File: Math.cs

package info (click to toggle)
mono 1.2.2.1-1
  • links: PTS
  • area: main
  • in suites: etch-m68k
  • size: 142,728 kB
  • ctags: 256,408
  • sloc: cs: 1,495,736; ansic: 249,442; sh: 18,304; xml: 12,463; makefile: 5,046; perl: 1,248; asm: 635; yacc: 285; sql: 7
file content (542 lines) | stat: -rw-r--r-- 14,447 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
//
// System.Math.cs
//
// Authors:
//   Bob Smith (bob@thestuff.net)
//   Dan Lewis (dihlewis@yahoo.co.uk)
//   Pedro Martínez Juliá (yoros@wanadoo.es)
//   Andreas Nahr (ClassDevelopment@A-SoftTech.com)
//
// (C) 2001 Bob Smith.  http://www.thestuff.net
// Copyright (C) 2003 Pedro Martínez Juliá <yoros@wanadoo.es>
// Copyright (C) 2004 Novell (http://www.novell.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
// 
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
// 
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//

using System.Runtime.CompilerServices;

#if NET_2_0
using System.Runtime.ConstrainedExecution;
#endif

namespace System
{
	public sealed class Math
	{
		public const double E = 2.7182818284590452354;
		public const double PI = 3.14159265358979323846;

		private Math ()
		{
		}

		public static decimal Abs (decimal value)
		{
			return (value < 0)? -value: value;
		}

		public static double Abs (double value)
		{
			return (value < 0)? -value: value;
		}

		public static float Abs (float value)
		{
			return (value < 0)? -value: value;
		}

		public static int Abs (int value)
		{
			if (value == Int32.MinValue)
				throw new OverflowException (Locale.GetText ("Value is too small."));
			return (value < 0)? -value: value;
		}

		public static long Abs (long value)
		{
			if (value == Int64.MinValue)
				throw new OverflowException (Locale.GetText ("Value is too small."));
			return (value < 0)? -value: value;
		}

		[CLSCompliant (false)]
		public static sbyte Abs (sbyte value)
		{
			if (value == SByte.MinValue)
				throw new OverflowException (Locale.GetText ("Value is too small."));
			return (sbyte)((value < 0)? -value: value);
		}

		public static short Abs (short value)
		{
			if (value == Int16.MinValue)
				throw new OverflowException (Locale.GetText ("Value is too small."));
			return (short)((value < 0)? -value: value);
		}

		public static double Ceiling (double a)
		{
			double result = Floor(a);
			if (result != a) {
				result++;
			}
			return result;
		}

		// The following methods are defined in ECMA specs but they are
		// not implemented in MS.NET. However, they are in MS.NET 1.1

#if (!NET_1_0)
		public static long BigMul (int a, int b)
		{
			return ((long)a * (long)b);
		}

		public static int DivRem (int a, int b, out int result)
		{
			result = (a % b);
			return (int)(a / b);
		}

		public static long DivRem (long a, long b, out long result)
		{
			result = (a % b);
			return (long)(a / b);
		}
#endif

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Floor (double value);

		public static double IEEERemainder (double x, double y)
		{
			double r;
			if (y == 0)
				return Double.NaN;
			r = x - (y * Math.Round(x/y));
			if (r != 0)
				return r;
			return (x > 0) ? 0: (BitConverter.Int64BitsToDouble (Int64.MinValue));
		}

		public static double Log (double a, double newBase)
		{
			double result = Log(a) / Log(newBase);
			return (result == -0)? 0: result;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static byte Max (byte val1, byte val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static decimal Max (decimal val1, decimal val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static double Max (double val1, double val2)
		{
			if (Double.IsNaN (val1) || Double.IsNaN (val2)) {
				return Double.NaN;
			}
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static float Max (float val1, float val2)
		{
			if (Single.IsNaN (val1) || Single.IsNaN (val2)) {
				return Single.NaN;
			}
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static int Max (int val1, int val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static long Max (long val1, long val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static sbyte Max (sbyte val1, sbyte val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static short Max (short val1, short val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static uint Max (uint val1, uint val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static ulong Max (ulong val1, ulong val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static ushort Max (ushort val1, ushort val2)
		{
			return (val1 > val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static byte Min (byte val1, byte val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static decimal Min (decimal val1, decimal val2)
		{
			return (val1 < val2)? val1: val2;
 		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static double Min (double val1, double val2)
		{
			if (Double.IsNaN (val1) || Double.IsNaN (val2)) {
				return Double.NaN;
			}
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static float Min (float val1, float val2)
		{
			if (Single.IsNaN (val1) || Single.IsNaN (val2)) {
				return Single.NaN;
			}
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static int Min (int val1, int val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static long Min (long val1, long val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static sbyte Min (sbyte val1, sbyte val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public static short Min (short val1, short val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static uint Min (uint val1, uint val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static ulong Min (ulong val1, ulong val2)
		{
			return (val1 < val2)? val1: val2;
		}

