File: DeflaterHuffman.cs

package info (click to toggle)
mono 4.6.2.7%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 778,148 kB
  • ctags: 914,052
  • sloc: cs: 5,779,509; xml: 2,773,713; ansic: 432,645; sh: 14,749; makefile: 12,361; perl: 2,488; python: 1,434; cpp: 849; asm: 531; sql: 95; sed: 16; php: 1
file content (887 lines) | stat: -rw-r--r-- 24,485 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
// DeflaterHuffman.cs
//
// Copyright (C) 2001 Mike Krueger
// Copyright (C) 2004 John Reilly
//
// This file was translated from java, it was part of the GNU Classpath
// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
//
// Linking this library statically or dynamically with other modules is
// making a combined work based on this library.  Thus, the terms and
// conditions of the GNU General Public License cover the whole
// combination.
// 
// As a special exception, the copyright holders of this library give you
// permission to link this library with independent modules to produce an
// executable, regardless of the license terms of these independent
// modules, and to copy and distribute the resulting executable under
// terms of your choice, provided that you also meet, for each linked
// independent module, the terms and conditions of the license of that
// module.  An independent module is a module which is not derived from
// or based on this library.  If you modify this library, you may extend
// this exception to your version of the library, but you are not
// obligated to do so.  If you do not wish to do so, delete this
// exception statement from your version.

using System;

namespace ICSharpCode.SharpZipLib.Zip.Compression 
{
	
	/// <summary>
	/// This is the DeflaterHuffman class.
	/// 
	/// This class is <i>not</i> thread safe.  This is inherent in the API, due
	/// to the split of deflate and setInput.
	/// 
	/// author of the original java version : Jochen Hoenicke
	/// </summary>
	public class DeflaterHuffman
	{
		static  int BUFSIZE = 1 << (DeflaterConstants.DEFAULT_MEM_LEVEL + 6);
		static  int LITERAL_NUM = 286;
		static  int DIST_NUM = 30;
		static  int BITLEN_NUM = 19;
		static  int REP_3_6    = 16;
		static  int REP_3_10   = 17;
		static  int REP_11_138 = 18;
		static  int EOF_SYMBOL = 256;
		static  int[] BL_ORDER = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 };
		
		static byte[] bit4Reverse = {
			0,
			8,
			4,
			12,
			2,
			10,
			6,
			14,
			1,
			9,
			5,
			13,
			3,
			11,
			7,
			15
		};
		
		/// <summary>
		/// Not documented
		/// </summary>
		public class Tree 
		{
			/// <summary>
			/// Not documented
			/// </summary>
			public short[] freqs;
			
			/// <summary>
			/// Not documented
			/// </summary>
			public byte[]  length;
			
			/// <summary>
			/// Not documented
			/// </summary>
			public int     minNumCodes;
			
			/// <summary>
			/// Not documented
			/// </summary>
			public int     numCodes;
			
			short[] codes;
			int[]   bl_counts;
			int     maxLength;
			DeflaterHuffman dh;
			
			/// <summary>
			/// Not documented
			/// </summary>
			public Tree(DeflaterHuffman dh, int elems, int minCodes, int maxLength) 
			{
				this.dh =  dh;
				this.minNumCodes = minCodes;
				this.maxLength  = maxLength;
				freqs  = new short[elems];
				bl_counts = new int[maxLength];
			}
			
			/// <summary>
			/// Resets the internal state of the tree
			/// </summary>
			public void Reset() 
			{
				for (int i = 0; i < freqs.Length; i++) {
					freqs[i] = 0;
				}
				codes = null;
				length = null;
			}
			
			/// <summary>
			/// Not documented
			/// </summary>
			public void WriteSymbol(int code)
			{
				//				if (DeflaterConstants.DEBUGGING) {
				//					freqs[code]--;
				//					//  	  Console.Write("writeSymbol("+freqs.length+","+code+"): ");
				//				}
				dh.pending.WriteBits(codes[code] & 0xffff, length[code]);
			}
			
