1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
|
/* ****************************************************************************
*
* Copyright (c) Microsoft Corporation.
*
* This source code is subject to terms and conditions of the Apache License, Version 2.0. A
* copy of the license can be found in the License.html file at the root of this distribution. If
* you cannot locate the Apache License, Version 2.0, please send an email to
* dlr@microsoft.com. By using this source code in any fashion, you are agreeing to be bound
* by the terms of the Apache License, Version 2.0.
*
* You must not remove this notice, or any other, from this software.
*
*
* ***************************************************************************/
using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Dynamic.Utils;
using System.Reflection;
using System.Reflection.Emit;
using System.Globalization;
#if SILVERLIGHT
using System.Core;
#endif
#if CLR2
namespace Microsoft.Scripting.Ast.Compiler {
#else
namespace System.Linq.Expressions.Compiler {
#endif
partial class LambdaCompiler {
private void EmitBlockExpression(Expression expr, CompilationFlags flags) {
// emit body
Emit((BlockExpression)expr, UpdateEmitAsTypeFlag(flags, CompilationFlags.EmitAsDefaultType));
}
private void Emit(BlockExpression node, CompilationFlags flags) {
EnterScope(node);
CompilationFlags emitAs = flags & CompilationFlags.EmitAsTypeMask;
int count = node.ExpressionCount;
CompilationFlags tailCall = flags & CompilationFlags.EmitAsTailCallMask;
for (int index = 0; index < count - 1; index++) {
var e = node.GetExpression(index);
var next = node.GetExpression(index + 1);
if (EmitDebugSymbols) {
// No need to emit a clearance if the next expression in the block is also a
// DebugInfoExprssion.
var debugInfo = e as DebugInfoExpression;
if (debugInfo != null && debugInfo.IsClear && next is DebugInfoExpression) {
continue;
}
}
CompilationFlags tailCallFlag;
if (tailCall != CompilationFlags.EmitAsNoTail) {
var g = next as GotoExpression;
if (g != null && (g.Value == null || !Significant(g.Value)) && ReferenceLabel(g.Target).CanReturn) {
// Since tail call flags are not passed into EmitTryExpression, CanReturn means the goto will be emitted
// as Ret. Therefore we can emit the current expression with tail call.
tailCallFlag = CompilationFlags.EmitAsTail;
} else {
// In the middle of the block.
// We may do better here by marking it as Tail if the following expressions are not going to emit any IL.
tailCallFlag = CompilationFlags.EmitAsMiddle;
}
} else {
tailCallFlag = CompilationFlags.EmitAsNoTail;
}
flags = UpdateEmitAsTailCallFlag(flags, tailCallFlag);
EmitExpressionAsVoid(e, flags);
}
// if the type of Block it means this is not a Comma
// so we will force the last expression to emit as void.
// We don't need EmitAsType flag anymore, should only pass
// the EmitTailCall field in flags to emitting the last expression.
if (emitAs == CompilationFlags.EmitAsVoidType || node.Type == typeof(void)) {
EmitExpressionAsVoid(node.GetExpression(count - 1), tailCall);
} else {
EmitExpressionAsType(node.GetExpression(count - 1), node.Type, tailCall);
}
ExitScope(node);
}
private void EnterScope(object node) {
if (HasVariables(node) &&
(_scope.MergedScopes == null || !_scope.MergedScopes.Contains(node))) {
CompilerScope scope;
if (!_tree.Scopes.TryGetValue(node, out scope)) {
//
// Very often, we want to compile nodes as reductions
// rather than as IL, but usually they need to allocate
// some IL locals. To support this, we allow emitting a
// BlockExpression that was not bound by VariableBinder.
// This works as long as the variables are only used
// locally -- i.e. not closed over.
//
// User-created blocks will never hit this case; only our
// internally reduced nodes will.