#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		[CLSCompliant (false)]
		public static ushort Min (ushort val1, ushort val2)
		{
			return (val1 < val2)? val1: val2;
		}

		public static decimal Round (decimal d)
		{
			// Just call Decimal.Round(d, 0); when it rounds well.
			decimal int_part = Decimal.Floor(d);
			decimal dec_part = d - int_part;
			if (((dec_part == 0.5M) &&
				((2.0M * ((int_part / 2.0M) -
				Decimal.Floor(int_part / 2.0M))) != 0.0M)) ||
				(dec_part > 0.5M)) {
				int_part++;
			}
			return int_part;
		}

		public static decimal Round (decimal d, int decimals)
		{
			return Decimal.Round (d, decimals);
		}

#if NET_2_0
		[MonoTODO ("Not implemented")]
		public static decimal Round (decimal d, MidpointRounding mode)
		{
			if ((mode != MidpointRounding.ToEven) && (mode != MidpointRounding.AwayFromZero))
				throw new ArgumentException ("The value '" + mode + "' is not valid for this usage of the type MidpointRounding.", "mode");

			if (mode == MidpointRounding.ToEven)
				return Round (d);
			throw new NotImplementedException ();
		}

		[MonoTODO ("Not implemented")]
		public static decimal Round (decimal d, int decimals, MidpointRounding mode)
		{
			if ((mode != MidpointRounding.ToEven) && (mode != MidpointRounding.AwayFromZero))
				throw new ArgumentException ("The value '" + mode + "' is not valid for this usage of the type MidpointRounding.", "mode");

			if (mode == MidpointRounding.ToEven)
				return Round (d, decimals);
			throw new NotImplementedException ();
		}
#endif

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Round (double d);

		public static double Round (double value, int digits)
		{
			if (digits < 0 || digits > 15)
				throw new ArgumentOutOfRangeException (Locale.GetText ("Value is too small or too big."));

			return Round2(value, digits);
		}

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		private extern static double Round2 (double value, int digits);


#if NET_2_0
		public static double Round (double value, MidpointRounding mode)
		{
			if ((mode != MidpointRounding.ToEven) && (mode != MidpointRounding.AwayFromZero))
				throw new ArgumentException ("The value '" + mode + "' is not valid for this usage of the type MidpointRounding.", "mode");

			if (mode == MidpointRounding.ToEven)
				return Round (value);
			if (value > 0)
				return Floor (value + 0.5);
			else
				return Ceiling (value - 0.5);
		}

		[MonoTODO ("Not implemented")]
		public static double Round (double value, int digits, MidpointRounding mode)
		{
			if ((mode != MidpointRounding.ToEven) && (mode != MidpointRounding.AwayFromZero))
				throw new ArgumentException ("The value '" + mode + "' is not valid for this usage of the type MidpointRounding.", "mode");

			if (mode == MidpointRounding.ToEven)
				return Round (value, digits);
			throw new NotImplementedException ();
		}

		public static double Truncate (double d)
		{
			if (d > 0D)
				return Floor (d);
			else if (d < 0D)
				return Ceiling (d);
			else
				return d;
		}

		public static decimal Truncate (decimal d)
		{
			return Decimal.Truncate (d);
		}

		public static decimal Floor (Decimal d)
		{
			return Decimal.Floor (d);
		}
#endif

		public static int Sign (decimal value)
		{
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		public static int Sign (double value)
		{
			if (Double.IsNaN (value))
				throw new ArithmeticException ("NAN");
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		public static int Sign (float value)
		{
			if (Single.IsNaN (value))
				throw new ArithmeticException ("NAN");
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		public static int Sign (int value)
		{
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		public static int Sign (long value)
		{
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		[CLSCompliant (false)]
		public static int Sign (sbyte value)
		{
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		public static int Sign (short value)
		{
			if (value > 0) return 1;
			return (value == 0)? 0: -1;
		}

		// internal calls
		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Sin (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Cos (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Tan (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Sinh (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Cosh (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Tanh (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Acos (double x);
		
		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Asin (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Atan (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Atan2 (double y, double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Exp (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Log (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Log10 (double x);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
		public extern static double Pow (double x, double y);

		[MethodImplAttribute (MethodImplOptions.InternalCall)]
#if NET_2_0
		[ReliabilityContractAttribute (Consistency.WillNotCorruptState, Cer.Success)]
#endif
		public extern static double Sqrt (double x);
	}
}