			/// <summary>
			/// Check that at least one frequency is non-zero
			/// </summary>
			/// <exception cref="SharpZipBaseException">
			/// No frequencies are non-zero
			/// </exception>
			public void CheckEmpty()
			{
				bool empty = true;
				for (int i = 0; i < freqs.Length; i++) {
					if (freqs[i] != 0) {
						//Console.WriteLine("freqs[" + i + "] == " + freqs[i]);
						empty = false;
					}
				}
				
				if (!empty) {
					throw new SharpZipBaseException("!Empty");
				}
				//Console.WriteLine("checkEmpty suceeded!");
			}

			/// <summary>
			/// Set static codes and length
			/// </summary>
			/// <param name="stCodes">new codes</param>
			/// <param name="stLength">length for new codes</param>
			public void SetStaticCodes(short[] stCodes, byte[] stLength)
			{
				codes = stCodes;
				length = stLength;
			}
			
			/// <summary>
			/// Build dynamic codes and lengths
			/// </summary>
			public void BuildCodes() 
			{
				int numSymbols = freqs.Length;
				int[] nextCode = new int[maxLength];
				int code = 0;
				codes = new short[freqs.Length];
				
				//				if (DeflaterConstants.DEBUGGING) {
				//					//Console.WriteLine("buildCodes: "+freqs.Length);
				//				}
				
				for (int bits = 0; bits < maxLength; bits++) {
					nextCode[bits] = code;
					code += bl_counts[bits] << (15 - bits);
					//					if (DeflaterConstants.DEBUGGING) {
					//						//Console.WriteLine("bits: " + ( bits + 1) + " count: " + bl_counts[bits]
					//						                  +" nextCode: "+code);
					//					}
				}
				if (DeflaterConstants.DEBUGGING && code != 65536) {
					throw new SharpZipBaseException("Inconsistent bl_counts!");
				}
				
				for (int i=0; i < numCodes; i++) {
					int bits = length[i];
					if (bits > 0) {
						//						if (DeflaterConstants.DEBUGGING) {
						//								//Console.WriteLine("codes["+i+"] = rev(" + nextCode[bits-1]+"),
						//								                  +bits);
						//						}
						codes[i] = BitReverse(nextCode[bits-1]);
						nextCode[bits-1] += 1 << (16 - bits);
					}
				}
			}
			
			void BuildLength(int[] childs)
			{
				this.length = new byte [freqs.Length];
				int numNodes = childs.Length / 2;
				int numLeafs = (numNodes + 1) / 2;
				int overflow = 0;
				
				for (int i = 0; i < maxLength; i++) {
					bl_counts[i] = 0;
				}
				
				/* First calculate optimal bit lengths */
				int[] lengths = new int[numNodes];
				lengths[numNodes-1] = 0;
				
				for (int i = numNodes - 1; i >= 0; i--) {
					if (childs[2*i+1] != -1) {
						int bitLength = lengths[i] + 1;
						if (bitLength > maxLength) {
							bitLength = maxLength;
							overflow++;
						}
						lengths[childs[2*i]] = lengths[childs[2*i+1]] = bitLength;
					} else {
						/* A leaf node */
						int bitLength = lengths[i];
						bl_counts[bitLength - 1]++;
						this.length[childs[2*i]] = (byte) lengths[i];
					}
				}
				
				//				if (DeflaterConstants.DEBUGGING) {
				//					//Console.WriteLine("Tree "+freqs.Length+" lengths:");
				//					for (int i=0; i < numLeafs; i++) {
				//						//Console.WriteLine("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
				//						                  + " len: "+length[childs[2*i]]);
				//					}
				//				}
				
				if (overflow == 0) {
					return;
				}
				
				int incrBitLen = maxLength - 1;
				do {
					/* Find the first bit length which could increase: */
					while (bl_counts[--incrBitLen] == 0)
						;
					
