1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035
|
//---------------------------------------------------------------------
// <copyright file="ITreeGenerator.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
namespace System.Data.Query.PlanCompiler
{
using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Common;
using System.Data.Common.CommandTrees;
using System.Data.Common.CommandTrees.ExpressionBuilder;
using System.Data.Common.Utils;
using System.Data.Entity;
using System.Data.Entity.Util;
using System.Data.Metadata.Edm;
using System.Data.Query.InternalTrees;
using System.Linq;
internal class ITreeGenerator : DbExpressionVisitor<Node>
{
#region Nested Types
/// <summary>
/// Abstract base class for both DbExpressionBinding and LambdaFunction scopes
/// </summary>
private abstract class CqtVariableScope
{
internal abstract bool Contains(string varName);
internal abstract Node this[string varName] { get; }
/// <summary>
/// Returns true if it is a lambda variable representing a predicate expression.
/// </summary>
internal abstract bool IsPredicate(string varName);
}
/// <summary>
/// Represents a variable scope introduced by a CQT DbExpressionBinding, and therefore contains a single variable.
/// </summary>
private class ExpressionBindingScope : CqtVariableScope
{
private Command _tree;
private string _varName;
private Var _var;
internal ExpressionBindingScope(Command iqtTree, string name, Var iqtVar)
{
_tree = iqtTree;
_varName = name;
_var = iqtVar;
}
internal override bool Contains(string name) { return (_varName == name); }
internal override Node this[string name]
{
get
{
PlanCompiler.Assert(name == _varName,"huh?");
return _tree.CreateNode(_tree.CreateVarRefOp(_var));
}
}
internal override bool IsPredicate(string varName)
{
return false;
}
internal Var ScopeVar { get { return _var; } }
}
/// <summary>
/// Represents a variable scope introduced by a LambdaFunction.
/// </summary>
private sealed class LambdaScope : CqtVariableScope
{
private readonly ITreeGenerator _treeGen;
private readonly Command _command;
/// <summary>
/// varName : [node, IsPredicate]
/// </summary>
private readonly Dictionary<string, Tuple<Node, bool>> _arguments;
private readonly Dictionary<Node, bool> _referencedArgs;
internal LambdaScope(ITreeGenerator treeGen, Command command, Dictionary<string, Tuple<Node, bool>> args)
{
_treeGen = treeGen;
_command = command;
_arguments = args;
_referencedArgs = new Dictionary<Node, bool>(_arguments.Count);
}
internal override bool Contains(string name) { return (_arguments.ContainsKey(name)); }
internal override Node this[string name]
{
get
{
PlanCompiler.Assert(_arguments.ContainsKey(name), "LambdaScope indexer called for invalid Var");
Node argNode = _arguments[name].Item1;
if (_referencedArgs.ContainsKey(argNode))
{
// The specified argument has already been substituted into the
// IQT and so this substitution requires a copy of the argument.
VarMap mappedVars = null;
// This is a 'deep copy' operation that clones the entire subtree rooted at the node.
Node argCopy = OpCopier.Copy(_command, argNode, out mappedVars);
// If any Nodes in the copy of the argument produce Vars then the
// Node --> Var map must be updated to include them.
if (mappedVars.Count > 0)
{
List<Node> sources = new List<Node>(1);
sources.Add(argNode);
List<Node> copies = new List<Node>(1);
copies.Add(argCopy);
MapCopiedNodeVars(sources, copies, mappedVars);
}
argNode = argCopy;
}
else
{
// This is the first reference of the lambda argument, so the Node itself
// can be returned rather than a copy, but the dictionary that tracks
// whether or not an argument has been referenced needs to be updated.
_referencedArgs[argNode] = true;
}
return argNode;
}
}
internal override bool IsPredicate(string name)
{
PlanCompiler.Assert(_arguments.ContainsKey(name), "LambdaScope indexer called for invalid Var");
return _arguments[name].Item2;
}
private void MapCopiedNodeVars(IList<Node> sources, IList<Node> copies, Dictionary<Var, Var> varMappings)
{
PlanCompiler.Assert(sources.Count == copies.Count, "Source/Copy Node count mismatch");
//
// For each Source/Copy Node in the two lists:
// - Recursively update the Node --> Var map for any child nodes
// - If the Source Node is mapped to a Var, then retrieve the new Var
// produced by the Op copier that corresponds to that Source Var, and
// add an entry to the Node --> Var map that maps the Copy Node to the
// new Var.
//
for (int idx = 0; idx < sources.Count; idx++)
{
Node sourceNode = sources[idx];
Node copyNode = copies[idx];
if (sourceNode.Children.Count > 0)
{
MapCopiedNodeVars(sourceNode.Children, copyNode.Children, varMappings);
}
Var sourceVar = null;
if (_treeGen.VarMap.TryGetValue(sourceNode, out sourceVar))
{
PlanCompiler.Assert(varMappings.ContainsKey(sourceVar), "No mapping found for Var in Var to Var map from OpCopier");
this._treeGen.VarMap[copyNode] = varMappings[sourceVar];
}
}
}
}
#endregion
private static Dictionary<DbExpressionKind, OpType> s_opMap = InitializeExpressionKindToOpTypeMap();
private readonly Command _iqtCommand;
private readonly Stack<CqtVariableScope> _varScopes = new Stack<CqtVariableScope>();
private readonly Dictionary<Node, Var> _varMap = new Dictionary<Node, Var>();
private readonly Stack<EdmFunction> _functionExpansions = new Stack<EdmFunction>();
/// <summary>
/// Maintained for lambda and model-defined function applications (DbLambdaExpression and DbFunctionExpression).
/// </summary>
private readonly Dictionary<DbExpression, bool> _functionsIsPredicateFlag = new Dictionary<DbExpression, bool>();
// Used to track which IsOf type filter expressions have already been processed
private readonly HashSet<DbFilterExpression> _processedIsOfFilters = new HashSet<DbFilterExpression>();
private readonly HashSet<DbTreatExpression> _fakeTreats = new HashSet<DbTreatExpression>();
// leverage discriminator metadata in the top-level project when translating query mapping views...
private readonly System.Data.Mapping.ViewGeneration.DiscriminatorMap _discriminatorMap;
private readonly DbProjectExpression _discriminatedViewTopProject;
/// <summary>
/// Initialize the DbExpressionKind --> OpType mappings for DbComparisonExpression and DbArithmeticExpression
/// </summary>
private static Dictionary<DbExpressionKind, OpType> InitializeExpressionKindToOpTypeMap()
{
Dictionary<DbExpressionKind, OpType> opMap = new Dictionary<DbExpressionKind, OpType>(12);
//
// Arithmetic operators
//
opMap[DbExpressionKind.Plus] = OpType.Plus;
opMap[DbExpressionKind.Minus] = OpType.Minus;
opMap[DbExpressionKind.Multiply] = OpType.Multiply;
opMap[DbExpressionKind.Divide] = OpType.Divide;
opMap[DbExpressionKind.Modulo] = OpType.Modulo;
opMap[DbExpressionKind.UnaryMinus] = OpType.UnaryMinus;
//
// Comparison operators
//
opMap[DbExpressionKind.Equals] = OpType.EQ;
opMap[DbExpressionKind.NotEquals] = OpType.NE;
opMap[DbExpressionKind.LessThan] = OpType.LT;
opMap[DbExpressionKind.GreaterThan] = OpType.GT;
opMap[DbExpressionKind.LessThanOrEquals] = OpType.LE;
opMap[DbExpressionKind.GreaterThanOrEquals] = OpType.GE;
return opMap;
}
internal Dictionary<Node, Var> VarMap { get { return _varMap; } }
public static Command Generate(DbQueryCommandTree ctree)
{
return Generate(ctree, null);
}
/// <summary>
/// Generate an IQT given a query command tree and discriminator metadata (available for certain query mapping views)
/// </summary>
internal static Command Generate(DbQueryCommandTree ctree, System.Data.Mapping.ViewGeneration.DiscriminatorMap discriminatorMap)
{
ITreeGenerator treeGenerator = new ITreeGenerator(ctree, discriminatorMap);
return treeGenerator._iqtCommand;
}
private ITreeGenerator(DbQueryCommandTree ctree, System.Data.Mapping.ViewGeneration.DiscriminatorMap discriminatorMap)
{
//
// Create a new IQT Command instance that uses the same metadata workspace as the incoming command tree
//
_iqtCommand = new Command(ctree.MetadataWorkspace);
//
// When translating a query mapping view matching the TPH discrimination pattern, remember the top level discriminator map
// (leveraged to produced a DiscriminatedNewInstanceOp for the top-level projection in the view)
//
if (null != discriminatorMap)
{
_discriminatorMap = discriminatorMap;
// see System.Data.Mapping.ViewGeneration.DiscriminatorMap
PlanCompiler.Assert(ctree.Query.ExpressionKind == DbExpressionKind.Project,
"top level QMV expression must be project to match discriminator pattern");
_discriminatedViewTopProject = (DbProjectExpression)ctree.Query;
}
//
// For each Parameter declared by the command tree, add a ParameterVar to the set of parameter vars maintained by the conversion visitor.
// Each ParameterVar has the same name and type as the corresponding parameter on the command tree.
//
foreach (KeyValuePair<string, TypeUsage> paramInfo in ctree.Parameters)
{
if (!ValidateParameterType(paramInfo.Value))
{
throw EntityUtil.NotSupported(System.Data.Entity.Strings.ParameterTypeNotSupported(paramInfo.Key, paramInfo.Value.ToString()));
}
_iqtCommand.CreateParameterVar(paramInfo.Key, paramInfo.Value);
}
// Convert into an ITree
_iqtCommand.Root = VisitExpr(ctree.Query);
//
// If the root of the tree is not a relop, build up a fake project over a
// a singlerowtableOp.
