1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
//
// SymmetricKeyWrap.cs - Implements symmetric key wrap algorithms
//
// Author:
// Tim Coleman (tim@timcoleman.com)
//
// Copyright (C) Tim Coleman, 2004
//
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
#if NET_2_0
using System.IO;
using System.Security.Cryptography;
namespace System.Security.Cryptography.Xml {
internal class SymmetricKeyWrap {
public SymmetricKeyWrap ()
{
}
public static byte[] AESKeyWrapEncrypt (byte[] rgbKey, byte[] rgbWrappedKeyData)
{
SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("Rijndael");
// Apparently no one felt the need to document that this requires Electronic Codebook mode.
symAlg.Mode = CipherMode.ECB;
// This was also not documented anywhere.
symAlg.IV = new byte [16] {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
ICryptoTransform transform = symAlg.CreateEncryptor (rgbKey, symAlg.IV);
int N = rgbWrappedKeyData.Length / 8;
byte[] A;
byte[] B = new Byte [16];
byte [] C = new byte [8 * (N + 1)];
// 1. if N is 1:
// B = AES(K)enc(0xA6A6A6A6A6A6A6A6|P(1))
// C(0) = MSB(B)
// C(1) = LSB(B)
if (N == 1) {
A = new byte [8] {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6};
transform.TransformBlock (Concatenate (A, rgbWrappedKeyData), 0, 16, B, 0);
Buffer.BlockCopy (MSB(B), 0, C, 0, 8);
Buffer.BlockCopy (LSB(B), 0, C, 8, 8);
} else {
// if N > 1, perform the following steps:
// 2. Initialize variables:
// Set A to 0xA6A6A6A6A6A6A6A6
// For i = 1 to N,
// R(i) = P(i)
A = new byte [8] {0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6, 0xa6};
byte[][] R = new byte [N + 1][];
for (int i = 1; i <= N; i += 1) {
R [i] = new byte [8];
Buffer.BlockCopy (rgbWrappedKeyData, 8 * (i - 1), R [i], 0, 8);
}
// 3. Calculate intermediate values:
// For j = 0 to 5
// For i = 1 to N
// t = i + j * N
// B = AES(K)enc(A|R(i))
// A = XOR(t, MSB(B))
// R(i) = LSB(B)
for (int j = 0; j <= 5; j += 1) {
for (int i = 1; i <= N; i += 1) {
transform.TransformBlock (Concatenate (A, R [i]), 0, 16, B, 0);
// Yawn. It was nice of those at NIST to document how exactly we should XOR
// an integer value with a byte array. Not.
byte[] T = BitConverter.GetBytes ((long) (N * j + i));
// This is nice.
if (BitConverter.IsLittleEndian)
Array.Reverse (T);
A = Xor (T, MSB(B));
R [i] = LSB (B);
}
}
// 4. Output the results:
// Set C(0) = A
// For i = 1 to N
// C(i) = R(i)
Buffer.BlockCopy (A, 0, C, 0, 8);
for (int i = 1; i <= N; i += 1)
Buffer.BlockCopy (R [i], 0, C, 8 * i, 8);
}
return C;
}
public static byte[] AESKeyWrapDecrypt (byte[] rgbKey, byte[] rgbEncryptedWrappedKeyData)
{
SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("Rijndael");
symAlg.Mode = CipherMode.ECB;
symAlg.Key = rgbKey;
int N = ( rgbEncryptedWrappedKeyData.Length / 8 ) - 1;
// From RFC 3394 - Advanced Encryption Standard (AES) Key Wrap Algorithm
//
// Inputs: Ciphertext, (n+1) 64-bit values (C0, C1, ..., Cn), and Key, K (the KEK)
// Outputs: Plaintext, n 64-bit values (P1, P2, ..., Pn)
//
// 1. Initialize variables.
// Set A = C[0]
byte[] A = new byte [8];
Buffer.BlockCopy (rgbEncryptedWrappedKeyData, 0, A, 0, 8);
// For i = 1 to n
// R[i] = C[i]
byte[] R = new byte [N * 8];
Buffer.BlockCopy (rgbEncryptedWrappedKeyData, 8, R, 0, rgbEncryptedWrappedKeyData.Length - 8);
// 2. Compute intermediate values.
