEnterReadLock (int millisecondsTimeout)
		{
			bool dummy = false;
			return TryEnterReadLock (millisecondsTimeout, ref dummy);
		}

		bool TryEnterReadLock (int millisecondsTimeout, ref bool success)
		{
			ThreadLockState ctstate = CurrentThreadState;

			if (CheckState (ctstate, millisecondsTimeout, LockState.Read)) {
				++ctstate.ReaderRecursiveCount;
				return true;
			}

			// This is downgrading from upgradable, no need for check since
			// we already have a sort-of read lock that's going to disappear
			// after user calls ExitUpgradeableReadLock.
			// Same idea when recursion is allowed and a write thread wants to
			// go for a Read too.
			if (ctstate.LockState.Has (LockState.Upgradable)
			    || (!noRecursion && ctstate.LockState.Has (LockState.Write))) {
				RuntimeHelpers.PrepareConstrainedRegions ();
				try {}
				finally {
					Interlocked.Add (ref rwlock, RwRead);
					ctstate.LockState |= LockState.Read;
					++ctstate.ReaderRecursiveCount;
					success = true;
				}

				return true;
			}
			
			++numReadWaiters;
			int val = 0;
			long start = millisecondsTimeout == -1 ? 0 : sw.ElapsedMilliseconds;

			do {
				/* Check if a writer is present (RwWrite) or if there is someone waiting to
				 * acquire a writer lock in the queue (RwWait | RwWaitUpgrade).
				 */
				if ((rwlock & (RwWrite | RwWait | RwWaitUpgrade)) > 0) {
					writerDoneEvent.Wait (ComputeTimeout (millisecondsTimeout, start));
					continue;
				}

				/* Optimistically try to add ourselves to the reader value
				 * if the adding was too late and another writer came in between
				 * we revert the operation.
				 */
				RuntimeHelpers.PrepareConstrainedRegions ();
				try {}
				finally {
					if (((val = Interlocked.Add (ref rwlock, RwRead)) & (RwWrite | RwWait | RwWaitUpgrade)) == 0) {
						/* If we are the first reader, reset the event to let other threads
						 * sleep correctly if they try to acquire write lock
						 */
						if (val >> RwReadBit == 1)
							readerDoneEvent.Reset ();

						ctstate.LockState ^= LockState.Read;
						++ctstate.ReaderRecursiveCount;
						--numReadWaiters;
						success = true;
					} else {
						Interlocked.Add (ref rwlock, -RwRead);
					}
				}
				if (success)
					return true;

				writerDoneEvent.Wait (ComputeTimeout (millisecondsTimeout, start));
			} while (millisecondsTimeout == -1 || (sw.ElapsedMilliseconds - start) < millisecondsTimeout);

			--numReadWaiters;
			return false;
		}

		public bool TryEnterReadLock (TimeSpan timeout)
		{
			return TryEnterReadLock (CheckTimeout (timeout));
		}

		public void ExitReadLock ()
		{
			RuntimeHelpers.PrepareConstrainedRegions ();
			try {}
			finally {
				ThreadLockState ctstate = CurrentThreadState;

				if (!ctstate.LockState.Has (LockState.Read))
					throw new SynchronizationLockException ("The current thread has not entered the lock in read mode");

				if (--ctstate.ReaderRecursiveCount == 0) {
					ctstate.LockState ^= LockState.Read;
					if (Interlocked.Add (ref rwlock, -RwRead) >> RwReadBit == 0)
						readerDoneEvent.Set ();
				}
			}
		}

		public void EnterWriteLock ()
		{
			TryEnterWriteLock (-1);
		}
		
		public bool TryEnterWriteLock (int millisecondsTimeout)
		{
			ThreadLockState ctstate = CurrentThreadState;

			if (CheckState (ctstate, millisecondsTimeout, LockState.Write)) {
				++ctstate.WriterRecursiveCount;
				return true;
			}

			++numWriteWaiters;
			bool isUpgradable = ctstate.LockState.Has (LockState.Upgradable);
			bool registered = false;
			bool success = false;

			RuntimeHelpers.PrepareConstrainedRegions ();
			try {
				/* If the code goes there that means we had a read lock beforehand
				 * that need to be suppressed, we also take the opportunity to register
				 * our interest in the write lock to avoid other write wannabe process
				 * coming in the middle
				 */
				if (isUpgradable && rwlock >= RwRead) {
					try {}
					finally {
						if (Interlocked.Add (ref rwlock, RwWaitUpgrade - RwRead) >> RwReadBit == 0)
							readerDoneEvent.Set ();
						registered = true;
					}
				}

				int stateCheck = isUpgradable ? RwWaitUpgrade + RwWait : RwWait;
				long start = millisecondsTimeout == -1 ? 0 : sw.ElapsedMilliseconds;
				int registration = isUpgradable ? RwWaitUpgrade : RwWait;

				do {
					int state = rwlock;

					if (state <= stateCheck) {
						try {}
						finally {
							var toWrite = state + RwWrite - (registered ? registration : 0);
							if (Interlocked.CompareExchange (ref rwlock, toWrite, state) == state) {
								writerDoneEvent.Reset ();
								ctstate.LockState ^= LockState.Write;
								++ctstate.WriterRecursiveCount;
								--numWriteWaiters;
								registered = false;
								success = true;
							}
						}
						if (success)
							return true;
					}

					state = rwlock;