// "s" => Project(SingleRowTableOp, "s")
//
if (!_iqtCommand.Root.Op.IsRelOp)
{
Node scalarExpr = ConvertToScalarOpTree(_iqtCommand.Root, ctree.Query);
Node singletonTableNode = _iqtCommand.CreateNode(_iqtCommand.CreateSingleRowTableOp());
Var newVar;
Node varDefListNode = _iqtCommand.CreateVarDefListNode(scalarExpr, out newVar);
ProjectOp projectOp = _iqtCommand.CreateProjectOp(newVar);
Node newRoot = _iqtCommand.CreateNode(projectOp, singletonTableNode, varDefListNode);
if (TypeSemantics.IsCollectionType(_iqtCommand.Root.Op.Type))
{
UnnestOp unnestOp = _iqtCommand.CreateUnnestOp(newVar);
newRoot = _iqtCommand.CreateNode(unnestOp, varDefListNode.Child0);
newVar = unnestOp.Table.Columns[0];
}
_iqtCommand.Root = newRoot;
_varMap[_iqtCommand.Root] = newVar;
}
//
// Ensure that the topmost portion of the query is capped by a
// PhysicalProject expression
//
_iqtCommand.Root = CapWithPhysicalProject(_iqtCommand.Root);
}
private static bool ValidateParameterType(TypeUsage paramType)
{
return (paramType != null && paramType.EdmType != null &&
(TypeSemantics.IsPrimitiveType(paramType) || paramType.EdmType is EnumType));
}
#region DbExpressionVisitor Helpers
private static RowType ExtractElementRowType(TypeUsage typeUsage)
{
return TypeHelpers.GetEdmType<RowType>(TypeHelpers.GetEdmType<CollectionType>(typeUsage).TypeUsage);
}
#if DEBUG
private static bool IsCollectionOfRecord(TypeUsage typeUsage)
{
CollectionType collectionType;
return (TypeHelpers.TryGetEdmType<CollectionType>(typeUsage, out collectionType) &&
collectionType != null &&
TypeSemantics.IsRowType(collectionType.TypeUsage));
}
#endif
/// <summary>
/// Is the current expression a predicate?
/// </summary>
/// <param name="expr">expr to check</param>
/// <returns>true, if the expression is a predicate</returns>
private bool IsPredicate(DbExpression expr)
{
if (TypeSemantics.IsPrimitiveType(expr.ResultType, PrimitiveTypeKind.Boolean))
{
switch (expr.ExpressionKind)
{
case DbExpressionKind.Equals:
case DbExpressionKind.NotEquals:
case DbExpressionKind.LessThan:
case DbExpressionKind.LessThanOrEquals:
case DbExpressionKind.GreaterThan:
case DbExpressionKind.GreaterThanOrEquals:
case DbExpressionKind.And:
case DbExpressionKind.Or:
case DbExpressionKind.Not:
case DbExpressionKind.Like:
case DbExpressionKind.IsEmpty:
case DbExpressionKind.IsNull:
case DbExpressionKind.IsOf:
case DbExpressionKind.IsOfOnly:
case DbExpressionKind.Any:
case DbExpressionKind.All:
return true;
case DbExpressionKind.VariableReference:
var varRef = (DbVariableReferenceExpression)expr;
return ResolveScope(varRef).IsPredicate(varRef.VariableName);
case DbExpressionKind.Lambda:
{
//
bool isPredicateFunction;
if (_functionsIsPredicateFlag.TryGetValue(expr, out isPredicateFunction))
{
return isPredicateFunction;
}
else
{
// It is important that IsPredicate is called after the expression has been visited, otherwise
// _functionsIsPredicateFlag map will not contain an entry for the lambda
PlanCompiler.Assert(false, "IsPredicate must be called on a visited lambda expression");
return false;
}
}
case DbExpressionKind.Function:
{
//
EdmFunction edmFunction = ((DbFunctionExpression)expr).Function;
if (edmFunction.HasUserDefinedBody)
{
bool isPredicateFunction;
if (_functionsIsPredicateFlag.TryGetValue(expr, out isPredicateFunction))
{
return isPredicateFunction;
}
else
{
// It is important that IsPredicate is called after the expression has been visited, otherwise
// _functionsIsPredicateFlag map will not contain an entry for the function with a definition
PlanCompiler.Assert(false, "IsPredicate must be called on a visited function expression");
return false;
}
}
else
{
return false;
}
}
default:
return false;
}
}
else
{
return false;
}
}
/// <summary>
/// Callback to process an expression
/// </summary>
/// <param name="e">The expression to convert</param>
/// <returns></returns>
private delegate Node VisitExprDelegate(DbExpression e);
private Node VisitExpr(DbExpression e)
{
if (e == null)
{
return null;
}
else
{
return e.Accept<Node>(this);
}
}
/// <summary>
/// Convert this expression into a "scalar value" ITree expression. There are two main
/// </summary>
/// <param name="expr"></param>
/// <returns></returns>
private Node VisitExprAsScalar(DbExpression expr)
{
if (expr == null)
{
return null;
}
Node node = VisitExpr(expr); // the real work
node = ConvertToScalarOpTree(node, expr);
return node;
}
/// <summary>
/// Convert an Itree node into a scalar op tree
/// </summary>
/// <param name="node">the subtree</param>
/// <param name="expr">the original CQT expression</param>
/// <returns>the converted subtree</returns>
private Node ConvertToScalarOpTree(Node node, DbExpression expr)
{
//
// If the current expression is a collection, and we've simply produced a RelOp
// then we need to add a CollectOp above a PhysicalProjectOp above the RelOp
//
if (node.Op.IsRelOp)
{
node = ConvertRelOpToScalarOpTree(node, expr.ResultType);
}
//
// If the current expression is a boolean, and it is really a predicate, then
// scalarize the predicate (ie) convert it into a "case when <predicate> then 'true' else 'false' end" expression
// SQLBUDT #431406: handle 3-valued logic for all predicates except IsNull
// Convert boolean predicate p into
// case when p then true when not(p) then false else null end
//
else if (IsPredicate(expr))
{
node = ConvertPredicateToScalarOpTree(node, expr);
}
return node;
}
/// <summary>
/// Convert a rel op Itree node into a scalar op tree
/// </summary>
/// <param name="node"></param>
/// <param name="resultType"></param>
/// <returns></returns>
private Node ConvertRelOpToScalarOpTree(Node node, TypeUsage resultType)
{
PlanCompiler.Assert(TypeSemantics.IsCollectionType(resultType), "RelOp with non-Collection result type");
CollectOp collectOp = _iqtCommand.CreateCollectOp(resultType);
//
// I'm not thrilled about having to build a PhysicalProjectOp here - this
// is definitely something I will need to revisit soon
//
Node projectNode = CapWithPhysicalProject(node);
node = _iqtCommand.CreateNode(collectOp, projectNode);
return node;
}
/// <summary>
/// Scalarize the predicate (x = y) by converting it into a "case when x = y then 'true' else 'false' end" expression.
/// </summary>
private Node ConvertPredicateToScalarOpTree(Node node, DbExpression expr)
{
CaseOp caseOp = _iqtCommand.CreateCaseOp(_iqtCommand.BooleanType);
//For 2-valued logic there are 3 arguments, for 3-valued there are 5
List<Node> arguments = new List<Node>((expr.ExpressionKind == DbExpressionKind.IsNull) ? 3 : 5);
//Add the original as the first when
arguments.Add(node);
//Add the first then, the true node
arguments.Add(_iqtCommand.CreateNode(_iqtCommand.CreateInternalConstantOp(_iqtCommand.BooleanType, true)));
//If the expression has 3-valued logic, add a second when
if (expr.ExpressionKind != DbExpressionKind.IsNull)
{
Node predCopy = VisitExpr(expr);
arguments.Add(_iqtCommand.CreateNode(_iqtCommand.CreateConditionalOp(OpType.Not), predCopy));
}
//Add the false node: for 3 valued logic this is the second then, for 2 valued the else
arguments.Add(_iqtCommand.CreateNode(_iqtCommand.CreateInternalConstantOp(_iqtCommand.BooleanType, false)));
//The null node, it is the else-clause for 3-valued logic
if (expr.ExpressionKind != DbExpressionKind.IsNull)
{
arguments.Add(_iqtCommand.CreateNode(_iqtCommand.CreateNullOp(_iqtCommand.BooleanType)));
}
node = _iqtCommand.CreateNode(caseOp, arguments);
return node;
}
/// <summary>
/// Convert an expression into an iqt predicate
/// </summary>
/// <param name="expr">the expression to process</param>
/// <returns></returns>
private Node VisitExprAsPredicate(DbExpression expr)
{
if (expr == null)
{
return null;
}
Node node = VisitExpr(expr);
//
// If the current expression is not a predicate, then we need to make it one, by
// comparing it with the constant 'true'
//
if (!IsPredicate(expr))
{
ComparisonOp comparisonOp = _iqtCommand.CreateComparisonOp(OpType.EQ);
Node trueNode = _iqtCommand.CreateNode(_iqtCommand.CreateInternalConstantOp(_iqtCommand.BooleanType, true));
node = _iqtCommand.CreateNode(comparisonOp, node, trueNode);
}
else
{
PlanCompiler.Assert(!node.Op.IsRelOp, "unexpected relOp as predicate?");
}
return node;
}
/// <summary>
/// Process a list of expressions, and apply the delegate to each of the expressions
/// </summary>
/// <param name="exprs">list of cqt expressions to process</param>
/// <param name="exprDelegate">the callback to apply</param>
/// <returns>a list of IQT expressions</returns>
private static IList<Node> VisitExpr(IList<DbExpression> exprs, VisitExprDelegate exprDelegate)
{
List<Node> nodeList = new List<Node>();
for(int idx = 0; idx < exprs.Count; idx++)
{
nodeList.Add(exprDelegate(exprs[idx]));
}
return nodeList;
}
/// <summary>
/// Process a set of cqt expressions - and convert them into scalar iqt expressions
/// </summary>
/// <param name="exprs">list of cqt expressions</param>
/// <returns>list of iqt expressions</returns>
private IList<Node> VisitExprAsScalar(IList<DbExpression> exprs)
{
return VisitExpr(exprs, VisitExprAsScalar);
}
private Node VisitUnary(DbUnaryExpression e, Op op, VisitExprDelegate exprDelegate)
{
return _iqtCommand.CreateNode(op, exprDelegate(e.Argument));
}
private Node VisitBinary(DbBinaryExpression e, Op op, VisitExprDelegate exprDelegate)
{
return _iqtCommand.CreateNode(op, exprDelegate(e.Left), exprDelegate(e.Right));
}
/// <summary>
/// Ensures that an input op is a RelOp. If the specified Node's Op is not a RelOp then it is wrapped in an Unnest to create a synthetic RelOp. This is only possible if the input Op produces a collection.
/// </summary>
/// <param name="inputNode">The input Node/Op pair</param>
/// <returns>A Node with an Op that is guaranteed to be a RelOp (this may be the original Node or a new Node created to perform the Unnest)</returns>
private Node EnsureRelOp(Node inputNode)
{
//
// Input node = N1
//
Op inputOp = inputNode.Op;
//
// If the Op is already a RelOp then simply return its Node
//
if (inputOp.IsRelOp)
{
return inputNode;
}
//
// Assert that the input is a ScalarOp (CQT expressions should only ever produce RelOps or ScalarOps)
//
ScalarOp scalar = inputOp as ScalarOp;
PlanCompiler.Assert(scalar != null, "An expression in a CQT produced a non-ScalarOp and non-RelOp output Op");
//
// Assert that the ScalarOp has a collection result type. EnsureRelOp is called to ensure that arguments to
// RelOps are either also RelOps or are ScalarOps that produce a collection, which can be wrapped in an
// unnest to produce a RelOp.