					/* Move this node one down and remove a corresponding
					* amount of overflow nodes.
					*/
					do {
						bl_counts[incrBitLen]--;
						bl_counts[++incrBitLen]++;
						overflow -= 1 << (maxLength - 1 - incrBitLen);
					} while (overflow > 0 && incrBitLen < maxLength - 1);
				} while (overflow > 0);
				
				/* We may have overshot above.  Move some nodes from maxLength to
				* maxLength-1 in that case.
				*/
				bl_counts[maxLength-1] += overflow;
				bl_counts[maxLength-2] -= overflow;
				
				/* Now recompute all bit lengths, scanning in increasing
				* frequency.  It is simpler to reconstruct all lengths instead of
				* fixing only the wrong ones. This idea is taken from 'ar'
				* written by Haruhiko Okumura.
				*
				* The nodes were inserted with decreasing frequency into the childs
				* array.
				*/
				int nodePtr = 2 * numLeafs;
				for (int bits = maxLength; bits != 0; bits--) {
					int n = bl_counts[bits-1];
					while (n > 0) {
						int childPtr = 2*childs[nodePtr++];
						if (childs[childPtr + 1] == -1) {
							/* We found another leaf */
							length[childs[childPtr]] = (byte) bits;
							n--;
						}
					}
				}
				//				if (DeflaterConstants.DEBUGGING) {
				//					//Console.WriteLine("*** After overflow elimination. ***");
				//					for (int i=0; i < numLeafs; i++) {
				//						//Console.WriteLine("Node "+childs[2*i]+" freq: "+freqs[childs[2*i]]
				//						                  + " len: "+length[childs[2*i]]);
				//					}
				//				}
			}
			
			/// <summary>
			/// Not documented
			/// </summary>
			public void BuildTree()
			{
				int numSymbols = freqs.Length;
				
				/* heap is a priority queue, sorted by frequency, least frequent
				* nodes first.  The heap is a binary tree, with the property, that
				* the parent node is smaller than both child nodes.  This assures
				* that the smallest node is the first parent.
				*
				* The binary tree is encoded in an array:  0 is root node and
				* the nodes 2*n+1, 2*n+2 are the child nodes of node n.
				*/
				int[] heap = new int[numSymbols];
				int heapLen = 0;
				int maxCode = 0;
				for (int n = 0; n < numSymbols; n++) {
					int freq = freqs[n];
					if (freq != 0) {
						/* Insert n into heap */
						int pos = heapLen++;
						int ppos;
						while (pos > 0 && freqs[heap[ppos = (pos - 1) / 2]] > freq) {
							heap[pos] = heap[ppos];
							pos = ppos;
						}
						heap[pos] = n;
						
						maxCode = n;
					}
				}
				
				/* We could encode a single literal with 0 bits but then we
				* don't see the literals.  Therefore we force at least two
				* literals to avoid this case.  We don't care about order in
				* this case, both literals get a 1 bit code.
				*/
				while (heapLen < 2) {
					int node = maxCode < 2 ? ++maxCode : 0;
					heap[heapLen++] = node;
				}
				
				numCodes = Math.Max(maxCode + 1, minNumCodes);
				
				int numLeafs = heapLen;
				int[] childs = new int[4*heapLen - 2];
				int[] values = new int[2*heapLen - 1];
				int numNodes = numLeafs;
				for (int i = 0; i < heapLen; i++) {
					int node = heap[i];
					childs[2*i]   = node;
					childs[2*i+1] = -1;
					values[i] = freqs[node] << 8;
					heap[i] = i;
				}
				
				/* Construct the Huffman tree by repeatedly combining the least two
				* frequent nodes.
				*/
				do {
					int first = heap[0];
					int last  = heap[--heapLen];
					
