File: BZip2OutputStream.cs

package info (click to toggle)
mono 4.6.2.7+dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 778,148 kB
  • ctags: 914,052
  • sloc: cs: 5,779,509; xml: 2,773,713; ansic: 432,645; sh: 14,749; makefile: 12,361; perl: 2,488; python: 1,434; cpp: 849; asm: 531; sql: 95; sed: 16; php: 1
file content (1804 lines) | stat: -rw-r--r-- 40,084 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
// BZip2OutputStream.cs
// Copyright (C) 2001 Mike Krueger
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
// 
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent
// modules, and to copy and distribute the resulting executable under
// terms of your choice, provided that you also meet, for each linked
// independent module, the terms and conditions of the license of that
// module.  An independent module is a module which is not derived from
// or based on this library.  If you modify this library, you may extend
// this exception to your version of the library, but you are not
// obligated to do so.  If you do not wish to do so, delete this
// exception statement from your version.

using System;
using System.IO;

using ICSharpCode.SharpZipLib.Checksums;

namespace ICSharpCode.SharpZipLib.BZip2 
{
	
	// TODO: Update to BZip2 1.0.1, 1.0.2
	
	/// <summary>
	/// An output stream that compresses into the BZip2 format 
	/// including file header chars into another stream.
	/// </summary>
	public class BZip2OutputStream : Stream
	{
		/// <summary>
		/// Gets a value indicating whether the current stream supports reading
		/// </summary>
		public override bool CanRead {
			get {
				return false;
			}
		}
		
		/// <summary>
		/// Gets a value indicating whether the current stream supports seeking
		/// </summary>
		public override bool CanSeek {
			get {
				return false;
			}
		}
		
		/// <summary>
		/// Gets a value indicating whether the current stream supports writing
		/// </summary>
		public override bool CanWrite {
			get {
				return baseStream.CanWrite;
			}
		}
		
		/// <summary>
		/// Gets the length in bytes of the stream
		/// </summary>
		public override long Length {
			get {
				return baseStream.Length;
			}
		}
		
		/// <summary>
		/// Gets or sets the current position of this stream.
		/// </summary>
		public override long Position {
			get {
				return baseStream.Position;
			}
			set {
				throw new NotSupportedException("BZip2OutputStream position cannot be set");
			}
		}
		
		/// <summary>
		/// Sets the current position of this stream to the given value.
		/// </summary>
		public override long Seek(long offset, SeekOrigin origin)
		{
			throw new NotSupportedException("BZip2OutputStream Seek not supported");
		}
		
		/// <summary>
		/// Sets the length of this stream to the given value.
		/// </summary>
		public override void SetLength(long val)
		{
			throw new NotSupportedException("BZip2OutputStream SetLength not supported");
		}
		
		/// <summary>
		/// Read a byte from the stream advancing the position.
		/// </summary>
		public override int ReadByte()
		{
			throw new NotSupportedException("BZip2OutputStream ReadByte not supported");
		}
		
		/// <summary>
		/// Read a block of bytes
		/// </summary>
		public override int Read(byte[] b, int off, int len)
		{
			throw new NotSupportedException("BZip2OutputStream Read not supported");
		}
		
		/// <summary>
		/// Write a block of bytes to the stream
		/// </summary>
		public override void Write(byte[] buf, int off, int len)
		{
			for (int i = 0; i < len; ++i) {
				WriteByte(buf[off + i]);
			}
		}
		
		readonly static int SETMASK       = (1 << 21);
		readonly static int CLEARMASK     = (~SETMASK);
		readonly static int GREATER_ICOST = 15;
		readonly static int LESSER_ICOST  = 0;
		readonly static int SMALL_THRESH  = 20;
		readonly static int DEPTH_THRESH  = 10;
		
		/*--
		If you are ever unlucky/improbable enough
		to get a stack overflow whilst sorting,
		increase the following constant and try
		again.  In practice I have never seen the
		stack go above 27 elems, so the following
		limit seems very generous.
		--*/
		readonly static int QSORT_STACK_SIZE = 1000;
		
		static void Panic() 
		{
			throw new BZip2Exception("BZip2 output stream panic");
		}
		
		void MakeMaps() 
		{
			int i;
			nInUse = 0;
			for (i = 0; i < 256; i++) {
				if (inUse[i]) {
					seqToUnseq[nInUse] = (char)i;
					unseqToSeq[i] = (char)nInUse;
					nInUse++;
				}
			}
		}
		
		static void HbMakeCodeLengths(char[] len, int[] freq, int alphaSize, int maxLen) 
		{
			/*--
			Nodes and heap entries run from 1.  Entry 0
			for both the heap and nodes is a sentinel.
			--*/
			int nNodes, nHeap, n1, n2, j, k;
			bool  tooLong;
			
			int[] heap   = new int[BZip2Constants.MAX_ALPHA_SIZE + 2];
			int[] weight = new int[BZip2Constants.MAX_ALPHA_SIZE * 2];
			int[] parent = new int[BZip2Constants.MAX_ALPHA_SIZE * 2];
			
			for (int i = 0; i < alphaSize; ++i) {
				weight[i+1] = (freq[i] == 0 ? 1 : freq[i]) << 8;
			}
			
			while (true) {
				nNodes = alphaSize;
				nHeap = 0;
				
				heap[0] = 0;
				weight[0] = 0;
				parent[0] = -2;
				
				for (int i = 1; i <= alphaSize; ++i) {
					parent[i] = -1;
					nHeap++;
					heap[nHeap] = i;
					int zz = nHeap;
					int tmp = heap[zz];
					while (weight[tmp] < weight[heap[zz >> 1]]) {
						heap[zz] = heap[zz >> 1];
						zz >>= 1;
					}
					heap[zz] = tmp;
				}
				if (!(nHeap < (BZip2Constants.MAX_ALPHA_SIZE+2))) {
					Panic();
				}
				