//
PlanCompiler.Assert(TypeSemantics.IsCollectionType(scalar.Type), "An expression used as a RelOp argument was neither a RelOp or a collection");
//
// If the ScalarOp represents the nesting of an existing RelOp, simply return that RelOp instead.
// CollectOp(PhysicalProjectOp(x)) => x
//
CollectOp collect = inputOp as CollectOp;
if (collect != null)
{
PlanCompiler.Assert(inputNode.HasChild0, "CollectOp without argument");
if (inputNode.Child0.Op as PhysicalProjectOp != null)
{
PlanCompiler.Assert(inputNode.Child0.HasChild0, "PhysicalProjectOp without argument");
PlanCompiler.Assert(inputNode.Child0.Child0.Op.IsRelOp, "PhysicalProjectOp applied to non-RelOp input");
//
// The structure of the Input is Collect(PhysicalProject(x)), so return x
//
return inputNode.Child0.Child0;
}
}
//
// Create a new VarDefOp that defines the computed var that represents the ScalarOp collection.
// This var is the input to the UnnestOp.
// varDefNode = N2
//
Var inputCollectionVar;
Node varDefNode = _iqtCommand.CreateVarDefNode(inputNode, out inputCollectionVar);
//
// Create an UnnestOp that references the computed var created above. The VarDefOp that defines the var
// using the original input Node/Op pair becomes a child of the UnnestOp.
//
UnnestOp unnest = _iqtCommand.CreateUnnestOp(inputCollectionVar);
PlanCompiler.Assert(unnest.Table.Columns.Count == 1, "Unnest of collection ScalarOp produced unexpected number of columns (1 expected)");
//
// Create the unnest node, N3
// The UnnestOp produces a new Var, the single ColumnVar produced by the table that results from the Unnest.
//
Node unnestNode = _iqtCommand.CreateNode(unnest, varDefNode);
_varMap[unnestNode] = unnest.Table.Columns[0];
//
// Create a Project node above the Unnest, so we can simplify the work to eliminate
// the Unnest later. That means we need to create a VarRef to the column var in the
// table, a VarDef to define it, and a VarDefList to hold it, then a Project node, N4,
// which we return.
//
Var projectVar;
Node varRefNode = _iqtCommand.CreateNode(_iqtCommand.CreateVarRefOp(unnest.Table.Columns[0]));
Node varDefListNode = _iqtCommand.CreateVarDefListNode(varRefNode, out projectVar);
ProjectOp projectOp = _iqtCommand.CreateProjectOp(projectVar);
Node projectNode = _iqtCommand.CreateNode(projectOp, unnestNode, varDefListNode);
_varMap[projectNode] = projectVar;
return projectNode;
}
/// <summary>
/// Cap a RelOp with a ProjectOp. The output var of the Project is the
/// output var from the input
/// </summary>
/// <param name="input">the input relop tree</param>
/// <returns>the relop tree with a projectNode at the root</returns>
private Node CapWithProject(Node input)
{
PlanCompiler.Assert(input.Op.IsRelOp, "unexpected non-RelOp?");
if (input.Op.OpType == OpType.Project)
{
return input;
}
// Get the Var from the input; and build up a Project above it
Var inputVar = _varMap[input];
ProjectOp projectOp = _iqtCommand.CreateProjectOp(inputVar);
Node projectNode = _iqtCommand.CreateNode(projectOp, input,
_iqtCommand.CreateNode(_iqtCommand.CreateVarDefListOp()));
_varMap[projectNode] = inputVar;
return projectNode;
}
/// <summary>
/// Cap a relop tree with a PhysicalProjectOp. The Vars of the PhysicalProjectOp
/// are the vars from the RelOp tree
/// </summary>
/// <param name="input">the input relop tree</param>
/// <returns>relop tree capped by a PhysicalProjectOp</returns>
private Node CapWithPhysicalProject(Node input)
{
PlanCompiler.Assert(input.Op.IsRelOp, "unexpected non-RelOp?");
// Get the Var from the input; and build up a Project above it
Var inputVar = _varMap[input];
PhysicalProjectOp projectOp = _iqtCommand.CreatePhysicalProjectOp(inputVar);
Node projectNode = _iqtCommand.CreateNode(projectOp, input);
return projectNode;
}
/// <summary>
/// Creates a new variable scope that is based on a CQT DbExpressionBinding and pushes it onto the variable scope stack. The scope defines a single variable based on the DbExpressionBinding's VarName and DbExpression.
/// </summary>
/// <param name="binding">The DbExpressionBinding that defines the scope</param>
/// <returns>The Node produced by converting the binding's DbExpression</returns>
private Node EnterExpressionBinding(DbExpressionBinding binding)
{
return VisitBoundExpressionPushBindingScope(binding.Expression, binding.VariableName);
}
/// <summary>
/// Creates a new variable scope that is based on a CQT DbGroupExpressionBinding and pushes it onto the variable scope stack. The scope defines a single variable based on the DbExpressionBinding's VarName and DbExpression.
/// This method does not bring the GroupVarName into scope. Note that ExitExpressionBinding and NOT ExitGroupExpressionBinding should be used to remove this scope from the stack.
/// </summary>
/// <param name="binding">The DbGroupExpressionBinding that defines the scope</param>
/// <returns>The Node produced by converting the binding's DbExpression</returns>
private Node EnterGroupExpressionBinding(DbGroupExpressionBinding binding)
{
return VisitBoundExpressionPushBindingScope(binding.Expression, binding.VariableName);
}
/// <summary>
/// Common implementation method called by both EnterExpressionBinding and EnterGroupExpressionBinding
/// </summary>
/// <param name="boundExpression">The DbExpression that defines the binding</param>
/// <param name="bindingName">The name of the binding variable</param>
/// <returns></returns>
private Node VisitBoundExpressionPushBindingScope(DbExpression boundExpression, string bindingName)
{
Var boundVar;
Node inputNode = VisitBoundExpression(boundExpression, out boundVar);
PushBindingScope(boundVar, bindingName);
return inputNode;
}
/// <summary>
/// Common implementation method called by both VisitBoundExpressionPushBindingScope and VisitJoin
/// </summary>
/// <param name="boundExpression">The DbExpression that defines the binding</param>
/// <param name="boundVar">Var representing the RelOp produced for the <paramref name="boundExpression"/></param>
/// <returns></returns>
private Node VisitBoundExpression(DbExpression boundExpression, out Var boundVar)
{
//
// Visit the expression binding's DbExpression to convert it to a Node/Op pair
//
Node inputNode = VisitExpr(boundExpression);
PlanCompiler.Assert(inputNode != null, "DbExpressionBinding.Expression produced null conversion");
//
// Call EnsureRelOp on the converted Node and set inputNode equal to the result
//
inputNode = EnsureRelOp(inputNode);
//
// Retrieve the Var produced by the RelOp from the Node --> Var map
//
boundVar = _varMap[inputNode];
PlanCompiler.Assert(boundVar != null, "No Var found for Input Op");
return inputNode;
}
/// <summary>
/// Common implementation method called by both VisitBoundExpressionPushBindingScope and VisitJoin
/// </summary>
/// <param name="boundVar">The Var produced by the RelOp from DbExpression that defines the binding</param>
/// <param name="bindingName">The name of the binding variable</param>
/// <returns></returns>
private void PushBindingScope(Var boundVar, string bindingName)
{
//
// Create a new ExpressionBindingScope using the VarName from the DbExpressionBinding and
// the Var associated with the Input RelOp, and push the new scope onto the variable scope stack.
//
_varScopes.Push(new ExpressionBindingScope(_iqtCommand, bindingName, boundVar));
}
/// <summary>
/// Removes a variable scope created based on a DbExpressionBinding from the top of the variable scope stack, verifying that it is in fact an ExpressionBindingScope.
/// </summary>
/// <returns>The removed ExpressionBindingScope</returns>
private ExpressionBindingScope ExitExpressionBinding()
{
//
// Pop the scope from the variable scope stack, assert that it is a DbExpressionBinding scope, and return it.
//
ExpressionBindingScope retScope = _varScopes.Pop() as ExpressionBindingScope;
PlanCompiler.Assert(retScope != null, "ExitExpressionBinding called without ExpressionBindingScope on top of scope stack");
return retScope;
}
/// <summary>
/// Removes a variable scope created based on a DbGroupExpressionBinding from the top of the variable scope stack, verifying that it is in fact an ExpressionBindingScope.
/// Should only be called after visiting the Aggregates of a DbGroupByExpression in Visit(DbGroupByExpression).
/// The sequence (in Visit(GroupExpression e) is:
/// 1. EnterGroupExpressionBinding
/// 2. Visit e.Keys
/// 3. ExitExpressionBinding
/// 4. (Push new scope with GroupVarName instead of VarName)
/// 5. Visit e.Aggregates
/// 6. ExitGroupExpressionBinding
/// </summary>
private void ExitGroupExpressionBinding()
{
ExpressionBindingScope retScope = _varScopes.Pop() as ExpressionBindingScope;
PlanCompiler.Assert(retScope != null, "ExitGroupExpressionBinding called without ExpressionBindingScope on top of scope stack");
}
/// <summary>
/// Creates a new variable scope that is based on a CQT DbLambda and pushes it onto the variable scope stack.
/// </summary>
/// <param name="function">The DbLambda that defines the scope</param>
/// <param name="argumentValues">A list of Nodes and IsPredicate bits produced by converting the CQT Expressions that provide the arguments to the Lambda function</param>
/// <param name="expandingEdmFunction">an edm function for which the current lambda represents the generated body, otherwise null</param>
private void EnterLambdaFunction(DbLambda lambda, List<Tuple<Node, bool>> argumentValues, EdmFunction expandingEdmFunction)
{
IList<DbVariableReferenceExpression> lambdaParams = lambda.Variables;
var args = new Dictionary<string, Tuple<Node, bool>>();
int idx = 0;
foreach (var argumentValue in argumentValues)
{
args.Add(lambdaParams[idx].VariableName, argumentValue);
idx++;
}
//
// If lambda represents an edm function body then check for a possible recursion in the function definition.
//
if (expandingEdmFunction != null)
{
//
// Check if we are already inside the function body.
//
if (_functionExpansions.Contains(expandingEdmFunction))
{
throw EntityUtil.CommandCompilation(Strings.Cqt_UDF_FunctionDefinitionWithCircularReference(expandingEdmFunction.FullName), null);
}
//
// Push the function before processing its body
//
_functionExpansions.Push(expandingEdmFunction);
}
_varScopes.Push(new LambdaScope(this, _iqtCommand, args));
}
/// <summary>
/// Removes a variable scope created based on a Lambda function from the top of the variable scope stack, verifying that it is in fact a LambdaScope.