// For j = 5 to 0
// For i = n to 1
// B = AES-1(K, (A^t) | R[i]) where t = n*j+i
// A = MSB (64,B)
// R[i] = LSB (64,B)
ICryptoTransform transform = symAlg.CreateDecryptor ();
for (int j = 5; j >= 0; j -= 1) {
for (int i = N; i >= 1; i -= 1) {
byte[] T = BitConverter.GetBytes ((long) N * j + i);
if (BitConverter.IsLittleEndian)
Array.Reverse (T);
byte[] B = new Byte [16];
byte[] r = new Byte [8];
Buffer.BlockCopy (R, 8 * (i - 1), r, 0, 8);
byte[] ciphertext = Concatenate (Xor (A, T), r);
transform.TransformBlock (ciphertext, 0, 16, B, 0);
A = MSB (B);
Buffer.BlockCopy (LSB (B), 0, R, 8 * (i - 1), 8);
}
}
// 3. Output results
// If A is an appropriate initial value
// Then
// For i = 1 to n
// P[i] = R[i]
// Else
// Return an error
return R;
}
public static byte[] TripleDESKeyWrapEncrypt (byte[] rgbKey, byte[] rgbWrappedKeyData)
{
SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("TripleDES");
// Algorithm from http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
// The following algorithm wraps (encrypts) a key (the wrapped key, WK) under a TRIPLEDES
// key-encryption-key (KEK) as adopted from [CMS-Algorithms].
// 1. Represent the key being wrapped as an octet sequence. If it is a TRIPLEDES key,
// this is 24 octets (192 bits) with odd parity bit as the bottom bit of each octet.
// rgbWrappedKeyData is the key being wrapped.
// 2. Compute the CMS key checksum (Section 5.6.1) call this CKS.
byte[] cks = ComputeCMSKeyChecksum (rgbWrappedKeyData);
// 3. Let WKCKS = WK || CKS, where || is concatenation.
byte[] wkcks = Concatenate (rgbWrappedKeyData, cks);
// 4. Generate 8 random octets and call this IV.
symAlg.GenerateIV ();
// 5. Encrypt WKCKS in CBC mode using KEK as the key and IV as the initialization vector.
// Call the results TEMP1.
symAlg.Mode = CipherMode.CBC;
symAlg.Padding = PaddingMode.None;
symAlg.Key = rgbKey;
byte[] temp1 = Transform (wkcks, symAlg.CreateEncryptor ());
// 6. Let TEMP2 = IV || TEMP1.
byte[] temp2 = Concatenate (symAlg.IV, temp1);
// 7. Reverse the order of the octets in TEMP2 and call the result TEMP3.
Array.Reverse (temp2); // TEMP3 is TEMP2
// 8. Encrypt TEMP3 in CBC mode using the KEK and an initialization vector of 0x4adda22c79e82105.
// The resulting cipher text is the desired result. It is 40 octets long if a 168 bit key
// is being wrapped.
symAlg.IV = new Byte [8] {0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05};
byte[] rtnval = Transform (temp2, symAlg.CreateEncryptor ());
return rtnval;
}
public static byte[] TripleDESKeyWrapDecrypt (byte[] rgbKey, byte[] rgbEncryptedWrappedKeyData)
{
SymmetricAlgorithm symAlg = SymmetricAlgorithm.Create ("TripleDES");
// Algorithm from http://www.w3.org/TR/xmlenc-core/#sec-Alg-SymmetricKeyWrap
// The following algorithm unwraps (decrypts) a key as adopted from [CMS-Algorithms].
// 1. Check the length of the cipher text is reasonable given the key type. It must be
// 40 bytes for a 168 bit key and either 32, 40, or 48 bytes for a 128, 192, or 256 bit
// key. If the length is not supported or inconsistent with the algorithm for which the
// key is intended, return error.