				while (nHeap > 1) {
					n1 = heap[1];
					heap[1] = heap[nHeap];
					nHeap--;
					int zz = 1;
					int yy = 0;
					int tmp = heap[zz];
					while (true) {
						yy = zz << 1;
						if (yy > nHeap) {
							break;
						}
						if (yy < nHeap &&  weight[heap[yy+1]] < weight[heap[yy]]) {
							yy++;
						}
						if (weight[tmp] < weight[heap[yy]]) {
							break;
						}
						
						heap[zz] = heap[yy];
						zz = yy;
					}
					heap[zz] = tmp;
					n2 = heap[1];
					heap[1] = heap[nHeap];
					nHeap--;
					
					zz = 1;
					yy = 0;
					tmp = heap[zz];
					while (true) {
						yy = zz << 1;
						if (yy > nHeap) {
							break;
						}
						if (yy < nHeap && weight[heap[yy+1]] < weight[heap[yy]]) {
							yy++;
						}
						if (weight[tmp] < weight[heap[yy]]) {
							break;
						}
						heap[zz] = heap[yy];
						zz = yy;
					}
					heap[zz] = tmp;
					nNodes++;
					parent[n1] = parent[n2] = nNodes;
					
					weight[nNodes] = (int)((weight[n1] & 0xffffff00) + (weight[n2] & 0xffffff00)) | 
					                 (int)(1 + (((weight[n1] & 0x000000ff) > (weight[n2] & 0x000000ff)) ? (weight[n1] & 0x000000ff) : (weight[n2] & 0x000000ff)));
					
					parent[nNodes] = -1;
					nHeap++;
					heap[nHeap] = nNodes;
					
					zz  = nHeap;
					tmp = heap[zz];
					while (weight[tmp] < weight[heap[zz >> 1]]) {
						heap[zz] = heap[zz >> 1];
						zz >>= 1;
					}
					heap[zz] = tmp;
				}
				if (!(nNodes < (BZip2Constants.MAX_ALPHA_SIZE * 2))) {
					Panic();
				}
				
				tooLong = false;
				for (int i = 1; i <= alphaSize; ++i) {
					j = 0;
					k = i;
					while (parent[k] >= 0) {
						k = parent[k];
						j++;
					}
					len[i - 1] = (char)j;
					if (j > maxLen) {
						tooLong = true;
					}
				}
				
				if (!tooLong) {
					break;
				}
				
				for (int i = 1; i < alphaSize; ++i) {
					j = weight[i] >> 8;
					j = 1 + (j / 2);
					weight[i] = j << 8;
				}
			}
		}
		
		/*--
		index of the last char in the block, so
		the block size == last + 1.
		--*/
		int last;
		
		/*--
		index in zptr[] of original string after sorting.
		--*/
		int origPtr;
		
		/*--
		always: in the range 0 .. 9.
		The current block size is 100000 * this number.
		--*/
		int blockSize100k;
		
		bool blockRandomised;
		
		int bytesOut;
		int bsBuff;
		int bsLive;
		IChecksum mCrc = new StrangeCRC();
		
		bool[] inUse = new bool[256];
		int nInUse;
		
		char[] seqToUnseq = new char[256];
		char[] unseqToSeq = new char[256];
		
		char[] selector = new char[BZip2Constants.MAX_SELECTORS];
		char[] selectorMtf = new char[BZip2Constants.MAX_SELECTORS];
		
		byte[]  block;
		int[]   quadrant;
		int[]   zptr;
		short[] szptr;
		int[]   ftab;
		
		int nMTF;
		
		int[] mtfFreq = new int[BZip2Constants.MAX_ALPHA_SIZE];
		
		/*
		* Used when sorting.  If too many long comparisons
		* happen, we stop sorting, randomise the block
		* slightly, and try again.
		*/
		int workFactor;
		int workDone;
		int workLimit;
		bool firstAttempt;
		int nBlocksRandomised;
		
		int currentChar = -1;
		int runLength = 0;
		
		/// <summary>
		/// Construct a default output stream with maximum block size
		/// </summary>
		/// <param name="stream">The stream to write BZip data onto.</param>
		public BZip2OutputStream(Stream stream) : this(stream, 9)
		{
		}
		
		/// <summary>
		/// Initialise a new instance of the <see cref="BZip2OutputStream"></see> 
		/// for the specified stream, using the given blocksize.
		/// </summary>
		/// <param name="stream">The stream to write compressed data to.</param>
		/// <param name="blockSize">The block size to use.</param>
		/// <remarks>
		/// Valid block sizes are in the range 1..9, with 1 giving 
		/// the lowest compression and 9 the highest.
		/// </remarks>
		public BZip2OutputStream(Stream stream, int blockSize)
		{
			block    = null;
			quadrant = null;
			zptr     = null;
			ftab     = null;
			
			BsSetStream(stream);
			
			workFactor = 50;
			if (blockSize > 9) {
				blockSize = 9;
			}
			if (blockSize < 1) {
				blockSize = 1;
			}
			blockSize100k = blockSize;
			AllocateCompressStructures();
			Initialize();
			InitBlock();
		}
		
		/// <summary>
		/// Write a byte to the stream.
		/// </summary>
		public override void WriteByte(byte bv)
		{
			int b = (256 + bv) % 256;
			if (currentChar != -1) {
				if (currentChar == b) {
					runLength++;
					if (runLength > 254) {
						WriteRun();
						currentChar = -1;
						runLength = 0;
					}
				} else {
					WriteRun();
					runLength = 1;
					currentChar = b;
				}
			} else {
				currentChar = b;
				runLength++;
			}
		}
		
		void WriteRun()
		{
			if (last < allowableBlockSize) {
				inUse[currentChar] = true;
				for (int i = 0; i < runLength; i++) {
					mCrc.Update(currentChar);
				}
				
				switch (runLength) {
					case 1:
						last++;
						block[last + 1] = (byte)currentChar;
						break;
					case 2:
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)currentChar;
						break;
					case 3:
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)currentChar;
						break;
					default:
						inUse[runLength - 4] = true;
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)currentChar;
						last++;
						block[last + 1] = (byte)(runLength - 4);
						break;
				}
			} else {
				EndBlock();
				InitBlock();
				WriteRun();
			}
		}
		
		bool closed = false;
		