/// </summary>
/// <param name="expandingEdmFunction">an edm function for which the current lambda represents the generated body, otherwise null</param>
private LambdaScope ExitLambdaFunction(EdmFunction expandingEdmFunction)
{
//
// Pop the scope from the variable scope stack, assert that it is a Lambda scope, and return it.
//
LambdaScope retScope = _varScopes.Pop() as LambdaScope;
PlanCompiler.Assert(retScope != null, "ExitLambdaFunction called without LambdaScope on top of scope stack");
//
// If lambda represents an edm function body then pop the function from the expansion stack and make sure it is the expected one.
//
if (expandingEdmFunction != null)
{
EdmFunction edmFunction = _functionExpansions.Pop();
PlanCompiler.Assert(edmFunction == expandingEdmFunction, "Function expansion stack corruption: unexpected function at the top of the stack");
}
return retScope;
}
/// <summary>
/// Constructs a NewRecordOp on top of a multi-Var-producing Op, resulting in a RelOp that produces a single Var.
/// </summary>
/// <param name="inputNode">The Node that references the multi-Var-producing Op. This Node will become the first child node of the new ProjectOp's Node</param>
/// <param name="recType">Type metadata that describes the output record type</param>
/// <param name="colVars">A list of Vars that provide the output columns of the projection</param>
/// <returns>A new ProjectOp that projects a new record of the specified type from the specified Vars over the original input Op/Node</returns>
private Node ProjectNewRecord(Node inputNode, RowType recType, IEnumerable<Var> colVars)
{
//
// Create a list of VarRefOp Nodes that provide the column values for the new record
//
List<Node> recordColumns = new List<Node>();
foreach (Var colVar in colVars)
{
recordColumns.Add(_iqtCommand.CreateNode(_iqtCommand.CreateVarRefOp(colVar)));
}
//
// Create the NewRecordOp Node using the record column nodes as its child nodes
//
Node newRecordNode = _iqtCommand.CreateNode(_iqtCommand.CreateNewRecordOp(recType), recordColumns);
//
// Create a new ComputedVar and a VarDefOp that uses the NewRecordOp Node to define it
//
Var newRecordVar;
Node varDefNode = _iqtCommand.CreateVarDefListNode(newRecordNode, out newRecordVar);
//
// Create a ProjectOp with the single Computed Var defined by the new record construction
//
ProjectOp projection = _iqtCommand.CreateProjectOp(newRecordVar);
Node projectionNode = _iqtCommand.CreateNode(projection, inputNode, varDefNode);
_varMap[projectionNode] = newRecordVar;
return projectionNode;
}
#endregion
#region DbExpressionVisitor<Node> Members
public override Node Visit(DbExpression e)
{
throw EntityUtil.NotSupported(System.Data.Entity.Strings.Cqt_General_UnsupportedExpression(e.GetType().FullName));
}
public override Node Visit(DbConstantExpression e)
{
// Don't use CreateInternalConstantOp - respect user-intent
//
// Note that it is only safe to call GetValue and access the
// constant value directly because any immutable values (byte[])
// will be cloned as the result expression is built in CTreeGenerator,
// during the call to DbExpressionBuilder.Constant in VisitConstantOp.
ConstantBaseOp op = _iqtCommand.CreateConstantOp(e.ResultType, e.GetValue());
return _iqtCommand.CreateNode(op);
}
public override Node Visit(DbNullExpression e)
{
NullOp op = _iqtCommand.CreateNullOp(e.ResultType);
return _iqtCommand.CreateNode(op);
}
public override Node Visit(DbVariableReferenceExpression e)
{
Node varNode = ResolveScope(e)[e.VariableName];
return varNode;
}
private CqtVariableScope ResolveScope(DbVariableReferenceExpression e)
{
//
// Search the stack of variables scopes, top-down,
// until the first one is found that defines a variable with the specified name.
//
foreach (CqtVariableScope scope in _varScopes)
{
if (scope.Contains(e.VariableName))
{
return scope;
}
}
//
// If the variable name was not resolved then either:
// 1. The original CQT was invalid (should not be allowed into the ITreeGenerator).
// 2. The variable scope stack itself is invalid.
//
PlanCompiler.Assert(false, "CQT VarRef could not be resolved in the variable scope stack");
return null;
}
public override Node Visit(DbParameterReferenceExpression e)
{
Op op = _iqtCommand.CreateVarRefOp(_iqtCommand.GetParameter(e.ParameterName));
return _iqtCommand.CreateNode(op);
}
public override Node Visit(DbFunctionExpression e)
{
Node retNode = null;
if (e.Function.IsModelDefinedFunction)
{
// This is a user-defined CSpace function with a body definition.
// Try expanding it:
// - replace the function call with the call to the body lambda,
// - visit the lambda call expression.
// Get/generate the body lambda. Wrap body generation exceptions.
DbLambda lambda;
try
{
lambda = _iqtCommand.MetadataWorkspace.GetGeneratedFunctionDefinition(e.Function);
}
catch (Exception exception)
{
if (EntityUtil.IsCatchableExceptionType(exception))
{
throw EntityUtil.CommandCompilation(Strings.Cqt_UDF_FunctionDefinitionGenerationFailed(e.Function.FullName), exception);
}
throw;
}
// Visit the lambda call expression.
// Argument types should be validated by now, hence the visitor should not throw under normal conditions.
retNode = VisitLambdaExpression(lambda, e.Arguments, e, e.Function);
}
else // a provider-manifest-defined or store function call - no expansion needed
{
List<Node> argNodes = new List<Node>(e.Arguments.Count);
for (int idx = 0; idx < e.Arguments.Count; idx++)
{
// Ensure that any argument with a result type that does not exactly match the type of
// the corresponding function parameter is enclosed in a SoftCastOp.
argNodes.Add(BuildSoftCast(VisitExprAsScalar(e.Arguments[idx]), e.Function.Parameters[idx].TypeUsage));
}
retNode = _iqtCommand.CreateNode(_iqtCommand.CreateFunctionOp(e.Function), argNodes);
}
return retNode;
}
public override Node Visit(DbLambdaExpression e)
{
return VisitLambdaExpression(e.Lambda, e.Arguments, e, null);
}
private Node VisitLambdaExpression(DbLambda lambda, IList<DbExpression> arguments, DbExpression applicationExpr, EdmFunction expandingEdmFunction)
{
Node retNode = null;
var argNodes = new List<Tuple<Node, bool>>(arguments.Count);
foreach (DbExpression argExpr in arguments)
{
// #484709: Lambda function parameters should not have enclosing SoftCastOps.
argNodes.Add(Tuple.Create(VisitExpr(argExpr), IsPredicate(argExpr)));
}
EnterLambdaFunction(lambda, argNodes, expandingEdmFunction);
retNode = VisitExpr(lambda.Body);
// Check the body to see if the current lambda yields a predicate.
_functionsIsPredicateFlag[applicationExpr] = IsPredicate(lambda.Body);
ExitLambdaFunction(expandingEdmFunction);
return retNode;
}
#if METHOD_EXPRESSION
public override Node Visit(MethodExpression e)
{
throw EntityUtil.NotSupported();
}
#endif
#region SoftCast Helpers
/// <summary>
/// This method builds a "soft"Cast operator over the input node (if necessary) to (soft)
/// cast it to the desired type (targetType)
///
/// If the input is a scalarOp, then we simply add on the SoftCastOp
/// directly (if it is needed, of course). If the input is a RelOp, we create a
/// new ProjectOp above the input, add a SoftCast above the Var of the
/// input, and then return the new ProjectOp
///
/// The "need to cast" is determined by the Command.EqualTypes function. All type
/// equivalence in the plan compiler is determined by this function
/// </summary>
/// <param name="node">the expression to soft-cast</param>
/// <param name="targetType">the desired type to cast to</param>
/// <returns></returns>
private Node BuildSoftCast(Node node, TypeUsage targetType)
{
//
// If the input is a RelOp (say X), and the Var of the input is "x",
// we convert this into
// Project(X, softCast(x, t))
// where t is the element type of the desired target type
//
if (node.Op.IsRelOp)
{
CollectionType targetCollectionType = TypeHelpers.GetEdmType<CollectionType>(targetType);
targetType = targetCollectionType.TypeUsage;
Var nodeVar = _varMap[node];
// Do we need a cast at all?
if (Command.EqualTypes(targetType, nodeVar.Type))
{
return node;
}
// Build up the projectOp
Var projectVar;
Node varRefNode = _iqtCommand.CreateNode(_iqtCommand.CreateVarRefOp(nodeVar));
Node castNode = _iqtCommand.CreateNode(_iqtCommand.CreateSoftCastOp(targetType), varRefNode);
Node varDefListNode = _iqtCommand.CreateVarDefListNode(castNode, out projectVar);
ProjectOp projectOp = _iqtCommand.CreateProjectOp(projectVar);
Node projectNode = _iqtCommand.CreateNode(projectOp, node, varDefListNode);
_varMap[projectNode] = projectVar;
return projectNode;
}
else
{
PlanCompiler.Assert(node.Op.IsScalarOp, "I want a scalar op");
if (Command.EqualTypes(node.Op.Type, targetType))
{
return node;
}
else
{
SoftCastOp castOp = _iqtCommand.CreateSoftCastOp(targetType);
return _iqtCommand.CreateNode(castOp, node);
}
}
}
/// <summary>
/// A variant of the function above. Works with an EdmType instead
/// of a TypeUsage, but leverages all the work above
/// </summary>
/// <param name="node">the node to "cast"</param>
/// <param name="targetType">the desired type</param>
/// <returns>the transformed expression</returns>
private Node BuildSoftCast(Node node, EdmType targetType)
{
return BuildSoftCast(node, TypeUsage.Create(targetType));
}
private Node BuildEntityRef(Node arg, TypeUsage entityType)
{
TypeUsage refType = TypeHelpers.CreateReferenceTypeUsage((EntityType)entityType.EdmType);
return _iqtCommand.CreateNode(_iqtCommand.CreateGetEntityRefOp(refType), arg);
}
#endregion
/// <summary>
/// We simplify the property instance where the user is accessing a key member of
/// a reference navigation. The instance becomes simply the reference key in such
/// cases.