					// We register our interest in taking the Write lock (if upgradeable it's already done)
					if (!isUpgradable) {
						while ((state & RwWait) == 0) {
							try {}
							finally {
								if (Interlocked.CompareExchange (ref rwlock, state | RwWait, state) == state)
									registered = true;
							}
							if (registered)
								break;
							state = rwlock;
						}
					}

					// Before falling to sleep
					do {
						if (rwlock <= stateCheck)
							break;
						if ((rwlock & RwWrite) != 0)
							writerDoneEvent.Wait (ComputeTimeout (millisecondsTimeout, start));
						else if ((rwlock >> RwReadBit) > 0)
							readerDoneEvent.Wait (ComputeTimeout (millisecondsTimeout, start));
					} while (millisecondsTimeout < 0 || (sw.ElapsedMilliseconds - start) < millisecondsTimeout);
				} while (millisecondsTimeout < 0 || (sw.ElapsedMilliseconds - start) < millisecondsTimeout);

				--numWriteWaiters;
			} finally {
				if (registered)
					Interlocked.Add (ref rwlock, isUpgradable ? -RwWaitUpgrade : -RwWait);
			}

			return false;
		}

		public bool TryEnterWriteLock (TimeSpan timeout)
		{
			return TryEnterWriteLock (CheckTimeout (timeout));
		}

		public void ExitWriteLock ()
		{
			RuntimeHelpers.PrepareConstrainedRegions ();
			try {}
			finally {
				ThreadLockState ctstate = CurrentThreadState;

				if (!ctstate.LockState.Has (LockState.Write))
					throw new SynchronizationLockException ("The current thread has not entered the lock in write mode");
			
				if (--ctstate.WriterRecursiveCount == 0) {
					bool isUpgradable = ctstate.LockState.Has (LockState.Upgradable);
					ctstate.LockState ^= LockState.Write;

					int value = Interlocked.Add (ref rwlock, isUpgradable ? RwRead - RwWrite : -RwWrite);
					writerDoneEvent.Set ();
					if (isUpgradable && value >> RwReadBit == 1)
						readerDoneEvent.Reset ();
				}
			}
		}

		public void EnterUpgradeableReadLock ()
		{
			TryEnterUpgradeableReadLock (-1);
		}

		//
		// Taking the Upgradable read lock is like taking a read lock
		// but we limit it to a single upgradable at a time.
		//
		public bool TryEnterUpgradeableReadLock (int millisecondsTimeout)
		{
			ThreadLockState ctstate = CurrentThreadState;

			if (CheckState (ctstate, millisecondsTimeout, LockState.Upgradable)) {
				++ctstate.UpgradeableRecursiveCount;
				return true;
			}

			if (ctstate.LockState.Has (LockState.Read))
				throw new LockRecursionException ("The current thread has already entered read mode");

			++numUpgradeWaiters;
			long start = millisecondsTimeout == -1 ? 0 : sw.ElapsedMilliseconds;
			bool taken = false;
			bool success = false;

			// We first try to obtain the upgradeable right
			try {
				while (!upgradableEvent.IsSet () || !taken) {
					try {}
					finally {
						taken = upgradableTaken.TryRelaxedSet ();
					}
					if (taken)
						break;
					if (millisecondsTimeout != -1 && (sw.ElapsedMilliseconds - start) > millisecondsTimeout) {
						--numUpgradeWaiters;
						return false;
					}

					upgradableEvent.Wait (ComputeTimeout (millisecondsTimeout, start));
				}

				upgradableEvent.Reset ();

				RuntimeHelpers.PrepareConstrainedRegions ();
				try {
					// Then it's a simple reader lock acquiring
					TryEnterReadLock (ComputeTimeout (millisecondsTimeout, start), ref success);
				} finally {
					if (success) {
						ctstate.LockState |= LockState.Upgradable;
						ctstate.LockState &= ~LockState.Read;
						--ctstate.ReaderRecursiveCount;
						++ctstate.UpgradeableRecursiveCount;
					} else {
						upgradableTaken.Value = false;
						upgradableEvent.Set ();
					}
				}