		/// <summary>
		/// Free any resources and other cleanup before garbage collection reclaims memory
		/// </summary>
		~BZip2OutputStream()
		{
			Close();
		}
		
		/// <summary>
		/// End the current block and end compression.
		/// Close the stream and free any resources
		/// </summary>
		public override void Close()
		{
			if (!closed) {
				closed = true;
			
				if (runLength > 0) {
					WriteRun();
				}
			
				currentChar = -1;
				EndBlock();
				EndCompression();
				Flush();
				baseStream.Close();
			}
		}

		/// <summary>
		/// Flush output buffers
		/// </summary>		
		public override void Flush()
		{
			baseStream.Flush();
		}
		
		uint blockCRC, combinedCRC;
		
		void Initialize()
		{
			bytesOut = 0;
			nBlocksRandomised = 0;
			
			/*--- Write `magic' bytes h indicating file-format == huffmanised,
			followed by a digit indicating blockSize100k.
			---*/
			
			// TODO  adding header here should be optional?
			BsPutUChar('B');
			BsPutUChar('Z');
			
			BsPutUChar('h');
			BsPutUChar('0' + blockSize100k);
			
			combinedCRC = 0;
		}
		
		int allowableBlockSize;
		
		void InitBlock() 
		{
			//		blockNo++;
			mCrc.Reset();
			last = -1;
			//		ch = 0;
			
			for (int i = 0; i < 256; i++) {
				inUse[i] = false;
			}
			
			/*--- 20 is just a paranoia constant ---*/
			allowableBlockSize = BZip2Constants.baseBlockSize * blockSize100k - 20;
		}
		
		void EndBlock()
		{
			if (last < 0) {       // dont do anything for empty files, (makes empty files compatible with original Bzip)
				return;
			}
			
			blockCRC = (uint)mCrc.Value;
			combinedCRC = (combinedCRC << 1) | (combinedCRC >> 31);
			combinedCRC ^= blockCRC;
			
			/*-- sort the block and establish posn of original string --*/
			DoReversibleTransformation();
			
			/*--
			A 6-byte block header, the value chosen arbitrarily
			as 0x314159265359 :-).  A 32 bit value does not really
			give a strong enough guarantee that the value will not
			appear by chance in the compressed datastream.  Worst-case
			probability of this event, for a 900k block, is about
			2.0e-3 for 32 bits, 1.0e-5 for 40 bits and 4.0e-8 for 48 bits.
			For a compressed file of size 100Gb -- about 100000 blocks --
			only a 48-bit marker will do.  NB: normal compression/
			decompression do *not* rely on these statistical properties.
			They are only important when trying to recover blocks from
			damaged files.
			--*/
			BsPutUChar(0x31);
			BsPutUChar(0x41);
			BsPutUChar(0x59);
			BsPutUChar(0x26);
			BsPutUChar(0x53);
			BsPutUChar(0x59);
			
			/*-- Now the block's CRC, so it is in a known place. --*/
			BsPutint((int)blockCRC);
			
			/*-- Now a single bit indicating randomisation. --*/
			if (blockRandomised) {
				BsW(1,1);
				nBlocksRandomised++;
			} else {
				BsW(1,0);
			}
			
			/*-- Finally, block's contents proper. --*/
			MoveToFrontCodeAndSend();
		}
		
		void EndCompression()
		{
			/*--
			Now another magic 48-bit number, 0x177245385090, to
			indicate the end of the last block.  (sqrt(pi), if
			you want to know.  I did want to use e, but it contains
			too much repetition -- 27 18 28 18 28 46 -- for me
			to feel statistically comfortable.  Call me paranoid.)
			--*/
			BsPutUChar(0x17);
			BsPutUChar(0x72);
			BsPutUChar(0x45);
			BsPutUChar(0x38);
			BsPutUChar(0x50);
			BsPutUChar(0x90);
			
			BsPutint((int)combinedCRC);
			
			BsFinishedWithStream();
		}
		
		void HbAssignCodes (int[] code, char[] length, int minLen, int maxLen, int alphaSize) 
		{
			int vec = 0;
			for (int n = minLen; n <= maxLen; ++n) {
				for (int i = 0; i < alphaSize; ++i) {
					if (length[i] == n) {
						code[i] = vec;
						++vec;
					}
				}
				vec <<= 1;
			}
		}
		
		void BsSetStream(Stream f) 
		{
			baseStream = f;
			bsLive = 0;
			bsBuff = 0;
			bytesOut = 0;
		}
		
		void BsFinishedWithStream()
		{
			while (bsLive > 0) 
			{
				int ch = (bsBuff >> 24);
				baseStream.WriteByte((byte)ch); // write 8-bit
				bsBuff <<= 8;
				bsLive -= 8;
				bytesOut++;
			}
		}
		
		void BsW(int n, int v)
		{
			while (bsLive >= 8) {
				int ch = (bsBuff >> 24);
				baseStream.WriteByte((byte)ch); // write 8-bit
				bsBuff <<= 8;
				bsLive -= 8;
				++bytesOut;
			}
			bsBuff |= (v << (32 - bsLive - n));
			bsLive += n;
		}
		
		void BsPutUChar(int c)
		{
			BsW(8, c);
		}
		
		void BsPutint(int u)
		{
			BsW(8, (u >> 24) & 0xFF);
			BsW(8, (u >> 16) & 0xFF);
			BsW(8, (u >>  8) & 0xFF);
			BsW(8,  u        & 0xFF);
		}
		
		void BsPutIntVS(int numBits, int c)
		{
			BsW(numBits, c);
		}
		
		void SendMTFValues()
		{
			char[][] len = new char[BZip2Constants.N_GROUPS][];
			for (int i = 0; i < BZip2Constants.N_GROUPS; ++i) {
				len[i] = new char[BZip2Constants.MAX_ALPHA_SIZE];
			}
			
			int gs, ge, totc, bt, bc, iter;
			int nSelectors = 0, alphaSize, minLen, maxLen, selCtr;
			int nGroups, nBytes;
			
			alphaSize = nInUse + 2;
			for (int t = 0; t < BZip2Constants.N_GROUPS; t++) {
				for (int v = 0; v < alphaSize; v++) {
					len[t][v] = (char)GREATER_ICOST;
				}
			}
			