					/* Propagate the hole to the leafs of the heap */
					int ppos = 0;
					int path = 1;
					
					while (path < heapLen) {
						if (path + 1 < heapLen && values[heap[path]] > values[heap[path+1]]) {
							path++;
						}
							
						heap[ppos] = heap[path];
						ppos = path;
						path = path * 2 + 1;
					}
						
					/* Now propagate the last element down along path.  Normally
					* it shouldn't go too deep.
					*/
					int lastVal = values[last];
					while ((path = ppos) > 0 && values[heap[ppos = (path - 1)/2]] > lastVal) {
						heap[path] = heap[ppos];
					}
					heap[path] = last;
					
					
					int second = heap[0];
					
					/* Create a new node father of first and second */
					last = numNodes++;
					childs[2*last] = first;
					childs[2*last+1] = second;
					int mindepth = Math.Min(values[first] & 0xff, values[second] & 0xff);
					values[last] = lastVal = values[first] + values[second] - mindepth + 1;
					
					/* Again, propagate the hole to the leafs */
					ppos = 0;
					path = 1;
					
					while (path < heapLen) {
						if (path + 1 < heapLen && values[heap[path]] > values[heap[path+1]]) {
							path++;
						}
							
						heap[ppos] = heap[path];
						ppos = path;
						path = ppos * 2 + 1;
					}
						
					/* Now propagate the new element down along path */
					while ((path = ppos) > 0 && values[heap[ppos = (path - 1)/2]] > lastVal) {
						heap[path] = heap[ppos];
					}
					heap[path] = last;
				} while (heapLen > 1);
				
				if (heap[0] != childs.Length / 2 - 1) {
					throw new SharpZipBaseException("Heap invariant violated");
				}
				
				BuildLength(childs);
			}
			
			/// <summary>
			/// Get encoded length
			/// </summary>
			/// <returns>Encoded length, the sum of frequencies * lengths</returns>
			public int GetEncodedLength()
			{
				int len = 0;
				for (int i = 0; i < freqs.Length; i++) {
					len += freqs[i] * length[i];
				}
				return len;
			}
			
			/// <summary>
			/// Not documented
			/// </summary>
			public void CalcBLFreq(Tree blTree) 
			{
				int max_count;               /* max repeat count */
				int min_count;               /* min repeat count */
				int count;                   /* repeat count of the current code */
				int curlen = -1;             /* length of current code */
				
				int i = 0;
				while (i < numCodes) {
					count = 1;
					int nextlen = length[i];
					if (nextlen == 0) {
						max_count = 138;
						min_count = 3;
					} else {
						max_count = 6;
						min_count = 3;
						if (curlen != nextlen) {
							blTree.freqs[nextlen]++;
							count = 0;
						}
					}
					curlen = nextlen;
					i++;
					
					while (i < numCodes && curlen == length[i]) {
						i++;
						if (++count >= max_count) {
							break;
						}
					}
					
					if (count < min_count) {
						blTree.freqs[curlen] += (short)count;
					} else if (curlen != 0) {
						blTree.freqs[REP_3_6]++;
					} else if (count <= 10) {
						blTree.freqs[REP_3_10]++;
					} else {
						blTree.freqs[REP_11_138]++;
					}
				}
			}
		
			/// <summary>
			/// Write tree values
			/// </summary>
			/// <param name="blTree">Tree to write</param>
			public void WriteTree(Tree blTree)
			{
				int max_count;               /* max repeat count */
				int min_count;               /* min repeat count */
				int count;                   /* repeat count of the current code */
				int curlen = -1;             /* length of current code */
				
				int i = 0;
				while (i < numCodes) {
					count = 1;
					int nextlen = length[i];
					if (nextlen == 0) {
						max_count = 138;
						min_count = 3;
					} else {
						max_count = 6;
						min_count = 3;
						if (curlen != nextlen) {
							blTree.WriteSymbol(nextlen);
							count = 0;
						}
					}
					curlen = nextlen;
					i++;
					
					while (i < numCodes && curlen == length[i]) {
						i++;
						if (++count >= max_count) {
							break;
						}
					}
					
					if (count < min_count) {
						while (count-- > 0) {
							blTree.WriteSymbol(curlen);
						}
					} else if (curlen != 0) {
						blTree.WriteSymbol(REP_3_6);
						dh.pending.WriteBits(count - 3, 2);
					} else if (count <= 10) {
						blTree.WriteSymbol(REP_3_10);
						dh.pending.WriteBits(count - 3, 3);
					} else {
						blTree.WriteSymbol(REP_11_138);
						dh.pending.WriteBits(count - 11, 7);
					}
				}
			}
		}
		