//
scope = new CompilerScope(node, false) { NeedsClosure = _scope.NeedsClosure };
}
_scope = scope.Enter(this, _scope);
Debug.Assert(_scope.Node == node);
}
}
private static bool HasVariables(object node) {
var block = node as BlockExpression;
if (block != null) {
return block.Variables.Count > 0;
}
return ((CatchBlock)node).Variable != null;
}
private void ExitScope(object node) {
if (_scope.Node == node) {
_scope = _scope.Exit();
}
}
private void EmitDefaultExpression(Expression expr) {
var node = (DefaultExpression)expr;
if (node.Type != typeof(void)) {
// emit default(T)
_ilg.EmitDefault(node.Type);
}
}
private void EmitLoopExpression(Expression expr) {
LoopExpression node = (LoopExpression)expr;
PushLabelBlock(LabelScopeKind.Statement);
LabelInfo breakTarget = DefineLabel(node.BreakLabel);
LabelInfo continueTarget = DefineLabel(node.ContinueLabel);
continueTarget.MarkWithEmptyStack();
EmitExpressionAsVoid(node.Body);
_ilg.Emit(OpCodes.Br, continueTarget.Label);
PopLabelBlock(LabelScopeKind.Statement);
breakTarget.MarkWithEmptyStack();
}
#region SwitchExpression
private void EmitSwitchExpression(Expression expr, CompilationFlags flags) {
SwitchExpression node = (SwitchExpression)expr;
// Try to emit it as an IL switch. Works for integer types.
if (TryEmitSwitchInstruction(node, flags)) {
return;
}
// Try to emit as a hashtable lookup. Works for strings.
if (TryEmitHashtableSwitch(node, flags)) {
return;
}
//
// Fall back to a series of tests. We need to IL gen instead of
// transform the tree to avoid stack overflow on a big switch.
//
var switchValue = Expression.Parameter(node.SwitchValue.Type, "switchValue");
var testValue = Expression.Parameter(GetTestValueType(node), "testValue");
_scope.AddLocal(this, switchValue);
_scope.AddLocal(this, testValue);
EmitExpression(node.SwitchValue);
_scope.EmitSet(switchValue);
// Emit tests
var labels = new Label[node.Cases.Count];
var isGoto = new bool[node.Cases.Count];
for (int i = 0, n = node.Cases.Count; i < n; i++) {
DefineSwitchCaseLabel(node.Cases[i], out labels[i], out isGoto[i]);
foreach (Expression test in node.Cases[i].TestValues) {
// Pull the test out into a temp so it runs on the same
// stack as the switch. This simplifies spilling.
EmitExpression(test);
_scope.EmitSet(testValue);
Debug.Assert(TypeUtils.AreReferenceAssignable(testValue.Type, test.Type));
EmitExpressionAndBranch(true, Expression.Equal(switchValue, testValue, false, node.Comparison), labels[i]);
}
}
// Define labels
Label end = _ilg.DefineLabel();
Label @default = (node.DefaultBody == null) ? end : _ilg.DefineLabel();
// Emit the case and default bodies
EmitSwitchCases(node, labels, isGoto, @default, end, flags);
}
/// <summary>
/// Gets the common test test value type of the SwitchExpression.
/// </summary>
private static Type GetTestValueType(SwitchExpression node) {
if (node.Comparison == null) {
// If we have no comparison, all right side types must be the
// same.
return node.Cases[0].TestValues[0].Type;
}
// Otherwise, get the type from the method.
Type result = node.Comparison.GetParametersCached()[1].ParameterType.GetNonRefType();
if (node.IsLifted) {
result = TypeUtils.GetNullableType(result);
}
return result;
}
private sealed class SwitchLabel {
internal readonly decimal Key;
internal readonly Label Label;
// Boxed version of Key, preseving the original type.
internal readonly object Constant;
internal SwitchLabel(decimal key, object @constant, Label label) {
Key = key;
Constant = @constant;
Label = label;
}
}
private sealed class SwitchInfo {
internal readonly SwitchExpression Node;
internal readonly LocalBuilder Value;
internal readonly Label Default;
internal readonly Type Type;
internal readonly bool IsUnsigned;
internal readonly bool Is64BitSwitch;
internal SwitchInfo(SwitchExpression node, LocalBuilder value, Label @default) {
Node = node;
Value = value;
Default = @default;
Type = Node.SwitchValue.Type;
IsUnsigned = TypeUtils.IsUnsigned(Type);
var code = Type.GetTypeCode(Type);
Is64BitSwitch = code == TypeCode.UInt64 || code == TypeCode.Int64;
}
}
private static bool FitsInBucket(List<SwitchLabel> buckets, decimal key, int count) {
Debug.Assert(key > buckets[buckets.Count - 1].Key);
decimal jumpTableSlots = key - buckets[0].Key + 1;
if (jumpTableSlots > int.MaxValue) {
return false;
}
// density must be > 50%
return (buckets.Count + count) * 2 > jumpTableSlots;
}
private static void MergeBuckets(List<List<SwitchLabel>> buckets) {
while (buckets.Count > 1) {
List<SwitchLabel> first = buckets[buckets.Count - 2];
List<SwitchLabel> second = buckets[buckets.Count - 1];
if (!FitsInBucket(first, second[second.Count - 1].Key, second.Count)) {
return;
}
// Merge them
first.AddRange(second);
buckets.RemoveAt(buckets.Count - 1);
}
}
// Add key to a new or existing bucket
private static void AddToBuckets(List<List<SwitchLabel>> buckets, SwitchLabel key) {
if (buckets.Count > 0) {
List<SwitchLabel> last = buckets[buckets.Count - 1];
if (FitsInBucket(last, key.Key, 1)) {
last.Add(key);
// we might be able to merge now
MergeBuckets(buckets);
return;
}
}
// else create a new bucket
buckets.Add(new List<SwitchLabel> { key });
}
// Determines if the type is an integer we can switch on.