			/*--- Decide how many coding tables to use ---*/
			if (nMTF <= 0) {
				Panic();
			}
			
			if (nMTF < 200) {
				nGroups = 2;
			} else if (nMTF < 600) {
				nGroups = 3;
			} else if (nMTF < 1200) {
				nGroups = 4;
			} else if (nMTF < 2400) {
				nGroups = 5;
			} else {
				nGroups = 6;
			}
			
			/*--- Generate an initial set of coding tables ---*/ 
			int nPart = nGroups;
			int remF  = nMTF;
			gs = 0;
			while (nPart > 0) {
				int tFreq = remF / nPart;
				int aFreq = 0;
				ge = gs - 1;
				while (aFreq < tFreq && ge < alphaSize - 1) {
					ge++;
					aFreq += mtfFreq[ge];
				}
				
				if (ge > gs && nPart != nGroups && nPart != 1 && ((nGroups - nPart) % 2 == 1)) {
					aFreq -= mtfFreq[ge];
					ge--;
				}
				
				for (int v = 0; v < alphaSize; v++) {
					if (v >= gs && v <= ge) {
						len[nPart - 1][v] = (char)LESSER_ICOST;
					} else {
						len[nPart - 1][v] = (char)GREATER_ICOST;
					}
				}
				
				nPart--;
				gs = ge + 1;
				remF -= aFreq;
			}
			
			int[][] rfreq = new int[BZip2Constants.N_GROUPS][];
			for (int i = 0; i < BZip2Constants.N_GROUPS; ++i) {
				rfreq[i] = new int[BZip2Constants.MAX_ALPHA_SIZE];
			}
			
			int[]   fave = new int[BZip2Constants.N_GROUPS];
			short[] cost = new short[BZip2Constants.N_GROUPS];
			/*---
			Iterate up to N_ITERS times to improve the tables.
			---*/
			for (iter = 0; iter < BZip2Constants.N_ITERS; ++iter) {
				for (int t = 0; t < nGroups; ++t) {
					fave[t] = 0;
				}
				
				for (int t = 0; t < nGroups; ++t) {
					for (int v = 0; v < alphaSize; ++v) {
						rfreq[t][v] = 0;
					}
				}
				
				nSelectors = 0;
				totc = 0;
				gs   = 0;
				while (true) {
					/*--- Set group start & end marks. --*/
					if (gs >= nMTF) {
						break;
					}
					ge = gs + BZip2Constants.G_SIZE - 1;
					if (ge >= nMTF) {
						ge = nMTF - 1;
					}
					
					/*--
					Calculate the cost of this group as coded
					by each of the coding tables.
					--*/
					for (int t = 0; t < nGroups; t++) {
						cost[t] = 0;
					}
					
					if (nGroups == 6) {
						short cost0, cost1, cost2, cost3, cost4, cost5;
						cost0 = cost1 = cost2 = cost3 = cost4 = cost5 = 0;
						for (int i = gs; i <= ge; ++i) {
							short icv = szptr[i];
							cost0 += (short)len[0][icv];
							cost1 += (short)len[1][icv];
							cost2 += (short)len[2][icv];
							cost3 += (short)len[3][icv];
							cost4 += (short)len[4][icv];
							cost5 += (short)len[5][icv];
						}
						cost[0] = cost0;
						cost[1] = cost1;
						cost[2] = cost2;
						cost[3] = cost3;
						cost[4] = cost4;
						cost[5] = cost5;
					} else {
						for (int i = gs; i <= ge; ++i) {
							short icv = szptr[i];
							for (int t = 0; t < nGroups; t++) {
								cost[t] += (short)len[t][icv];
							}
						}
					}
					
					/*--
					Find the coding table which is best for this group,
					and record its identity in the selector table.
					--*/
					bc = 999999999;
					bt = -1;
					for (int t = 0; t < nGroups; ++t) {
						if (cost[t] < bc) {
							bc = cost[t];
							bt = t;
						}
					}
					totc += bc;
					fave[bt]++;
					selector[nSelectors] = (char)bt;
					nSelectors++;
					
					/*--
					Increment the symbol frequencies for the selected table.
					--*/
					for (int i = gs; i <= ge; ++i) {
						++rfreq[bt][szptr[i]];
					}
					
					gs = ge+1;
				}
				
				/*--
				Recompute the tables based on the accumulated frequencies.
				--*/
				for (int t = 0; t < nGroups; ++t) {
					HbMakeCodeLengths(len[t], rfreq[t], alphaSize, 20);
				}
			}
			
			rfreq = null;
			fave = null;
			cost = null;
			
			if (!(nGroups < 8)) {
				Panic();
			}
			if (!(nSelectors < 32768 && nSelectors <= (2 + (900000 / BZip2Constants.G_SIZE)))) {
				Panic();
			}
			