///
/// For instance, product.Category.CategoryID becomes Ref(product.Category).CategoryID,
/// which gives us a chance of optimizing the query (using foreign keys rather than joins)
/// </summary>
/// <param name="propertyExpression">The original property expression that specifies the member and instance</param>
/// <param name="rewritten">'Simplified' instance. If the member is a key and the instance is a navigation
/// the rewritten expression's instance is a reference navigation rather than the full entity.</param>
/// <returns><c>true</c> if the property expression was rewritten, in which case <paramref name="rewritten"/> will be non-null,
/// otherwise <c>false</c>, in which case <paramref name="rewritten"/> will be null.</returns>
private bool TryRewriteKeyPropertyAccess(DbPropertyExpression propertyExpression, out DbExpression rewritten)
{
// if we're accessing a key member of a navigation, collapse the structured instance
// to the key reference.
if (propertyExpression.Instance.ExpressionKind == DbExpressionKind.Property &&
Helper.IsEntityType(propertyExpression.Instance.ResultType.EdmType))
{
EntityType instanceType = (EntityType)propertyExpression.Instance.ResultType.EdmType;
DbPropertyExpression instanceExpression = (DbPropertyExpression)propertyExpression.Instance;
if (Helper.IsNavigationProperty(instanceExpression.Property) &&
instanceType.KeyMembers.Contains(propertyExpression.Property))
{
// modify the property expression so that it merely retrieves the reference
// not the entire entity
NavigationProperty navigationProperty = (NavigationProperty)instanceExpression.Property;
DbExpression navigationSource = instanceExpression.Instance.GetEntityRef();
DbExpression navigationExpression = navigationSource.Navigate(navigationProperty.FromEndMember, navigationProperty.ToEndMember);
rewritten = navigationExpression.GetRefKey();
rewritten = rewritten.Property(propertyExpression.Property.Name);
return true;
}
}
rewritten = null;
return false;
}
public override Node Visit(DbPropertyExpression e)
{
// Only Properties, Relationship End and NavigationProperty members are supported.
if (BuiltInTypeKind.EdmProperty != e.Property.BuiltInTypeKind &&
BuiltInTypeKind.AssociationEndMember != e.Property.BuiltInTypeKind &&
BuiltInTypeKind.NavigationProperty != e.Property.BuiltInTypeKind)
{
throw EntityUtil.NotSupported();
}
PlanCompiler.Assert(e.Instance != null, "Static properties are not supported");
Node retNode = null;
DbExpression rewritten;
if (TryRewriteKeyPropertyAccess(e, out rewritten))
{
retNode = this.VisitExpr(rewritten);
}
else
{
Node instance = VisitExpr(e.Instance);
//
// Retrieving a property from a new instance constructor can be
// simplified to just the node that provides the corresponding property.
// For example, Property(Row(A = x, B = y), 'A') => x
// All structured types (including association types) are considered.
//
if (e.Instance.ExpressionKind == DbExpressionKind.NewInstance &&
Helper.IsStructuralType(e.Instance.ResultType.EdmType))
{
// Retrieve the 'structural' members of the instance's type.
// For Association types this should be only Association End members,
// while for Complex, Entity or Row types is should be only Properties.
System.Collections.IList propertyOrEndMembers = Helper.GetAllStructuralMembers(e.Instance.ResultType.EdmType);
// Find the position of the member with the same name as the retrieved
// member in the list of structural members.
int memberIdx = -1;
for (int idx = 0; idx < propertyOrEndMembers.Count; idx++)
{
if (string.Equals(e.Property.Name, ((EdmMember)propertyOrEndMembers[idx]).Name, StringComparison.Ordinal))
{
memberIdx = idx;
break;
}
}
PlanCompiler.Assert(memberIdx > -1, "The specified property was not found");
// If the member was found, return the corresponding argument value
// to the new instance op.
retNode = instance.Children[memberIdx];
// Make sure the argument value has been "cast" to the return type
// of the property, if necessary.
retNode = BuildSoftCast(retNode, e.ResultType);
}
else
{
Op op = _iqtCommand.CreatePropertyOp(e.Property);
// Make sure that the input has been "cast" to the right type
instance = BuildSoftCast(instance, e.Property.DeclaringType);
retNode = _iqtCommand.CreateNode(op, instance);
}
}
return retNode;
}
public override Node Visit(DbComparisonExpression e)
{
Op op = _iqtCommand.CreateComparisonOp(s_opMap[e.ExpressionKind]);
Node leftArg = VisitExprAsScalar(e.Left);
Node rightArg = VisitExprAsScalar(e.Right);
TypeUsage commonType = TypeHelpers.GetCommonTypeUsage(e.Left.ResultType, e.Right.ResultType);
// Make sure that the inputs have been cast to the right types
if (!Command.EqualTypes(e.Left.ResultType, e.Right.ResultType))
{
leftArg = BuildSoftCast(leftArg, commonType);
rightArg = BuildSoftCast(rightArg, commonType);
}
if (TypeSemantics.IsEntityType(commonType) &&
(e.ExpressionKind == DbExpressionKind.Equals || e.ExpressionKind == DbExpressionKind.NotEquals))
{
// Entity (in)equality is implemented as ref (in)equality
leftArg = BuildEntityRef(leftArg, commonType);
rightArg = BuildEntityRef(rightArg, commonType);
}
return _iqtCommand.CreateNode(op, leftArg, rightArg);
}
public override Node Visit(DbLikeExpression e)
{
return _iqtCommand.CreateNode(
_iqtCommand.CreateLikeOp(),
VisitExpr(e.Argument),
VisitExpr(e.Pattern),
VisitExpr(e.Escape)
);
}
private Node CreateLimitNode(Node inputNode, Node limitNode, bool withTies)
{
//
// Limit(Skip(x)) - which becomes ConstrainedSortOp - and Limit(Sort(x)) are special cases
//
Node retNode = null;
if (OpType.ConstrainedSort == inputNode.Op.OpType &&
OpType.Null == inputNode.Child2.Op.OpType)
{
//
// The input was a DbSkipExpression which is now represented
// as a ConstrainedSortOp with a NullOp Limit. The Limit from
// this DbLimitExpression can be merged into the input ConstrainedSortOp
// rather than creating a new ConstrainedSortOp.
//
inputNode.Child2 = limitNode;
// If this DbLimitExpression specifies WithTies, the input ConstrainedSortOp must be
// updated to reflect this (DbSkipExpression always produces a ConstrainedSortOp with
// WithTies equal to false).
if (withTies)
{
((ConstrainedSortOp)inputNode.Op).WithTies = true;
}
retNode = inputNode;
}
else if (OpType.Sort == inputNode.Op.OpType)
{
//
// This DbLimitExpression is applying a limit to a DbSortExpression.
// The two expressions can be merged into a single ConstrainedSortOp
// rather than creating a new ConstrainedSortOp over the input SortOp.
//
// The new ConstrainedSortOp has the same SortKeys as the input SortOp.
// The returned Node will have the following children:
// - The input to the Sort
// - A NullOp to indicate no Skip operation is specified
// - The limit Node from the DbLimitExpression
//
retNode =
_iqtCommand.CreateNode(
_iqtCommand.CreateConstrainedSortOp(((SortOp)inputNode.Op).Keys, withTies),
inputNode.Child0,
_iqtCommand.CreateNode(_iqtCommand.CreateNullOp(_iqtCommand.IntegerType)),
limitNode
);
}
else
{
//
// The input to the Limit is neither ConstrainedSortOp or SortOp.
// A new ConstrainedSortOp must be created with an empty list of keys
// and the following children:
// - The input to the DbLimitExpression
// - a NullOp to indicate that no Skip operation is specified
// - The limit Node from the DbLimitExpression
//
retNode =
_iqtCommand.CreateNode(
_iqtCommand.CreateConstrainedSortOp(new List<SortKey>(), withTies),
inputNode,
_iqtCommand.CreateNode(_iqtCommand.CreateNullOp(_iqtCommand.IntegerType)),
limitNode
);
}
return retNode;
}
public override Node Visit(DbLimitExpression expression)
{
//
// Visit the Argument and retrieve its Var
//
Node inputNode = EnsureRelOp(VisitExpr(expression.Argument));
Var inputVar = _varMap[inputNode];
//
// Visit the Limit ensuring that it is a scalar
//
Node limitNode = VisitExprAsScalar(expression.Limit);
Node retNode;
if (OpType.Project == inputNode.Op.OpType
&& (!AppSettings.SimplifyLimitOperations
|| (OpType.Sort == inputNode.Child0.Op.OpType
|| OpType.ConstrainedSort == inputNode.Child0.Op.OpType)))
{
//
// If the input to the DbLimitExpression is a projection, then apply the Limit operation to the
// input to the ProjectOp instead. This allows Limit(Project(Skip(x))) and Limit(Project(Sort(x)))
// to be treated in the same way as Limit(Skip(x)) and Limit(Sort(x)).
// Note that even if the input to the projection is not a ConstrainedSortOp or SortOp, the
// Limit operation is still pushed under the Project when the SimplifyLimitOperations AppSetting
// is set to false. SimplifyLimitOperations is false by default.
//
inputNode.Child0 = CreateLimitNode(inputNode.Child0, limitNode, expression.WithTies);
retNode = inputNode;
}
else
{
//
// Otherwise, apply the Limit operation directly to the input.
//
retNode = CreateLimitNode(inputNode, limitNode, expression.WithTies);
}
//
// The output Var of the resulting Node is the same as the output Var of its input Node.
// If the input node is being returned (either because the Limit was pushed under a Project
// or because the input was a ConstrainedSortOp that was simply updated with the Limit value)
// then the Node -> Var map does not need to be updated.
//
if(!object.ReferenceEquals(retNode, inputNode))
{
_varMap[retNode] = inputVar;
}
return retNode;
}
public override Node Visit(DbIsNullExpression e)
{
// SQLBUDT #484294: We need to recognize and simplify IsNull - IsNull and IsNull - Not - IsNull
// This is the latest point where such patterns can be easily recognized.
// After this the input predicate would get translated into a case statement.
bool isAlwaysFalse = false; //true if IsNull - IsNull and IsNull - Not - IsNull is recognized
if (e.Argument.ExpressionKind == DbExpressionKind.IsNull)
{
isAlwaysFalse = true;
}
else if (e.Argument.ExpressionKind == DbExpressionKind.Not)
{
DbNotExpression notExpression = (DbNotExpression)e.Argument;
if (notExpression.Argument.ExpressionKind == DbExpressionKind.IsNull)
{
isAlwaysFalse = true;
}
}
Op op = _iqtCommand.CreateConditionalOp(OpType.IsNull);
//If we have recognized that the result is always false, return IsNull(true), to still have predicate as output.