// 2. Decrypt the cipher text with TRIPLEDES in CBC mode using the KEK and an initialization
// vector (IV) of 0x4adda22c79e82105. Call the output TEMP3.
symAlg.Mode = CipherMode.CBC;
symAlg.Padding = PaddingMode.None;
symAlg.Key = rgbKey;
symAlg.IV = new Byte [8] {0x4a, 0xdd, 0xa2, 0x2c, 0x79, 0xe8, 0x21, 0x05};
byte[] temp3 = Transform (rgbEncryptedWrappedKeyData, symAlg.CreateDecryptor ());
// 3. Reverse the order of the octets in TEMP3 and call the result TEMP2.
Array.Reverse (temp3); // TEMP2 is TEMP3.
// 4. Decompose TEMP2 into IV, the first 8 octets, and TEMP1, the remaining octets.
byte[] temp1 = new Byte [temp3.Length - 8];
byte[] iv = new Byte [8];
Buffer.BlockCopy (temp3, 0, iv, 0, 8);
Buffer.BlockCopy (temp3, 8, temp1, 0, temp1.Length);
// 5. Decrypt TEMP1 using TRIPLEDES in CBC mode using the KEK and the IV found in the previous step.
// Call the result WKCKS.
symAlg.IV = iv;
byte[] wkcks = Transform (temp1, symAlg.CreateDecryptor ());
// 6. Decompose WKCKS. CKS is the last 8 octets and WK, the wrapped key, are those octets before
// the CKS.
byte[] cks = new byte [8];
byte[] wk = new byte [wkcks.Length - 8];
Buffer.BlockCopy (wkcks, 0, wk, 0, wk.Length);
Buffer.BlockCopy (wkcks, wk.Length, cks, 0, 8);
// 7. Calculate the CMS key checksum over the WK and compare with the CKS extracted in the above
// step. If they are not equal, return error.
// 8. WK is the wrapped key, now extracted for use in data decryption.
return wk;
}
private static byte[] Transform (byte[] data, ICryptoTransform t)
{
MemoryStream output = new MemoryStream ();
CryptoStream crypto = new CryptoStream (output, t, CryptoStreamMode.Write);
crypto.Write (data, 0, data.Length);
crypto.FlushFinalBlock ();
byte[] result = output.ToArray ();
output.Close ();
crypto.Close ();
return result;
}
private static byte[] ComputeCMSKeyChecksum (byte[] data)
{
byte[] hash = HashAlgorithm.Create ("SHA1").ComputeHash (data);
byte[] output = new byte [8];
Buffer.BlockCopy (hash, 0, output, 0, 8);
return output;
}
private static byte[] Concatenate (byte[] buf1, byte[] buf2)
{
byte[] output = new byte [buf1.Length + buf2.Length];
Buffer.BlockCopy (buf1, 0, output, 0, buf1.Length);
Buffer.BlockCopy (buf2, 0, output, buf1.Length, buf2.Length);
return output;
}
private static byte[] MSB (byte[] input)
{
return MSB (input, 8);
}
private static byte[] MSB (byte[] input, int bytes)
{
byte[] output = new byte [bytes];
Buffer.BlockCopy (input, 0, output, 0, bytes);
return output;
}
private static byte[] LSB (byte[] input)
{
return LSB (input, 8);
}
private static byte[] LSB (byte[] input, int bytes)
{
byte[] output = new byte [bytes];
Buffer.BlockCopy (input, bytes, output, 0, bytes);
return output;
}
private static byte[] Xor (byte[] x, byte[] y)
{
// This should *not* happen.
if (x.Length != y.Length)
throw new CryptographicException ("Error performing Xor: arrays different length.");
byte[] output = new byte [x.Length];
for (int i = 0; i < x.Length; i += 1)
output [i] = (byte) (x [i] ^ y [i]);
return output;
}
/* private static byte[] Xor (byte[] x, int n)
{
byte[] output = new Byte [x.Length];
for (int i = 0; i < x.Length; i += 1)
output [i] = (byte) ((int) x [i] ^ n);
return output;
}*/
}
}
#endif
|