			/*--- Compute MTF values for the selectors. ---*/
			char[] pos = new char[BZip2Constants.N_GROUPS];
			char ll_i, tmp2, tmp;
			for (int i = 0; i < nGroups; i++) {
				pos[i] = (char)i;
			}
			for (int i = 0; i < nSelectors; i++) {
				ll_i = selector[i];
				int j = 0;
				tmp = pos[j];
				while (ll_i != tmp) {
					j++;
					tmp2 = tmp;
					tmp = pos[j];
					pos[j] = tmp2;
				}
				pos[0] = tmp;
				selectorMtf[i] = (char)j;
			}
			
			int[][] code = new int[BZip2Constants.N_GROUPS][];
			
			for (int i = 0; i < BZip2Constants.N_GROUPS; ++i) {
				code[i] = new int[BZip2Constants.MAX_ALPHA_SIZE];
			}
			
			/*--- Assign actual codes for the tables. --*/
			for (int t = 0; t < nGroups; t++) {
				minLen = 32;
				maxLen = 0;
				for (int i = 0; i < alphaSize; i++) {
					if (len[t][i] > maxLen) {
						maxLen = len[t][i];
					}
					if (len[t][i] < minLen) {
						minLen = len[t][i];
					}
				}
				if (maxLen > 20) {
					Panic();
				}
				if (minLen < 1) {
					Panic();
				}
				HbAssignCodes(code[t], len[t], minLen, maxLen, alphaSize);
			}
			
			/*--- Transmit the mapping table. ---*/
			bool[] inUse16 = new bool[16];
			for (int i = 0; i < 16; ++i) {
				inUse16[i] = false;
				for (int j = 0; j < 16; ++j) {
					if (inUse[i * 16 + j]) {
						inUse16[i] = true; 
					}
				}
			}
			
			nBytes = bytesOut;
			for (int i = 0; i < 16; ++i) {
				if (inUse16[i]) {
					BsW(1,1);
				} else {
					BsW(1,0);
				}
			}
			
			for (int i = 0; i < 16; ++i) {
				if (inUse16[i]) {
					for (int j = 0; j < 16; ++j) {
						if (inUse[i * 16 + j]) {
							BsW(1,1);
						} else {
							BsW(1,0);
						}
					}
				}
			}
			
			/*--- Now the selectors. ---*/
			nBytes = bytesOut;
			BsW(3, nGroups);
			BsW(15, nSelectors);
			for (int i = 0; i < nSelectors; ++i) {
				for (int j = 0; j < selectorMtf[i]; ++j) {
					BsW(1,1);
				}
				BsW(1,0);
			}
			
			/*--- Now the coding tables. ---*/
			nBytes = bytesOut;
			
			for (int t = 0; t < nGroups; ++t) {
				int curr = len[t][0];
				BsW(5, curr);
				for (int i = 0; i < alphaSize; ++i) {
					while (curr < len[t][i]) {
						BsW(2, 2);
						curr++; /* 10 */
					}
					while (curr > len[t][i]) {
						BsW(2, 3);
						curr--; /* 11 */
					}
					BsW (1, 0);
				}
			}
			
			/*--- And finally, the block data proper ---*/
			nBytes = bytesOut;
			selCtr = 0;
			gs = 0;
			while (true) {
				if (gs >= nMTF) {
					break;
				}
				ge = gs + BZip2Constants.G_SIZE - 1;
				if (ge >= nMTF) {
					ge = nMTF - 1;
				}
				
				for (int i = gs; i <= ge; i++) {
					BsW(len[selector[selCtr]][szptr[i]], code[selector[selCtr]][szptr[i]]);
				}
				
				gs = ge + 1;
				++selCtr;
			}
			if (!(selCtr == nSelectors)) {
				Panic();
			}
		}
		
		void MoveToFrontCodeAndSend () 
		{
			BsPutIntVS(24, origPtr);
			GenerateMTFValues();
			SendMTFValues();
		}
		
		Stream baseStream;
		
		void SimpleSort(int lo, int hi, int d) 
		{
			int i, j, h, bigN, hp;
			int v;
			
			bigN = hi - lo + 1;
			if (bigN < 2) {
				return;
			}
			
			hp = 0;
			while (incs[hp] < bigN) {
				hp++;
			}
			hp--;
			
			for (; hp >= 0; hp--) {
				h = incs[hp];
				
				i = lo + h;
				while (true) {
					/*-- copy 1 --*/
					if (i > hi)
						break;
					v = zptr[i];
					j = i;
					while (FullGtU(zptr[j-h]+d, v+d)) {
						zptr[j] = zptr[j-h];
						j = j - h;
						if (j <= (lo + h - 1))
							break;
					}
					zptr[j] = v;
					i++;
					
					/*-- copy 2 --*/
					if (i > hi) {
						break;
					}
					v = zptr[i];
					j = i;
					while (FullGtU ( zptr[j-h]+d, v+d )) {
						zptr[j] = zptr[j-h];
						j = j - h;
						if (j <= (lo + h - 1)) {
							break;
						}
					}
					zptr[j] = v;
					i++;
					
					/*-- copy 3 --*/
					if (i > hi) {
						break;
					}
					v = zptr[i];
					j = i;
					while (FullGtU ( zptr[j-h]+d, v+d)) {
						zptr[j] = zptr[j-h];
						j = j - h;
						if (j <= (lo + h - 1)) {
							break;
						}
					}
					zptr[j] = v;
					i++;
					
					if (workDone > workLimit && firstAttempt) {
						return;
					}
				}
			}
		}
		
		void Vswap(int p1, int p2, int n ) 
		{
			int temp = 0;
			while (n > 0) {
				temp = zptr[p1];
				zptr[p1] = zptr[p2];
				zptr[p2] = temp;
				p1++;
				p2++;
				n--;
			}
		}
		
		byte Med3(byte a, byte b, byte c ) 
		{
			byte t;
			if (a > b) {
				t = a;
				a = b;
				b = t;
			}
			if (b > c) {
				t = b;
				b = c;
				c = t;
			}
			if (a > b) {
				b = a;
			}
			return b;
		}
		