//This gets further simplified by transformation rules.
if (isAlwaysFalse)
{
return _iqtCommand.CreateNode(op, _iqtCommand.CreateNode(_iqtCommand.CreateInternalConstantOp(_iqtCommand.BooleanType, true)));
}
Node argNode = VisitExprAsScalar(e.Argument);
if (TypeSemantics.IsEntityType(e.Argument.ResultType))
{
argNode = BuildEntityRef(argNode, e.Argument.ResultType);
}
return _iqtCommand.CreateNode(op, argNode);
}
public override Node Visit(DbArithmeticExpression e)
{
Op op = _iqtCommand.CreateArithmeticOp(s_opMap[e.ExpressionKind], e.ResultType);
// Make sure that the inputs have been "cast" to the result type
// Assumption: The input type must be the same as the result type. Is this always true?
List<Node> children = new List<Node>();
foreach (DbExpression arg in e.Arguments)
{
Node child = VisitExprAsScalar(arg);
children.Add(BuildSoftCast(child, e.ResultType));
}
return _iqtCommand.CreateNode(op, children);
}
public override Node Visit(DbAndExpression e)
{
Op op = _iqtCommand.CreateConditionalOp(OpType.And);
return VisitBinary(e, op, VisitExprAsPredicate);
}
public override Node Visit(DbOrExpression e)
{
Op op = _iqtCommand.CreateConditionalOp(OpType.Or);
return VisitBinary(e, op, VisitExprAsPredicate);
}
public override Node Visit(DbNotExpression e)
{
Op op = _iqtCommand.CreateConditionalOp(OpType.Not);
return VisitUnary(e, op, VisitExprAsPredicate);
}
public override Node Visit(DbDistinctExpression e)
{
Node inputSetNode = EnsureRelOp(VisitExpr(e.Argument));
Var inputVar = _varMap[inputSetNode];
Op distinctOp = _iqtCommand.CreateDistinctOp(inputVar);
Node distinctNode = _iqtCommand.CreateNode(distinctOp, inputSetNode);
_varMap[distinctNode] = inputVar;
return distinctNode;
}
public override Node Visit(DbElementExpression e)
{
Op elementOp = _iqtCommand.CreateElementOp(e.ResultType);
Node inputSetNode = EnsureRelOp(VisitExpr(e.Argument));
// Add a soft cast if needed
inputSetNode = BuildSoftCast(inputSetNode, TypeHelpers.CreateCollectionTypeUsage(e.ResultType));
Var inputVar = _varMap[inputSetNode];
//
// Add a singleRowOp enforcer, as we are not guaranteed that the input
// collection produces at most one row
//
inputSetNode = _iqtCommand.CreateNode(_iqtCommand.CreateSingleRowOp(), inputSetNode);
_varMap[inputSetNode] = inputVar;
// add a fake projectNode
inputSetNode = CapWithProject(inputSetNode);
return _iqtCommand.CreateNode(elementOp, inputSetNode);
}
public override Node Visit(DbIsEmptyExpression e)
{
//
// IsEmpty(input set) --> Not(Exists(input set))
//
Op existsOp = _iqtCommand.CreateExistsOp();
Node inputSetNode = EnsureRelOp(VisitExpr(e.Argument));
return _iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.Not),
_iqtCommand.CreateNode(existsOp, inputSetNode)
);
}
/// <summary>
/// Encapsulates the logic required to convert a SetOp (Except, Intersect, UnionAll) expression
/// into an IQT Node/Op pair.
/// </summary>
/// <param name="expression">The DbExceptExpression, DbIntersectExpression or DbUnionAllExpression to convert, as an instance of DbBinaryExpression</param>
/// <returns>A new IQT Node that references the ExceptOp, IntersectOp or UnionAllOp created based on the expression</returns>
private Node VisitSetOpExpression(DbBinaryExpression expression)
{
PlanCompiler.Assert(DbExpressionKind.Except == expression.ExpressionKind ||
DbExpressionKind.Intersect == expression.ExpressionKind ||
DbExpressionKind.UnionAll == expression.ExpressionKind,
"Non-SetOp DbExpression used as argument to VisitSetOpExpression");
PlanCompiler.Assert(TypeSemantics.IsCollectionType(expression.ResultType), "SetOp DbExpression does not have collection result type?");
// Visit the left and right collection arguments
Node leftNode = EnsureRelOp(VisitExpr(expression.Left));
Node rightNode = EnsureRelOp(VisitExpr(expression.Right));
//
// Now the hard part. "Normalize" the left and right sides to
// match the result type.
//
leftNode = BuildSoftCast(leftNode, expression.ResultType);
rightNode = BuildSoftCast(rightNode, expression.ResultType);
// The SetOp produces a single Var of the same type as the element type of the expression's collection result type
Var outputVar = _iqtCommand.CreateSetOpVar(TypeHelpers.GetEdmType<CollectionType>(expression.ResultType).TypeUsage);
// Create VarMaps for the left and right arguments that map the output Var to the Var produced by the corresponding argument
VarMap leftMap = new VarMap();
leftMap.Add(outputVar, _varMap[leftNode]);
VarMap rightMap = new VarMap();
rightMap.Add(outputVar, _varMap[rightNode]);
// Create a SetOp that corresponds to the operation specified by the expression's DbExpressionKind
Op setOp = null;
switch(expression.ExpressionKind)
{
case DbExpressionKind.Except:
setOp = _iqtCommand.CreateExceptOp(leftMap, rightMap);
break;
case DbExpressionKind.Intersect:
setOp = _iqtCommand.CreateIntersectOp(leftMap, rightMap);
break;
case DbExpressionKind.UnionAll:
setOp = _iqtCommand.CreateUnionAllOp(leftMap, rightMap);
break;
}
// Create a new Node that references the SetOp
Node setOpNode = _iqtCommand.CreateNode(setOp, leftNode, rightNode);
// Update the Node => Var map with an entry that maps the new Node to the output Var
_varMap[setOpNode] = outputVar;
// Return the newly created SetOp Node
return setOpNode;
}
public override Node Visit(DbUnionAllExpression e)
{
return VisitSetOpExpression(e);
}
public override Node Visit(DbIntersectExpression e)
{
return VisitSetOpExpression(e);
}
public override Node Visit(DbExceptExpression e)
{
return VisitSetOpExpression(e);
}
public override Node Visit(DbTreatExpression e)
{
Op op;
if (_fakeTreats.Contains(e))
{
op = _iqtCommand.CreateFakeTreatOp(e.ResultType);
}
else
{
op = _iqtCommand.CreateTreatOp(e.ResultType);
}
return VisitUnary(e, op, VisitExprAsScalar);
}
public override Node Visit(DbIsOfExpression e)
{
Op op = null;
if (DbExpressionKind.IsOfOnly == e.ExpressionKind)
{
op = _iqtCommand.CreateIsOfOnlyOp(e.OfType);
}
else
{
op = _iqtCommand.CreateIsOfOp(e.OfType);
}
return VisitUnary(e, op, VisitExprAsScalar);
}
public override Node Visit(DbCastExpression e)
{
Op op = _iqtCommand.CreateCastOp(e.ResultType);
return VisitUnary(e, op, VisitExprAsScalar);
}
public override Node Visit(DbCaseExpression e)
{
List<Node> childNodes = new List<Node>();
for (int idx = 0; idx < e.When.Count; idx++)
{
childNodes.Add(VisitExprAsPredicate(e.When[idx]));
// Make sure that each then-clause is the same type as the result
childNodes.Add(BuildSoftCast(VisitExprAsScalar(e.Then[idx]), e.ResultType));
}
// Make sure that the else-clause is the same type as the result
childNodes.Add(BuildSoftCast(VisitExprAsScalar(e.Else), e.ResultType));
return _iqtCommand.CreateNode(_iqtCommand.CreateCaseOp(e.ResultType), childNodes);
}
/// <summary>
/// Represents one or more type filters that should be AND'd together to produce an aggregate IsOf filter expression
/// </summary>
private class IsOfFilter
{
/// <summary>
/// The type that elements of the filtered input set must be to satisfy this IsOf filter
/// </summary>
private readonly TypeUsage requiredType;
/// <summary>
/// Indicates whether elements of the filtered input set may be of a subtype (IsOf) of the required type
/// and still satisfy the IsOfFilter, or must be exactly of the required type (IsOfOnly) to do so.
/// </summary>
private readonly bool isExact;
/// <summary>
/// The next IsOfFilter in the AND chain.
/// </summary>
private IsOfFilter next;
internal IsOfFilter(DbIsOfExpression template)
{
this.requiredType = template.OfType;
this.isExact = (template.ExpressionKind == DbExpressionKind.IsOfOnly);
}
internal IsOfFilter(DbOfTypeExpression template)
{
this.requiredType = template.OfType;
this.isExact = (template.ExpressionKind == DbExpressionKind.OfTypeOnly);
}
private IsOfFilter(TypeUsage required, bool exact)
{
this.requiredType = required;
this.isExact = exact;
}
private IsOfFilter Merge(TypeUsage otherRequiredType, bool otherIsExact)
{
// Can the two type filters be merged? In general, a more specific
// type filter can replace a less specific type filter.
IsOfFilter result;
bool typesEqual = this.requiredType.EdmEquals(otherRequiredType);
// The simplest case - the filters are equivalent
if (typesEqual && this.isExact == otherIsExact)
{
result = this;
}
// Next simplest - two IsOfOnly filters can never be merged if the types are different
// (and if the types were equal the above condition would have been satisfied).
// SC_
else if (this.isExact && otherIsExact)
{
result = new IsOfFilter(otherRequiredType, otherIsExact);
result.next = this;
}
// Two IsOf filters can potentially be adjusted - the more specific type filter should be kept, if present
else if (!this.isExact && !otherIsExact)
{
// At this point the types cannot be equal. If one filter specifies a type that is a subtype of the other,
// then the subtype filter is the one that should remain
if (otherRequiredType.IsSubtypeOf(this.requiredType))
{
result = new IsOfFilter(otherRequiredType, false);
result.next = this.next;
}
else if (this.requiredType.IsSubtypeOf(otherRequiredType))
{
result = this;
}
else
{
// The types are not related and the filters cannot be merged
// Note that this case may not be possible since IsOf and OfType
// both require an argument with a compatible type to the IsOf type.
result = new IsOfFilter(otherRequiredType, otherIsExact);
result.next = this;
}
}
// One filter is an IsOf filter while the other is an IsOfOnly filter
else
{
// For IsOf(T) AND IsOfOnly(T), the IsOf filter can be dropped
if (typesEqual)
{
result = new IsOfFilter(otherRequiredType, true);
result.next = this.next;
}
else
{
// Decide which is the 'IsOfOnly' type and which is the 'IsOf' type
TypeUsage isOfOnlyType = (this.isExact ? this.requiredType : otherRequiredType);
TypeUsage isOfType = (this.isExact ? otherRequiredType : this.requiredType);
// IsOf(Super) && IsOfOnly(Sub) => IsOfOnly(Sub)
// In all other cases, both filters remain - even though the IsOfOnly(Super) and IsOf(Sub) is obviously a contradiction.