		/// <summary>
		/// Pending buffer to use
		/// </summary>
		public DeflaterPending pending;
		
		Tree literalTree, distTree, blTree;
		
		short[] d_buf;
		byte[]  l_buf;
		int last_lit;
		int extra_bits;
		
		static short[] staticLCodes;
		static byte[]  staticLLength;
		static short[] staticDCodes;
		static byte[]  staticDLength;
		
		/// <summary>
		/// Reverse the bits of a 16 bit value.
		/// </summary>
		/// <param name="toReverse">Value to reverse bits</param>
		/// <returns>Value with bits reversed</returns>
		public static short BitReverse(int toReverse) 
		{
			return (short) (bit4Reverse[toReverse & 0xF] << 12 | 
			                bit4Reverse[(toReverse >> 4) & 0xF] << 8 | 
			                bit4Reverse[(toReverse >> 8) & 0xF] << 4 |
			                bit4Reverse[toReverse >> 12]);
		}
		
		
		static DeflaterHuffman() 
		{
			/* See RFC 1951 3.2.6 */
			/* Literal codes */
			staticLCodes = new short[LITERAL_NUM];
			staticLLength = new byte[LITERAL_NUM];
			int i = 0;
			while (i < 144) {
				staticLCodes[i] = BitReverse((0x030 + i) << 8);
				staticLLength[i++] = 8;
			}
			while (i < 256) {
				staticLCodes[i] = BitReverse((0x190 - 144 + i) << 7);
				staticLLength[i++] = 9;
			}
			while (i < 280) {
				staticLCodes[i] = BitReverse((0x000 - 256 + i) << 9);
				staticLLength[i++] = 7;
			}
			while (i < LITERAL_NUM) {
				staticLCodes[i] = BitReverse((0x0c0 - 280 + i)  << 8);
				staticLLength[i++] = 8;
			}
			
			/* Distant codes */
			staticDCodes = new short[DIST_NUM];
			staticDLength = new byte[DIST_NUM];
			for (i = 0; i < DIST_NUM; i++) {
				staticDCodes[i] = BitReverse(i << 11);
				staticDLength[i] = 5;
			}
		}
		
		/// <summary>
		/// Construct instance with pending buffer
		/// </summary>
		/// <param name="pending">Pending buffer to use</param>
		public DeflaterHuffman(DeflaterPending pending)
		{
			this.pending = pending;
			
			literalTree = new Tree(this, LITERAL_NUM, 257, 15);
			distTree    = new Tree(this, DIST_NUM, 1, 15);
			blTree      = new Tree(this, BITLEN_NUM, 4, 7);
			
			d_buf = new short[BUFSIZE];
			l_buf = new byte [BUFSIZE];
		}

		/// <summary>
		/// Reset internal state
		/// </summary>		
		public void Reset() 
		{
			last_lit = 0;
			extra_bits = 0;
			literalTree.Reset();
			distTree.Reset();
			blTree.Reset();
		}
		
		int Lcode(int len) 
		{
			if (len == 255) {
				return 285;
			}
			
			int code = 257;
			while (len >= 8) {
				code += 4;
				len >>= 1;
			}
			return code + len;
		}
		
		int Dcode(int distance) 
		{
			int code = 0;
			while (distance >= 4) {
				code += 2;
				distance >>= 1;
			}
			return code + distance;
		}