		class StackElem 
		{
			public int ll;
			public int hh;
			public int dd;
		}
		
		void QSort3(int loSt, int hiSt, int dSt) 
		{
			int unLo, unHi, ltLo, gtHi, med, n, m;
			int sp, lo, hi, d;
			StackElem[] stack = new StackElem[QSORT_STACK_SIZE];
			for (int count = 0; count < QSORT_STACK_SIZE; count++) {
				stack[count] = new StackElem();
			}
			
			sp = 0;
			
			stack[sp].ll = loSt;
			stack[sp].hh = hiSt;
			stack[sp].dd = dSt;
			sp++;
			
			while (sp > 0) {
				if (sp >= QSORT_STACK_SIZE) {
					Panic();
				}
				
				sp--;
				lo = stack[sp].ll;
				hi = stack[sp].hh;
				d = stack[sp].dd;
				
				if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) {
					SimpleSort(lo, hi, d);
					if (workDone > workLimit && firstAttempt) {
						return;
					}
					continue;
				}
				
				med = Med3(block[zptr[lo] + d + 1],
				           block[zptr[hi            ] + d  + 1],
				           block[zptr[(lo + hi) >> 1] + d + 1]);
				
				unLo = ltLo = lo;
				unHi = gtHi = hi;
				
				while (true) {
					while (true) {
						if (unLo > unHi) {
							break;
						}
						n = ((int)block[zptr[unLo]+d + 1]) - med;
						if (n == 0) {
							int temp = 0;
							temp = zptr[unLo];
							zptr[unLo] = zptr[ltLo];
							zptr[ltLo] = temp;
							ltLo++;
							unLo++;
							continue;
						}
						if (n >  0) {
							break;
						}
						unLo++;
					}
					while (true) {
						if (unLo > unHi) {
							break;
						}
						n = ((int)block[zptr[unHi]+d + 1]) - med;
						if (n == 0) {
							int temp = 0;
							temp = zptr[unHi];
							zptr[unHi] = zptr[gtHi];
							zptr[gtHi] = temp;
							gtHi--;
							unHi--;
							continue;
						}
						if (n <  0) {
							break;
						}
						unHi--;
					}
					if (unLo > unHi) {
						break;
					}
					{
						int temp = zptr[unLo];
						zptr[unLo] = zptr[unHi];
						zptr[unHi] = temp;
						unLo++;
						unHi--;
					}
				}
				
				if (gtHi < ltLo) {
					stack[sp].ll = lo;
					stack[sp].hh = hi;
					stack[sp].dd = d+1;
					sp++;
					continue;
				}
				
				n = ((ltLo-lo) < (unLo-ltLo)) ? (ltLo-lo) : (unLo-ltLo);
				Vswap(lo, unLo-n, n);
				m = ((hi-gtHi) < (gtHi-unHi)) ? (hi-gtHi) : (gtHi-unHi);
				Vswap(unLo, hi-m+1, m);
				
				n = lo + unLo - ltLo - 1;
				m = hi - (gtHi - unHi) + 1;
				
				stack[sp].ll = lo;
				stack[sp].hh = n;
				stack[sp].dd = d;
				sp++;
				
				stack[sp].ll = n + 1;
				stack[sp].hh = m - 1;
				stack[sp].dd = d+1;
				sp++;
				
				stack[sp].ll = m;
				stack[sp].hh = hi;
				stack[sp].dd = d;
				sp++;
			}
		}
		
		void MainSort() 
		{
			int i, j, ss, sb;
			int[] runningOrder = new int[256];
			int[] copy = new int[256];
			bool[] bigDone = new bool[256];
			int c1, c2;
			int numQSorted;
			
			/*--
			In the various block-sized structures, live data runs
			from 0 to last+NUM_OVERSHOOT_BYTES inclusive.  First,
			set up the overshoot area for block.
			--*/
			
			//   if (verbosity >= 4) fprintf ( stderr, "        sort initialise ...\n" );
			for (i = 0; i < BZip2Constants.NUM_OVERSHOOT_BYTES; i++) {
				block[last + i + 2] = block[(i % (last + 1)) + 1];
			}
			for (i = 0; i <= last + BZip2Constants.NUM_OVERSHOOT_BYTES; i++) {
				quadrant[i] = 0;
			}
			
			block[0] = (byte)(block[last + 1]);
			
			if (last < 4000) {
				/*--
				Use simpleSort(), since the full sorting mechanism
				has quite a large constant overhead.
				--*/
				for (i = 0; i <= last; i++) {
					zptr[i] = i;
				}
				firstAttempt = false;
				workDone = workLimit = 0;
				SimpleSort(0, last, 0);
			} else {
				numQSorted = 0;
				for (i = 0; i <= 255; i++) {
					bigDone[i] = false;
				}
				for (i = 0; i <= 65536; i++) {
					ftab[i] = 0;
				}
				
				c1 = block[0];
				for (i = 0; i <= last; i++) {
					c2 = block[i + 1];
					ftab[(c1 << 8) + c2]++;
					c1 = c2;
				}
				
				for (i = 1; i <= 65536; i++) {
					ftab[i] += ftab[i - 1];
				}
				
				c1 = block[1];
				for (i = 0; i < last; i++) {
					c2 = block[i + 2];
					j = (c1 << 8) + c2;
					c1 = c2;
					ftab[j]--;
					zptr[ftab[j]] = i;
				}
				
				j = ((block[last + 1]) << 8) + (block[1]);
				ftab[j]--;
				zptr[ftab[j]] = last;
				