private static bool CanOptimizeSwitchType(Type valueType) {
// enums & char are allowed
switch (Type.GetTypeCode(valueType)) {
case TypeCode.Byte:
case TypeCode.SByte:
case TypeCode.Char:
case TypeCode.Int16:
case TypeCode.Int32:
case TypeCode.UInt16:
case TypeCode.UInt32:
case TypeCode.Int64:
case TypeCode.UInt64:
return true;
default:
return false;
}
}
// Tries to emit switch as a jmp table
private bool TryEmitSwitchInstruction(SwitchExpression node, CompilationFlags flags) {
// If we have a comparison, bail
if (node.Comparison != null) {
return false;
}
// Make sure the switch value type and the right side type
// are types we can optimize
Type type = node.SwitchValue.Type;
if (!CanOptimizeSwitchType(type) ||
!TypeUtils.AreEquivalent(type, node.Cases[0].TestValues[0].Type)) {
return false;
}
// Make sure all test values are constant, or we can't emit the
// jump table.
if (!node.Cases.All(c => c.TestValues.All(t => t is ConstantExpression))) {
return false;
}
//
// We can emit the optimized switch, let's do it.
//
// Build target labels, collect keys.
var labels = new Label[node.Cases.Count];
var isGoto = new bool[node.Cases.Count];
var uniqueKeys = new Set<decimal>();
var keys = new List<SwitchLabel>();
for (int i = 0; i < node.Cases.Count; i++) {
DefineSwitchCaseLabel(node.Cases[i], out labels[i], out isGoto[i]);
foreach (ConstantExpression test in node.Cases[i].TestValues) {
// Guarenteed to work thanks to CanOptimizeSwitchType.
//
// Use decimal because it can hold Int64 or UInt64 without
// precision loss or signed/unsigned conversions.
decimal key = ConvertSwitchValue(test.Value);
// Only add each key once. If it appears twice, it's
// allowed, but can't be reached.
if (!uniqueKeys.Contains(key)) {
keys.Add(new SwitchLabel(key, test.Value, labels[i]));
uniqueKeys.Add(key);
}
}
}
// Sort the keys, and group them into buckets.
keys.Sort((x, y) => Math.Sign(x.Key - y.Key));
var buckets = new List<List<SwitchLabel>>();
foreach (var key in keys) {
AddToBuckets(buckets, key);
}
// Emit the switchValue
LocalBuilder value = GetLocal(node.SwitchValue.Type);
EmitExpression(node.SwitchValue);
_ilg.Emit(OpCodes.Stloc, value);
// Create end label, and default label if needed
Label end = _ilg.DefineLabel();
Label @default = (node.DefaultBody == null) ? end : _ilg.DefineLabel();
// Emit the switch
var info = new SwitchInfo(node, value, @default);
EmitSwitchBuckets(info, buckets, 0, buckets.Count - 1);
// Emit the case bodies and default
EmitSwitchCases(node, labels, isGoto, @default, end, flags);
FreeLocal(value);
return true;
}
private static decimal ConvertSwitchValue(object value) {
if (value is char) {
return (int)(char)value;
}
return Convert.ToDecimal(value, CultureInfo.InvariantCulture);
}
/// <summary>
/// Creates the label for this case.
/// Optimization: if the body is just a goto, and we can branch
/// to it, put the goto target directly in the jump table.