		/// <summary>
		/// Write all trees to pending buffer
		/// </summary>		
		public void SendAllTrees(int blTreeCodes)
		{
			blTree.BuildCodes();
			literalTree.BuildCodes();
			distTree.BuildCodes();
			pending.WriteBits(literalTree.numCodes - 257, 5);
			pending.WriteBits(distTree.numCodes - 1, 5);
			pending.WriteBits(blTreeCodes - 4, 4);
			for (int rank = 0; rank < blTreeCodes; rank++) {
				pending.WriteBits(blTree.length[BL_ORDER[rank]], 3);
			}
			literalTree.WriteTree(blTree);
			distTree.WriteTree(blTree);
			//			if (DeflaterConstants.DEBUGGING) {
			//				blTree.CheckEmpty();
			//			}
		}

		/// <summary>
		/// Compress current buffer writing data to pending buffer
		/// </summary>
		public void CompressBlock()
		{
			for (int i = 0; i < last_lit; i++) {
				int litlen = l_buf[i] & 0xff;
				int dist = d_buf[i];
				if (dist-- != 0) {
					//					if (DeflaterConstants.DEBUGGING) {
					//						Console.Write("["+(dist+1)+","+(litlen+3)+"]: ");
					//					}
					
					int lc = Lcode(litlen);
					literalTree.WriteSymbol(lc);
					
					int bits = (lc - 261) / 4;
					if (bits > 0 && bits <= 5) {
						pending.WriteBits(litlen & ((1 << bits) - 1), bits);
					}
					
					int dc = Dcode(dist);
					distTree.WriteSymbol(dc);
					
					bits = dc / 2 - 1;
					if (bits > 0) {
						pending.WriteBits(dist & ((1 << bits) - 1), bits);
					}
				} else {
					//					if (DeflaterConstants.DEBUGGING) {
					//						if (litlen > 32 && litlen < 127) {
					//							Console.Write("("+(char)litlen+"): ");
					//						} else {
					//							Console.Write("{"+litlen+"}: ");
					//						}
					//					}
					literalTree.WriteSymbol(litlen);
				}
			}
			//			if (DeflaterConstants.DEBUGGING) {
			//				Console.Write("EOF: ");
			//			}
			literalTree.WriteSymbol(EOF_SYMBOL);
			//			if (DeflaterConstants.DEBUGGING) {
			//				literalTree.CheckEmpty();
			//				distTree.CheckEmpty();
			//			}
		}
		
		/// <summary>
		/// Flush block to output with no compression
		/// </summary>
		/// <param name="stored">Data to write</param>
		/// <param name="storedOffset">Index of first byte to write</param>
		/// <param name="storedLength">Count of bytes to write</param>
		/// <param name="lastBlock">True if this is the last block</param>
		public void FlushStoredBlock(byte[] stored, int storedOffset, int storedLength, bool lastBlock)
		{
			//			if (DeflaterConstants.DEBUGGING) {
			//				//Console.WriteLine("Flushing stored block "+ storedLength);
			//			}
			pending.WriteBits((DeflaterConstants.STORED_BLOCK << 1) + (lastBlock ? 1 : 0), 3);
			pending.AlignToByte();
			pending.WriteShort(storedLength);
			pending.WriteShort(~storedLength);
			pending.WriteBlock(stored, storedOffset, storedLength);
			Reset();
		}

		/// <summary>
		/// Flush block to output with compression
		/// </summary>		
		/// <param name="stored">Data to flush</param>
		/// <param name="storedOffset">Index of first byte to flush</param>
		/// <param name="storedLength">Count of bytes to flush</param>
		/// <param name="lastBlock">True if this is the last block</param>
		public void FlushBlock(byte[] stored, int storedOffset, int storedLength, bool lastBlock)
		{
			literalTree.freqs[EOF_SYMBOL]++;
			
			/* Build trees */
			literalTree.BuildTree();
			distTree.BuildTree();
			