				/*--
				Now ftab contains the first loc of every small bucket.
				Calculate the running order, from smallest to largest
				big bucket.
				--*/
				
				for (i = 0; i <= 255; i++) {
					runningOrder[i] = i;
				}
				
				int vv;
				int h = 1;
				do {
					h = 3 * h + 1;
				} while (h <= 256);
				do {
					h = h / 3;
					for (i = h; i <= 255; i++) {
						vv = runningOrder[i];
						j = i;
						while ((ftab[((runningOrder[j-h])+1) << 8] - ftab[(runningOrder[j-h]) << 8]) > (ftab[((vv)+1) << 8] - ftab[(vv) << 8])) {
							runningOrder[j] = runningOrder[j-h];
							j = j - h;
							if (j <= (h - 1)) {
								break;
							}
						}
						runningOrder[j] = vv;
					}
				} while (h != 1);
				
				/*--
				The main sorting loop.
				--*/
				for (i = 0; i <= 255; i++) {
					
					/*--
					Process big buckets, starting with the least full.
					--*/
					ss = runningOrder[i];
					
					/*--
					Complete the big bucket [ss] by quicksorting
					any unsorted small buckets [ss, j].  Hopefully
					previous pointer-scanning phases have already
					completed many of the small buckets [ss, j], so
					we don't have to sort them at all.
					--*/
					for (j = 0; j <= 255; j++) {
						sb = (ss << 8) + j;
						if(!((ftab[sb] & SETMASK) == SETMASK)) {
							int lo = ftab[sb] & CLEARMASK;
							int hi = (ftab[sb+1] & CLEARMASK) - 1;
							if (hi > lo) {
								QSort3(lo, hi, 2);
								numQSorted += (hi - lo + 1);
								if (workDone > workLimit && firstAttempt) {
									return;
								}
							}
							ftab[sb] |= SETMASK;
						}
					}
					
					/*--
					The ss big bucket is now done.  Record this fact,
					and update the quadrant descriptors.  Remember to
					update quadrants in the overshoot area too, if
					necessary.  The "if (i < 255)" test merely skips
					this updating for the last bucket processed, since
					updating for the last bucket is pointless.
					--*/
					bigDone[ss] = true;
					
					if (i < 255) {
						int bbStart  = ftab[ss << 8] & CLEARMASK;
						int bbSize   = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
						int shifts   = 0;
						
						while ((bbSize >> shifts) > 65534) {
							shifts++;
						}
						
						for (j = 0; j < bbSize; j++) {
							int a2update = zptr[bbStart + j];
							int qVal = (j >> shifts);
							quadrant[a2update] = qVal;
							if (a2update < BZip2Constants.NUM_OVERSHOOT_BYTES) {
								quadrant[a2update + last + 1] = qVal;
							}
						}
						
						if (!(((bbSize-1) >> shifts) <= 65535)) {
							Panic();
						}
					}
					
					/*--
					Now scan this big bucket so as to synthesise the
					sorted order for small buckets [t, ss] for all t != ss.
					--*/
					for (j = 0; j <= 255; j++) {
						copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
					}
					
					for (j = ftab[ss << 8] & CLEARMASK; j < (ftab[(ss+1) << 8] & CLEARMASK); j++) {
						c1 = block[zptr[j]];
						if (!bigDone[c1]) {
							zptr[copy[c1]] = zptr[j] == 0 ? last : zptr[j] - 1;
							copy[c1] ++;
						}
					}
					
					for (j = 0; j <= 255; j++) {
						ftab[(j << 8) + ss] |= SETMASK;
					}
				}
			}
		}
		
		void RandomiseBlock() 
		{
			int i;
			int rNToGo = 0;
			int rTPos  = 0;
			for (i = 0; i < 256; i++) {
				inUse[i] = false;
			}
			
			for (i = 0; i <= last; i++) {
				if (rNToGo == 0) {
					rNToGo = (int)BZip2Constants.rNums[rTPos];
					rTPos++;
					if (rTPos == 512) {
						rTPos = 0;
					}
				}
				rNToGo--;
				block[i + 1] ^= (byte)((rNToGo == 1) ? 1 : 0);
				// handle 16 bit signed numbers
				block[i + 1] &= 0xFF;
				
				inUse[block[i + 1]] = true;
			}
		}
		
		void DoReversibleTransformation() 
		{
			workLimit = workFactor * last;
			workDone = 0;
			blockRandomised = false;
			firstAttempt = true;
			
			MainSort();
			
			if (workDone > workLimit && firstAttempt) {
				RandomiseBlock();
				workLimit = workDone = 0;
				blockRandomised = true;
				firstAttempt = false;
				MainSort();
			}
			
			origPtr = -1;
			for (int i = 0; i <= last; i++) {
				if (zptr[i] == 0) {
					origPtr = i;
					break;
				}
			}
			
			if (origPtr == -1) {
				Panic();
			}
		}
		
		bool FullGtU(int i1, int i2) 
		{
			int k;
			byte c1, c2;
			int s1, s2;
			
			c1 = block[i1 + 1];
			c2 = block[i2 + 1];
			if (c1 != c2) {
				return c1 > c2;
			}
			i1++;
			i2++;
			
			c1 = block[i1 + 1];
			c2 = block[i2 + 1];
			if (c1 != c2) {
				return c1 > c2;
			}
			i1++;
			i2++;
			
			c1 = block[i1 + 1];
			c2 = block[i2 + 1];
			if (c1 != c2) {
				return c1 > c2;
			}
			i1++;
			i2++;
			
			c1 = block[i1 + 1];
			c2 = block[i2 + 1];
			if (c1 != c2) {
				return c1 > c2;
			}
			i1++;
			i2++;
			
			c1 = block[i1 + 1];
			c2 = block[i2 + 1];
			if (c1 != c2) {
				return c1 > c2;
			}
			i1++;
			i2++;
			
			c1 = block[i1 + 1];
			c2 = block[i2 + 1];
			if (c1 != c2) {
				return c1 > c2;
			}
			i1++;
			i2++;
			
			k = last + 1;
			
			do {
				c1 = block[i1 + 1];
				c2 = block[i2 + 1];
				if (c1 != c2) {
					return c1 > c2;
				}
				s1 = quadrant[i1];
				s2 = quadrant[i2];
				if (s1 != s2) {
					return s1 > s2;
				}
				i1++;
				i2++;
				