/// </summary>
private void DefineSwitchCaseLabel(SwitchCase @case, out Label label, out bool isGoto) {
var jump = @case.Body as GotoExpression;
// if it's a goto with no value
if (jump != null && jump.Value == null) {
// Reference the label from the switch. This will cause us to
// analyze the jump target and determine if it is safe.
LabelInfo jumpInfo = ReferenceLabel(jump.Target);
// If we have are allowed to emit the "branch" opcode, then we
// can jump directly there from the switch's jump table.
// (Otherwise, we need to emit the goto later as a "leave".)
if (jumpInfo.CanBranch) {
label = jumpInfo.Label;
isGoto = true;
return;
}
}
// otherwise, just define a new label
label = _ilg.DefineLabel();
isGoto = false;
}
private void EmitSwitchCases(SwitchExpression node, Label[] labels, bool[] isGoto, Label @default, Label end, CompilationFlags flags) {
// Jump to default (to handle the fallthrough case)
_ilg.Emit(OpCodes.Br, @default);
// Emit the cases
for (int i = 0, n = node.Cases.Count; i < n; i++) {
// If the body is a goto, we already emitted an optimized
// branch directly to it. No need to emit anything else.
if (isGoto[i]) {
continue;
}
_ilg.MarkLabel(labels[i]);
EmitExpressionAsType(node.Cases[i].Body, node.Type, flags);
// Last case doesn't need branch
if (node.DefaultBody != null || i < n - 1) {
if ((flags & CompilationFlags.EmitAsTailCallMask) == CompilationFlags.EmitAsTail) {
//The switch case is at the tail of the lambda so
//it is safe to emit a Ret.
_ilg.Emit(OpCodes.Ret);
} else {
_ilg.Emit(OpCodes.Br, end);
}
}
}
// Default value
if (node.DefaultBody != null) {
_ilg.MarkLabel(@default);
EmitExpressionAsType(node.DefaultBody, node.Type, flags);
}
_ilg.MarkLabel(end);
}
private void EmitSwitchBuckets(SwitchInfo info, List<List<SwitchLabel>> buckets, int first, int last) {
if (first == last) {
EmitSwitchBucket(info, buckets[first]);
return;
}
// Split the buckets into two groups, and use an if test to find
// the right bucket. This ensures we'll only need O(lg(B)) tests
// where B is the number of buckets
int mid = (int)(((long)first + last + 1) / 2);
if (first == mid - 1) {
EmitSwitchBucket(info, buckets[first]);
} else {
// If the first half contains more than one, we need to emit an
// explicit guard
Label secondHalf = _ilg.DefineLabel();
_ilg.Emit(OpCodes.Ldloc, info.Value);
_ilg.EmitConstant(buckets[mid - 1].Last().Constant);
_ilg.Emit(info.IsUnsigned ? OpCodes.Bgt_Un : OpCodes.Bgt, secondHalf);
EmitSwitchBuckets(info, buckets, first, mid - 1);
_ilg.MarkLabel(secondHalf);
}
EmitSwitchBuckets(info, buckets, mid, last);
}
private void EmitSwitchBucket(SwitchInfo info, List<SwitchLabel> bucket) {
// No need for switch if we only have one value
if (bucket.Count == 1) {
_ilg.Emit(OpCodes.Ldloc, info.Value);
_ilg.EmitConstant(bucket[0].Constant);
_ilg.Emit(OpCodes.Beq, bucket[0].Label);
return;
}
//
// If we're switching off of Int64/UInt64, we need more guards here
// because we'll have to narrow the switch value to an Int32, and
// we can't do that unless the value is in the right range.