// SC_
if (isOfOnlyType.IsSubtypeOf(isOfType))
{
if (object.ReferenceEquals(isOfOnlyType, this.requiredType) && this.isExact)
{
result = this;
}
else
{
result = new IsOfFilter(isOfOnlyType, true);
result.next = this.next;
}
}
else
{
result = new IsOfFilter(otherRequiredType, otherIsExact);
result.next = this;
}
}
}
return result;
}
internal IsOfFilter Merge(DbIsOfExpression other)
{
return Merge(other.OfType, (other.ExpressionKind == DbExpressionKind.IsOfOnly));
}
internal IsOfFilter Merge(DbOfTypeExpression other)
{
return Merge(other.OfType, (other.ExpressionKind == DbExpressionKind.OfTypeOnly));
}
internal IEnumerable<KeyValuePair<TypeUsage, bool>> ToEnumerable()
{
IsOfFilter currentFilter = this;
while (currentFilter != null)
{
yield return new KeyValuePair<TypeUsage, bool>(currentFilter.requiredType, currentFilter.isExact);
currentFilter = currentFilter.next;
}
}
}
private DbFilterExpression CreateIsOfFilterExpression(DbExpression input, IsOfFilter typeFilter)
{
// Create a filter expression based on the IsOf/IsOfOnly operations specified by typeFilter
DbExpressionBinding resultBinding = input.Bind();
List<DbExpression> predicates = new List<DbExpression>(
typeFilter.ToEnumerable().Select(tf => tf.Value ? resultBinding.Variable.IsOfOnly(tf.Key) : resultBinding.Variable.IsOf(tf.Key)).ToList()
);
DbExpression predicate = Helpers.BuildBalancedTreeInPlace(predicates, (left, right) => left.And(right));
DbFilterExpression result = resultBinding.Filter(predicate);
// Track the fact that this IsOfFilter was created by the ITreeGenerator itself and should
// simply be converted to an ITree Node when it is encountered again by the visitor pass.
_processedIsOfFilters.Add(result);
return result;
}
private bool IsIsOfFilter(DbFilterExpression filter)
{
if(filter.Predicate.ExpressionKind != DbExpressionKind.IsOf &&
filter.Predicate.ExpressionKind != DbExpressionKind.IsOfOnly)
{
return false;
}
DbExpression isOfArgument = ((DbIsOfExpression)filter.Predicate).Argument;
return (isOfArgument.ExpressionKind == DbExpressionKind.VariableReference &&
((DbVariableReferenceExpression)isOfArgument).VariableName == filter.Input.VariableName);
}
private DbExpression ApplyIsOfFilter(DbExpression current, IsOfFilter typeFilter)
{
// An IsOf filter can be safely pushed down through the following expressions:
//
// Distinct
// Filter - may be merged if the Filter is also an OfType filter
// OfType - converted to Project(Filter(input, IsOf(T)), TreatAs(T)) and the Filter may be merged
// Project - only for identity project
// SC_
DbExpression result;
switch(current.ExpressionKind)
{
case DbExpressionKind.Distinct:
{
result = ApplyIsOfFilter(((DbDistinctExpression)current).Argument, typeFilter).Distinct();
}
break;
case DbExpressionKind.Filter:
{
DbFilterExpression filter = (DbFilterExpression)current;
if (IsIsOfFilter(filter))
{
// If this is an IsOf filter, examine the interaction with the current filter we are trying to apply
DbIsOfExpression isOfExp = (DbIsOfExpression)filter.Predicate;
typeFilter = typeFilter.Merge(isOfExp);
result = ApplyIsOfFilter(filter.Input.Expression, typeFilter);
}
else
{
// Otherwise, push the current IsOf filter under this filter
DbExpression rewritten = ApplyIsOfFilter(filter.Input.Expression, typeFilter);
result = rewritten.BindAs(filter.Input.VariableName).Filter(filter.Predicate);
}
}
break;
case DbExpressionKind.OfType:
case DbExpressionKind.OfTypeOnly:
{
// Examine the interaction of this nested OfType filter with the OfType filter we are trying to apply
// and construct an aggregated type filter (where possible)
DbOfTypeExpression ofTypeExp = (DbOfTypeExpression)current;
typeFilter = typeFilter.Merge(ofTypeExp);
DbExpression rewrittenIsOf = ApplyIsOfFilter(ofTypeExp.Argument, typeFilter);
DbExpressionBinding treatBinding = rewrittenIsOf.Bind();
DbTreatExpression treatProjection = treatBinding.Variable.TreatAs(ofTypeExp.OfType);
_fakeTreats.Add(treatProjection);
result = treatBinding.Project(treatProjection);
}
break;
case DbExpressionKind.Project:
{
DbProjectExpression project = (DbProjectExpression)current;
if(project.Projection.ExpressionKind == DbExpressionKind.VariableReference &&
((DbVariableReferenceExpression)project.Projection).VariableName == project.Input.VariableName)
{
// If this is an identity-project, remove it by visiting the input expression
result = ApplyIsOfFilter(project.Input.Expression, typeFilter);
}
else
{
// Otherwise, the projection is opaque to the IsOf rewrite
result = CreateIsOfFilterExpression(current, typeFilter);
}
}
break;
case DbExpressionKind.Sort:
{
// The IsOf filter is applied to the Sort input, then the sort keys are reapplied to create a new Sort expression.
DbSortExpression sort = (DbSortExpression)current;
DbExpression sortInput = ApplyIsOfFilter(sort.Input.Expression, typeFilter);
result = sortInput.BindAs(sort.Input.VariableName).Sort(sort.SortOrder);
}
break;
default:
{
// This is not a recognized case, so simply apply the type filter to the expression.
result = CreateIsOfFilterExpression(current, typeFilter);
}
break;
}
return result;
}
/// <summary>
/// Build the equivalent of an OfTypeExpression over the input (ie) produce the set of values from the
/// input that are of the desired type (exactly of the desired type, if the "includeSubtypes" parameter is false).
///
/// Further more, "update" the result element type to be the desired type.
///
/// We accomplish this by first building a FilterOp with an IsOf (or an IsOfOnly) predicate for the desired
/// type. We then build out a ProjectOp over the FilterOp, where we introduce a "Fake" TreatOp over the input
/// element to cast it to the right type. The "Fake" TreatOp is only there for "compile-time" typing reasons,
/// and will be ignored in the rest of the plan compiler
/// </summary>
// <param name="inputNode">the input collection</param>
// <param name="inputVar">the single Var produced by the input collection</param>
// <param name="desiredType">the desired element type </param>
// <param name="includeSubtypes">do we include subtypes of the desired element type</param>
// <param name="resultNode">the result subtree</param>
// <param name="resultVar">the single Var produced by the result subtree</param>
public override Node Visit(DbOfTypeExpression e)
{
//
// The argument to OfType must be a collection
//
PlanCompiler.Assert(TypeSemantics.IsCollectionType(e.Argument.ResultType), "Non-Collection Type Argument in DbOfTypeExpression");
DbExpression rewrittenIsOfFilter = ApplyIsOfFilter(e.Argument, new IsOfFilter(e));
//
// Visit the collection argument and ensure that it is a RelOp suitable for subsequent use in the Filter/Project used to convert OfType.
//
Node inputNode = EnsureRelOp(VisitExpr(rewrittenIsOfFilter));
//
// Retrieve the Var produced by the RelOp input.
//
Var inputVar = _varMap[inputNode];
//
// Build the Treat part of the OfType expression tree - note that this is a 'fake'
// Treat because the underlying IsOf filter makes it unnecessary (as far as the
// plan compiler is concerned).
//
Var resultVar;
Node resultNode = _iqtCommand.BuildFakeTreatProject(inputNode, inputVar, e.OfType, out resultVar);
//
// Add the node-var mapping, and return
//
_varMap[resultNode] = resultVar;
return resultNode;
}
public override Node Visit(DbNewInstanceExpression e)
{
Op newInstOp = null;
List<Node> relPropertyExprs = null;
if (TypeSemantics.IsCollectionType(e.ResultType))
{
newInstOp = _iqtCommand.CreateNewMultisetOp(e.ResultType);
}
else if (TypeSemantics.IsRowType(e.ResultType))
{
newInstOp = _iqtCommand.CreateNewRecordOp(e.ResultType);
}
else if (TypeSemantics.IsEntityType(e.ResultType))
{
List<RelProperty> relPropertyList = new List<RelProperty>();
relPropertyExprs = new List<Node>();
if (e.HasRelatedEntityReferences)
{
foreach (DbRelatedEntityRef targetRef in e.RelatedEntityReferences)
{
RelProperty relProperty = new RelProperty((RelationshipType)targetRef.TargetEnd.DeclaringType, targetRef.SourceEnd, targetRef.TargetEnd);
relPropertyList.Add(relProperty);
Node relPropertyNode = VisitExprAsScalar(targetRef.TargetEntityReference);
relPropertyExprs.Add(relPropertyNode);
}
}
newInstOp = _iqtCommand.CreateNewEntityOp(e.ResultType, relPropertyList);
}
else
{
newInstOp = _iqtCommand.CreateNewInstanceOp(e.ResultType);
}
//
// Build up the list of arguments. Make sure that they match
// the expected types (and add "soft" casts, if needed)
//
List<Node> newArgs = new List<Node>();
if (TypeSemantics.IsStructuralType(e.ResultType))
{
StructuralType resultType = TypeHelpers.GetEdmType<StructuralType>(e.ResultType);
int i = 0;
foreach (EdmMember m in TypeHelpers.GetAllStructuralMembers(resultType))
{
Node newArg = BuildSoftCast(VisitExprAsScalar(e.Arguments[i]), Helper.GetModelTypeUsage(m));
newArgs.Add(newArg);
i++;
}
}
else
{
CollectionType resultType = TypeHelpers.GetEdmType<CollectionType>(e.ResultType);
TypeUsage elementTypeUsage = resultType.TypeUsage;
foreach (DbExpression arg in e.Arguments)
{
Node newArg = BuildSoftCast(VisitExprAsScalar(arg), elementTypeUsage);
newArgs.Add(newArg);
}
}
if (relPropertyExprs != null)
{
newArgs.AddRange(relPropertyExprs);
}
Node node = _iqtCommand.CreateNode(newInstOp, newArgs);
return node;
}
public override Node Visit(DbRefExpression e)
{
// SQLBUDT #502617: Creating a collection of refs throws an Assert
// A SoftCastOp may be required if the argument to the RefExpression is only promotable
// to the row type produced from the key properties of the referenced Entity type. Since
// this row type is not actually represented anywhere in the tree it must be built here in
// order to determine whether or not the SoftCastOp should be applied.