				c1 = block[i1 + 1];
				c2 = block[i2 + 1];
				if (c1 != c2) {
					return c1 > c2;
				}
				s1 = quadrant[i1];
				s2 = quadrant[i2];
				if (s1 != s2) {
					return s1 > s2;
				}
				i1++;
				i2++;
				
				c1 = block[i1 + 1];
				c2 = block[i2 + 1];
				if (c1 != c2) {
					return c1 > c2;
				}
				s1 = quadrant[i1];
				s2 = quadrant[i2];
				if (s1 != s2) {
					return s1 > s2;
				}
				i1++;
				i2++;
				
				c1 = block[i1 + 1];
				c2 = block[i2 + 1];
				if (c1 != c2) {
					return c1 > c2;
				}
				s1 = quadrant[i1];
				s2 = quadrant[i2];
				if (s1 != s2) {
					return s1 > s2;
				}
				i1++;
				i2++;
				
				if (i1 > last) {
					i1 -= last;
					i1--;
				}
				if (i2 > last) {
					i2 -= last;
					i2--;
				}
				
				k -= 4;
				++workDone;
			} while (k >= 0);
			
			return false;
		}
		
		/*--
		Knuth's increments seem to work better
		than Incerpi-Sedgewick here.  Possibly
		because the number of elems to sort is
		usually small, typically <= 20.
		--*/
		readonly int[] incs = new int[] { 
			1, 4, 13, 40, 121, 364, 1093, 3280,
			9841, 29524, 88573, 265720,
			797161, 2391484 
		};
		
		void AllocateCompressStructures() 
		{
			int n = BZip2Constants.baseBlockSize * blockSize100k;
			block = new byte[(n + 1 + BZip2Constants.NUM_OVERSHOOT_BYTES)];
			quadrant = new int[(n + BZip2Constants.NUM_OVERSHOOT_BYTES)];
			zptr = new int[n];
			ftab = new int[65537];
			
			if (block == null || quadrant == null || zptr == null  || ftab == null) {
				//		int totalDraw = (n + 1 + NUM_OVERSHOOT_BYTES) + (n + NUM_OVERSHOOT_BYTES) + n + 65537;
				//		compressOutOfMemory ( totalDraw, n );
			}
			
			/*
			The back end needs a place to store the MTF values
			whilst it calculates the coding tables.  We could
			put them in the zptr array.  However, these values
			will fit in a short, so we overlay szptr at the
			start of zptr, in the hope of reducing the number
			of cache misses induced by the multiple traversals
			of the MTF values when calculating coding tables.
			Seems to improve compression speed by about 1%.
			*/
			//	szptr = zptr;
			
			
			szptr = new short[2 * n];
		}
		
		void GenerateMTFValues() 
		{
			char[] yy = new char[256];
			int  i, j;
			char tmp;
			char tmp2;
			int zPend;
			int wr;
			int EOB;
			
			MakeMaps();
			EOB = nInUse+1;
			
			for (i = 0; i <= EOB; i++) {
				mtfFreq[i] = 0;
			}
			
			wr = 0;
			zPend = 0;
			for (i = 0; i < nInUse; i++) {
				yy[i] = (char) i;
			}
			
			
			for (i = 0; i <= last; i++) {
				char ll_i;
				
				ll_i = unseqToSeq[block[zptr[i]]];
				
				j = 0;
				tmp = yy[j];
				while (ll_i != tmp) {
					j++;
					tmp2 = tmp;
					tmp = yy[j];
					yy[j] = tmp2;
				}
				yy[0] = tmp;
				
				if (j == 0) {
					zPend++;
				} else {
					if (zPend > 0) {
						zPend--;
						while (true) {
							switch (zPend % 2) {
								case 0:
									szptr[wr] = (short)BZip2Constants.RUNA;
									wr++;
									mtfFreq[BZip2Constants.RUNA]++;
									break;
								case 1:
									szptr[wr] = (short)BZip2Constants.RUNB;
									wr++;
									mtfFreq[BZip2Constants.RUNB]++;
									break;
							}
							if (zPend < 2) {
								break;
							}
							zPend = (zPend - 2) / 2;
						}
						zPend = 0;
					}
					szptr[wr] = (short)(j + 1);
					wr++;
					mtfFreq[j + 1]++;
				}
			}
			
			if (zPend > 0) {
				zPend--;
				while (true) {
					switch (zPend % 2) {
						case 0:
							szptr[wr] = (short)BZip2Constants.RUNA;
							wr++;
							mtfFreq[BZip2Constants.RUNA]++;
							break;
						case 1:
							szptr[wr] = (short)BZip2Constants.RUNB;
							wr++;
							mtfFreq[BZip2Constants.RUNB]++;
							break;
					}
					if (zPend < 2) {
						break;
					}
					zPend = (zPend - 2) / 2;
				}
			}
			
			szptr[wr] = (short)EOB;
			wr++;
			mtfFreq[EOB]++;
			
			nMTF = wr;
		}
	}
}

/* This file was derived from a file containing under this license:
 * 
 * This file is a part of bzip2 and/or libbzip2, a program and
 * library for lossless, block-sorting data compression.
 * 
 * Copyright (C) 1996-1998 Julian R Seward.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 
 * 2. The origin of this software must not be misrepresented; you must 
 * not claim that you wrote the original software.  If you use this 
 * software in a product, an acknowledgment in the product 
 * documentation would be appreciated but is not required.
 * 
 * 3. Altered source versions must be plainly marked as such, and must
 * not be misrepresented as being the original software.
 * 
 * 4. The name of the author may not be used to endorse or promote 
 * products derived from this software without specific prior written 
 * permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
 * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 * 
 * Java version ported by Keiron Liddle, Aftex Software <keiron@aftexsw.com> 1999-2001
 */