//
Label? after = null;
if (info.Is64BitSwitch) {
after = _ilg.DefineLabel();
_ilg.Emit(OpCodes.Ldloc, info.Value);
_ilg.EmitConstant(bucket.Last().Constant);
_ilg.Emit(info.IsUnsigned ? OpCodes.Bgt_Un : OpCodes.Bgt, after.Value);
_ilg.Emit(OpCodes.Ldloc, info.Value);
_ilg.EmitConstant(bucket[0].Constant);
_ilg.Emit(info.IsUnsigned ? OpCodes.Blt_Un : OpCodes.Blt, after.Value);
}
_ilg.Emit(OpCodes.Ldloc, info.Value);
// Normalize key
decimal key = bucket[0].Key;
if (key != 0) {
_ilg.EmitConstant(bucket[0].Constant);
_ilg.Emit(OpCodes.Sub);
}
if (info.Is64BitSwitch) {
_ilg.Emit(OpCodes.Conv_I4);
}
// Collect labels
int len = (int)(bucket[bucket.Count - 1].Key - bucket[0].Key + 1);
Label[] jmpLabels = new Label[len];
// Initialize all labels to the default
int slot = 0;
foreach (SwitchLabel label in bucket) {
while (key++ != label.Key) {
jmpLabels[slot++] = info.Default;
}
jmpLabels[slot++] = label.Label;
}
// check we used all keys and filled all slots
Debug.Assert(key == bucket[bucket.Count - 1].Key + 1);
Debug.Assert(slot == jmpLabels.Length);
// Finally, emit the switch instruction
_ilg.Emit(OpCodes.Switch, jmpLabels);
if (info.Is64BitSwitch) {
_ilg.MarkLabel(after.Value);
}
}
private bool TryEmitHashtableSwitch(SwitchExpression node, CompilationFlags flags) {
// If we have a comparison other than string equality, bail
if (node.Comparison != typeof(string).GetMethod("op_Equality", BindingFlags.Public | BindingFlags.Static | BindingFlags.ExactBinding, null, new[] { typeof(string), typeof(string) }, null)) {
return false;
}
// All test values must be constant.
int tests = 0;
foreach (SwitchCase c in node.Cases) {
foreach (Expression t in c.TestValues) {
if (!(t is ConstantExpression)) {
return false;
}
tests++;
}
}
// Must have >= 7 labels for it to be worth it.
if (tests < 7) {
return false;
}
// If we're in a DynamicMethod, we could just build the dictionary
// immediately. But that would cause the two code paths to be more
// different than they really need to be.
var initializers = new List<ElementInit>(tests);
var cases = new List<SwitchCase>(node.Cases.Count);
int nullCase = -1;
MethodInfo add = typeof(Dictionary<string, int>).GetMethod("Add", new[] { typeof(string), typeof(int) });
for (int i = 0, n = node.Cases.Count; i < n; i++) {
foreach (ConstantExpression t in node.Cases[i].TestValues) {
if (t.Value != null) {
initializers.Add(Expression.ElementInit(add, t, Expression.Constant(i)));
} else {
nullCase = i;
}
}
cases.Add(Expression.SwitchCase(node.Cases[i].Body, Expression.Constant(i)));
}
// Create the field to hold the lazily initialized dictionary
MemberExpression dictField = CreateLazyInitializedField<Dictionary<string, int>>("dictionarySwitch");
// If we happen to initialize it twice (multithreaded case), it's
// not the end of the world. The C# compiler does better here by
// emitting a volatile access to the field.
Expression dictInit = Expression.Condition(
Expression.Equal(dictField, Expression.Constant(null, dictField.Type)),
Expression.Assign(
dictField,
Expression.ListInit(
Expression.New(
typeof(Dictionary<string, int>).GetConstructor(new[] { typeof(int) }),
Expression.Constant(initializers.Count)
),
initializers
)
),
dictField
);
//
// Create a tree like:
//
// switchValue = switchValueExpression;
// if (switchValue == null) {
// switchIndex = nullCase;
// } else {
// if (_dictField == null) {
// _dictField = new Dictionary<string, int>(count) { { ... }, ... };
// }
// if (!_dictField.TryGetValue(switchValue, out switchIndex)) {
// switchIndex = -1;
// }
// }
// switch (switchIndex) {
// case 0: ...
// case 1: ...
// ...
// default:
// }
//
var switchValue = Expression.Variable(typeof(string), "switchValue");
var switchIndex = Expression.Variable(typeof(int), "switchIndex");
var reduced = Expression.Block(
new[] { switchIndex, switchValue },
Expression.Assign(switchValue, node.SwitchValue),
Expression.IfThenElse(
Expression.Equal(switchValue, Expression.Constant(null, typeof(string))),
Expression.Assign(switchIndex, Expression.Constant(nullCase)),
Expression.IfThenElse(
Expression.Call(dictInit, "TryGetValue", null, switchValue, switchIndex),
Expression.Empty(),
Expression.Assign(switchIndex, Expression.Constant(-1))
)
),
Expression.Switch(node.Type, switchIndex, node.DefaultBody, null, cases)
);
EmitExpression(reduced, flags);
return true;
}
#endregion
private void CheckRethrow() {
// Rethrow is only valid inside a catch.