				--numUpgradeWaiters;
			} catch {
				// An async exception occured, if we had taken the upgradable mode, release it
				if (taken && !success)
					upgradableTaken.Value = false;
			}

			return success;
		}

		public bool TryEnterUpgradeableReadLock (TimeSpan timeout)
		{
			return TryEnterUpgradeableReadLock (CheckTimeout (timeout));
		}
	       
		public void ExitUpgradeableReadLock ()
		{
			RuntimeHelpers.PrepareConstrainedRegions ();
			try {}
			finally {
				ThreadLockState ctstate = CurrentThreadState;

				if (!ctstate.LockState.Has (LockState.Upgradable | LockState.Read))
					throw new SynchronizationLockException ("The current thread has not entered the lock in upgradable mode");

				if (--ctstate.UpgradeableRecursiveCount == 0) {
					upgradableTaken.Value = false;
					upgradableEvent.Set ();

					ctstate.LockState &= ~LockState.Upgradable;
					if (Interlocked.Add (ref rwlock, -RwRead) >> RwReadBit == 0)
						readerDoneEvent.Set ();
				}
			}

		}

		public void Dispose ()
		{
			if (disposed)
				return;

			if (IsReadLockHeld || IsUpgradeableReadLockHeld || IsWriteLockHeld)
				throw new SynchronizationLockException ("The lock is being disposed while still being used");

			disposed = true;
		}

		public bool IsReadLockHeld {
			get {
				return rwlock >= RwRead && CurrentThreadState.LockState.Has (LockState.Read);
			}
		}

		public bool IsWriteLockHeld {
			get {
				return (rwlock & RwWrite) > 0 && CurrentThreadState.LockState.Has (LockState.Write);
			}
		}
		
		public bool IsUpgradeableReadLockHeld {
			get {
				return upgradableTaken.Value && CurrentThreadState.LockState.Has (LockState.Upgradable);
			}
		}

		public int CurrentReadCount {
			get {
				return (rwlock >> RwReadBit) - (upgradableTaken.Value ? 1 : 0);
			}
		}
		
		public int RecursiveReadCount {
			get {
				return CurrentThreadState.ReaderRecursiveCount;
			}
		}

		public int RecursiveUpgradeCount {
			get {
				return CurrentThreadState.UpgradeableRecursiveCount;
			}
		}

		public int RecursiveWriteCount {
			get {
				return CurrentThreadState.WriterRecursiveCount;
			}
		}

		public int WaitingReadCount {
			get {
				return numReadWaiters;
			}
		}

		public int WaitingUpgradeCount {
			get {
				return numUpgradeWaiters;
			}
		}

		public int WaitingWriteCount {
			get {
				return numWriteWaiters;
			}
		}

		public LockRecursionPolicy RecursionPolicy {
			get {
				return recursionPolicy;
			}
		}

		ThreadLockState CurrentThreadState {
			get {
				int tid = Thread.CurrentThread.ManagedThreadId;

				return tid < fastStateCache.Length ?
					fastStateCache [tid] ?? (fastStateCache[tid] = new ThreadLockState ()) :
					GetGlobalThreadState (tid);
			}
		}

		ThreadLockState GetGlobalThreadState (int tid)
		{
			if (currentThreadState == null)
				Interlocked.CompareExchange (ref currentThreadState, new Dictionary<int, ThreadLockState> (), null);

			ThreadLockState state;
			if (!currentThreadState.TryGetValue (id, out state))
				currentThreadState [id] = state = new ThreadLockState ();

			return state;
		}

		bool CheckState (ThreadLockState state, int millisecondsTimeout, LockState validState)
		{
			if (disposed)
				throw new ObjectDisposedException ("ReaderWriterLockSlim");

			if (millisecondsTimeout < -1)
				throw new ArgumentOutOfRangeException ("millisecondsTimeout");

			// Detect and prevent recursion
			LockState ctstate = state.LockState;

			if (ctstate != LockState.None && noRecursion && (!ctstate.Has (LockState.Upgradable) || validState == LockState.Upgradable))
				throw new LockRecursionException ("The current thread has already a lock and recursion isn't supported");

			if (noRecursion)
				return false;

			// If we already had right lock state, just return
			if (ctstate.Has (validState))
				return true;

			// In read mode you can just enter Read recursively
			if (ctstate == LockState.Read)
				throw new LockRecursionException ();				

			return false;
		}

		static int CheckTimeout (TimeSpan timeout)
		{
			try {
				return checked ((int)timeout.TotalMilliseconds);
			} catch (System.OverflowException) {
				throw new ArgumentOutOfRangeException ("timeout");
			}
		}

		static int ComputeTimeout (int millisecondsTimeout, long start)
		{
			return millisecondsTimeout == -1 ? -1 : (int)Math.Max (sw.ElapsedMilliseconds - start - millisecondsTimeout, 1);
		}
	}
}