			/* Calculate bitlen frequency */
			literalTree.CalcBLFreq(blTree);
			distTree.CalcBLFreq(blTree);
			
			/* Build bitlen tree */
			blTree.BuildTree();
			
			int blTreeCodes = 4;
			for (int i = 18; i > blTreeCodes; i--) {
				if (blTree.length[BL_ORDER[i]] > 0) {
					blTreeCodes = i+1;
				}
			}
			int opt_len = 14 + blTreeCodes * 3 + blTree.GetEncodedLength() + 
				literalTree.GetEncodedLength() + distTree.GetEncodedLength() + 
				extra_bits;
			
			int static_len = extra_bits;
			for (int i = 0; i < LITERAL_NUM; i++) {
				static_len += literalTree.freqs[i] * staticLLength[i];
			}
			for (int i = 0; i < DIST_NUM; i++) {
				static_len += distTree.freqs[i] * staticDLength[i];
			}
			if (opt_len >= static_len) {
				/* Force static trees */
				opt_len = static_len;
			}
			
			if (storedOffset >= 0 && (storedLength + 4 < (opt_len >> 3))) {
				/* Store Block */
				//				if (DeflaterConstants.DEBUGGING) {
				//					//Console.WriteLine("Storing, since " + storedLength + " < " + opt_len
				//					                  + " <= " + static_len);
				//				}
				FlushStoredBlock(stored, storedOffset, storedLength, lastBlock);
			} else if (opt_len == static_len) {
				/* Encode with static tree */
				pending.WriteBits((DeflaterConstants.STATIC_TREES << 1) + (lastBlock ? 1 : 0), 3);
				literalTree.SetStaticCodes(staticLCodes, staticLLength);
				distTree.SetStaticCodes(staticDCodes, staticDLength);
				CompressBlock();
				Reset();
			} else {
				/* Encode with dynamic tree */
				pending.WriteBits((DeflaterConstants.DYN_TREES << 1) + (lastBlock ? 1 : 0), 3);
				SendAllTrees(blTreeCodes);
				CompressBlock();
				Reset();
			}
		}
		
		/// <summary>
		/// Get value indicating if internal buffer is full
		/// </summary>
		/// <returns>true if buffer is full</returns>
		public bool IsFull()
		{
			return last_lit >= BUFSIZE;
		}
		
		/// <summary>
		/// Add literal to buffer
		/// </summary>
		/// <param name="lit"></param>
		/// <returns>Value indicating internal buffer is full</returns>
		public bool TallyLit(int lit)
		{
			//			if (DeflaterConstants.DEBUGGING) {
			//				if (lit > 32 && lit < 127) {
			//					//Console.WriteLine("("+(char)lit+")");
			//				} else {
			//					//Console.WriteLine("{"+lit+"}");
			//				}
			//			}
			d_buf[last_lit] = 0;
			l_buf[last_lit++] = (byte)lit;
			literalTree.freqs[lit]++;
			return IsFull();
		}
		
		/// <summary>
		/// Add distance code and length to literal and distance trees
		/// </summary>
		/// <param name="dist">Distance code</param>
		/// <param name="len">Length</param>
		/// <returns>Value indicating if internal buffer is full</returns>
		public bool TallyDist(int dist, int len)
		{
			//			if (DeflaterConstants.DEBUGGING) {
			//				//Console.WriteLine("["+dist+","+len+"]");
			//			}
			
			d_buf[last_lit]   = (short)dist;
			l_buf[last_lit++] = (byte)(len - 3);
			
			int lc = Lcode(len - 3);
			literalTree.freqs[lc]++;
			if (lc >= 265 && lc < 285) {
				extra_bits += (lc - 261) / 4;
			}
			
			int dc = Dcode(dist - 1);
			distTree.freqs[dc]++;
			if (dc >= 4) {
				extra_bits += dc / 2 - 1;
			}
			return IsFull();
		}
	}
}