for (LabelScopeInfo j = _labelBlock; j != null; j = j.Parent) {
if (j.Kind == LabelScopeKind.Catch) {
return;
} else if (j.Kind == LabelScopeKind.Finally) {
// Rethrow from inside finally is not verifiable
break;
}
}
throw Error.RethrowRequiresCatch();
}
#region TryStatement
private void CheckTry() {
// Try inside a filter is not verifiable
for (LabelScopeInfo j = _labelBlock; j != null; j = j.Parent) {
if (j.Kind == LabelScopeKind.Filter) {
throw Error.TryNotAllowedInFilter();
}
}
}
private void EmitSaveExceptionOrPop(CatchBlock cb) {
if (cb.Variable != null) {
// If the variable is present, store the exception
// in the variable.
_scope.EmitSet(cb.Variable);
} else {
// Otherwise, pop it off the stack.
_ilg.Emit(OpCodes.Pop);
}
}
private void EmitTryExpression(Expression expr) {
var node = (TryExpression)expr;
CheckTry();
//******************************************************************
// 1. ENTERING TRY
//******************************************************************
PushLabelBlock(LabelScopeKind.Try);
_ilg.BeginExceptionBlock();
//******************************************************************
// 2. Emit the try statement body
//******************************************************************
EmitExpression(node.Body);
Type tryType = expr.Type;
LocalBuilder value = null;
if (tryType != typeof(void)) {
//store the value of the try body
value = GetLocal(tryType);
_ilg.Emit(OpCodes.Stloc, value);
}
//******************************************************************
// 3. Emit the catch blocks
//******************************************************************
foreach (CatchBlock cb in node.Handlers) {
PushLabelBlock(LabelScopeKind.Catch);
// Begin the strongly typed exception block
if (cb.Filter == null) {
_ilg.BeginCatchBlock(cb.Test);
} else {
_ilg.BeginExceptFilterBlock();
}
EnterScope(cb);
EmitCatchStart(cb);
//
// Emit the catch block body
//
EmitExpression(cb.Body);
if (tryType != typeof(void)) {
//store the value of the catch block body
_ilg.Emit(OpCodes.Stloc, value);
}
ExitScope(cb);
PopLabelBlock(LabelScopeKind.Catch);
}
//******************************************************************
// 4. Emit the finally block
//******************************************************************
if (node.Finally != null || node.Fault != null) {
PushLabelBlock(LabelScopeKind.Finally);
if (node.Finally != null) {
_ilg.BeginFinallyBlock();
} else {
_ilg.BeginFaultBlock();
}
// Emit the body
EmitExpressionAsVoid(node.Finally ?? node.Fault);
_ilg.EndExceptionBlock();
PopLabelBlock(LabelScopeKind.Finally);
} else {
_ilg.EndExceptionBlock();
}
if (tryType != typeof(void)) {
_ilg.Emit(OpCodes.Ldloc, value);
FreeLocal(value);
}
PopLabelBlock(LabelScopeKind.Try);
}
/// <summary>
/// Emits the start of a catch block. The exception value that is provided by the
/// CLR is stored in the variable specified by the catch block or popped if no
/// variable is provided.
/// </summary>
private void EmitCatchStart(CatchBlock cb) {
if (cb.Filter == null) {
EmitSaveExceptionOrPop(cb);
return;
}
// emit filter block. Filter blocks are untyped so we need to do
// the type check ourselves.
Label endFilter = _ilg.DefineLabel();
Label rightType = _ilg.DefineLabel();
// skip if it's not our exception type, but save
// the exception if it is so it's available to the
// filter
_ilg.Emit(OpCodes.Isinst, cb.Test);
_ilg.Emit(OpCodes.Dup);
_ilg.Emit(OpCodes.Brtrue, rightType);
_ilg.Emit(OpCodes.Pop);
_ilg.Emit(OpCodes.Ldc_I4_0);
_ilg.Emit(OpCodes.Br, endFilter);
// it's our type, save it and emit the filter.
_ilg.MarkLabel(rightType);
EmitSaveExceptionOrPop(cb);
PushLabelBlock(LabelScopeKind.Filter);
EmitExpression(cb.Filter);
PopLabelBlock(LabelScopeKind.Filter);
// begin the catch, clear the exception, we've
// already saved it
_ilg.MarkLabel(endFilter);
_ilg.BeginCatchBlock(null);
_ilg.Emit(OpCodes.Pop);
}
#endregion
}
}
|