//
Op op = _iqtCommand.CreateRefOp(e.EntitySet, e.ResultType);
Node newArg = BuildSoftCast(VisitExprAsScalar(e.Argument), TypeHelpers.CreateKeyRowType(e.EntitySet.ElementType));
return _iqtCommand.CreateNode(op, newArg);
}
public override Node Visit(DbRelationshipNavigationExpression e)
{
RelProperty relProperty = new RelProperty(e.Relationship, e.NavigateFrom, e.NavigateTo);
Op op = _iqtCommand.CreateNavigateOp(e.ResultType, relProperty);
Node arg = VisitExprAsScalar(e.NavigationSource);
return _iqtCommand.CreateNode(op, arg);
}
public override Node Visit(DbDerefExpression e)
{
Op op = _iqtCommand.CreateDerefOp(e.ResultType);
return VisitUnary(e, op, VisitExprAsScalar);
}
public override Node Visit(DbRefKeyExpression e)
{
Op op = _iqtCommand.CreateGetRefKeyOp(e.ResultType);
return VisitUnary(e, op, VisitExprAsScalar);
}
public override Node Visit(DbEntityRefExpression e)
{
Op op = _iqtCommand.CreateGetEntityRefOp(e.ResultType);
return VisitUnary(e, op, VisitExprAsScalar);
}
public override Node Visit(DbScanExpression e)
{
// Create a new table definition
TableMD tableMetadata = Command.CreateTableDefinition(e.Target);
// Create a scan table operator
ScanTableOp op = _iqtCommand.CreateScanTableOp(tableMetadata);
// Map the ScanTableOp to the ColumnVar of the Table's single column of the Extent's element type
Node node = _iqtCommand.CreateNode(op);
Var singleColumn = op.Table.Columns[0];
_varMap[node] = singleColumn;
return node;
}
public override Node Visit(DbFilterExpression e)
{
if (!IsIsOfFilter(e) || _processedIsOfFilters.Contains(e))
{
//
// Visit the Predicate with the Input binding's variable in scope
//
Node inputSetNode = EnterExpressionBinding(e.Input);
Node predicateNode = VisitExprAsPredicate(e.Predicate);
ExitExpressionBinding();
Op filtOp = _iqtCommand.CreateFilterOp();
// Update the Node --> Var mapping. Filter maps to the same Var as its input.
Node filtNode = _iqtCommand.CreateNode(filtOp, inputSetNode, predicateNode);
_varMap[filtNode] = _varMap[inputSetNode];
return filtNode;
}
else
{
DbIsOfExpression isOfPredicate = (DbIsOfExpression)e.Predicate;
DbExpression processed = ApplyIsOfFilter(e.Input.Expression, new IsOfFilter(isOfPredicate));
return this.VisitExpr(processed);
}
}
public override Node Visit(DbProjectExpression e)
{
// check if this is the discriminated projection for a query mapping view
if (e == this._discriminatedViewTopProject)
{
return GenerateDiscriminatedProject(e);
}
else
{
return GenerateStandardProject(e);
}
}
private Node GenerateDiscriminatedProject(DbProjectExpression e)
{
PlanCompiler.Assert(null != _discriminatedViewTopProject, "if a project matches the pattern, there must be a corresponding discriminator map");
// convert the input to the top level projection
Node source = EnterExpressionBinding(e.Input);
List<RelProperty> relPropertyList = new List<RelProperty>();
List<Node> relPropertyExprs = new List<Node>();
foreach (KeyValuePair<RelProperty, DbExpression> kv in _discriminatorMap.RelPropertyMap)
{
relPropertyList.Add(kv.Key);
relPropertyExprs.Add(VisitExprAsScalar(kv.Value));
}
// construct a DiscriminatedNewInstanceOp
DiscriminatedNewEntityOp newInstOp = _iqtCommand.CreateDiscriminatedNewEntityOp(e.Projection.ResultType,
new ExplicitDiscriminatorMap(_discriminatorMap), _discriminatorMap.EntitySet, relPropertyList);
// args include all projected properties and discriminator and the relProperties
List<Node> newArgs = new List<Node>(_discriminatorMap.PropertyMap.Count + 1);
newArgs.Add(CreateNewInstanceArgument(_discriminatorMap.Discriminator.Property, _discriminatorMap.Discriminator));
foreach (var propertyMap in _discriminatorMap.PropertyMap)
{
DbExpression value = propertyMap.Value;
EdmProperty property = propertyMap.Key;
Node newArg = CreateNewInstanceArgument(property, value);
newArgs.Add(newArg);
}
newArgs.AddRange(relPropertyExprs);
Node newInstNode = _iqtCommand.CreateNode(newInstOp, newArgs);
ExitExpressionBinding();
Var sourceVar;
Node varDefListNode = _iqtCommand.CreateVarDefListNode(newInstNode, out sourceVar);
ProjectOp projOp = _iqtCommand.CreateProjectOp(sourceVar);
Node projNode = _iqtCommand.CreateNode(projOp, source, varDefListNode);
_varMap[projNode] = sourceVar;
return projNode;
}
private Node CreateNewInstanceArgument(EdmMember property, DbExpression value)
{
Node newArg = BuildSoftCast(VisitExprAsScalar(value), Helper.GetModelTypeUsage(property));
return newArg;
}
private Node GenerateStandardProject(DbProjectExpression e)
{
Node projectedSetNode = EnterExpressionBinding(e.Input);
Node projectionNode = VisitExprAsScalar(e.Projection);
ExitExpressionBinding();
Var projectionVar;
Node varDefListNode = _iqtCommand.CreateVarDefListNode(projectionNode, out projectionVar);
ProjectOp projOp = _iqtCommand.CreateProjectOp(projectionVar);
Node projNode = _iqtCommand.CreateNode(projOp, projectedSetNode, varDefListNode);
_varMap[projNode] = projectionVar;
return projNode;
}
public override Node Visit(DbCrossJoinExpression e)
{
return VisitJoin(e, e.Inputs, null);
}
public override Node Visit(DbJoinExpression e)
{
List<DbExpressionBinding> inputs = new List<DbExpressionBinding>();
inputs.Add(e.Left);
inputs.Add(e.Right);
return VisitJoin(e, inputs, e.JoinCondition);
}
private Node VisitJoin(DbExpression e, IList<DbExpressionBinding> inputs, DbExpression joinCond)
{
//
// Assert that the JoinType is covered. If JoinTypes are added to CQT then the
// switch statement that constructs the JoinOp must be updated, along with this assert.
//
PlanCompiler.Assert(DbExpressionKind.CrossJoin == e.ExpressionKind ||
DbExpressionKind.InnerJoin == e.ExpressionKind ||
DbExpressionKind.LeftOuterJoin == e.ExpressionKind ||
DbExpressionKind.FullOuterJoin == e.ExpressionKind,
"Unrecognized JoinType specified in DbJoinExpression");
#if DEBUG
//
// Assert that the DbJoinExpression is producing a collection result with a record element type.
// !!! IsCollectionOfRecord() is defined only in DEBUG !!!
PlanCompiler.Assert(IsCollectionOfRecord(e.ResultType), "Invalid Type returned by DbJoinExpression");
#endif
//
// Visit Join inputs, track their nodes and vars.
//
List<Node> inputNodes = new List<Node>();
List<Var> inputVars = new List<Var>();
for(int idx = 0; idx < inputs.Count; idx++)
{
Var boundVar;
Node inputNode = VisitBoundExpression(inputs[idx].Expression, out boundVar);
inputNodes.Add(inputNode);
inputVars.Add(boundVar);
}
//
// Bring the variables for the Join inputs into scope.
//
for (int scopeCount = 0; scopeCount < inputNodes.Count; scopeCount++)
{
PushBindingScope(inputVars[scopeCount], inputs[scopeCount].VariableName);
}
//
// Visit join condition, if present.
//
Node joinCondNode = VisitExprAsPredicate(joinCond);
//
// Remove the input variables from scope after visiting the Join condition.
//
for (int scopeCount = 0; scopeCount < inputNodes.Count; scopeCount++)
{
ExitExpressionBinding();
}
//
// Create an appropriate JoinOp based on the JoinType specified in the DbJoinExpression.
//
JoinBaseOp joinOp = null;
switch (e.ExpressionKind)
{
case DbExpressionKind.CrossJoin:
{
joinOp = _iqtCommand.CreateCrossJoinOp();
}
break;
case DbExpressionKind.InnerJoin:
{
joinOp = _iqtCommand.CreateInnerJoinOp();
}
break;
case DbExpressionKind.LeftOuterJoin:
{
joinOp = _iqtCommand.CreateLeftOuterJoinOp();
}
break;
case DbExpressionKind.FullOuterJoin:
{
joinOp = _iqtCommand.CreateFullOuterJoinOp();
}
break;
}
//
// Assert that a JoinOp was produced. This check is again in case a new JoinType is introduced to CQT and this method is not updated.
//
PlanCompiler.Assert(joinOp != null, "Unrecognized JoinOp specified in DbJoinExpression, no JoinOp was produced");
//
// If the Join condition was present then add its converted form to the list of child nodes for the new Join node.
//
if (e.ExpressionKind != DbExpressionKind.CrossJoin)
{
PlanCompiler.Assert(joinCondNode != null, "Non CrossJoinOps must specify a join condition");
inputNodes.Add(joinCondNode);
}
//
// Create and return a new projection that unifies the multiple vars produced by the Join columns into a single record constructor.
//
return ProjectNewRecord(
_iqtCommand.CreateNode(joinOp, inputNodes),
ExtractElementRowType(e.ResultType),
inputVars
);
}
public override Node Visit(DbApplyExpression e)
{
#if DEBUG
//
// Assert that the DbJoinExpression is producing a collection result with a record element type.
// !!! IsCollectionOfRecord() is defined only in DEBUG !!!
PlanCompiler.Assert(IsCollectionOfRecord(e.ResultType), "Invalid Type returned by DbApplyExpression");
#endif
//
// Bring the Input set's variable into scope
//
Node inputNode = EnterExpressionBinding(e.Input);
//
// Visit the Apply expression with the Input's variable in scope.
// This is done via EnterExpressionBinding, which is allowable only because
// it will only bring the Apply variable into scope *after* visiting the Apply expression
// (which means that the Apply expression cannot validly reference its own binding variable)
//
Node applyNode = EnterExpressionBinding(e.Apply);
//
// Remove the Apply and Input variables from scope
//
ExitExpressionBinding(); // for the Apply
ExitExpressionBinding(); // for the Input
//
// The ApplyType should only be either CrossApply or OuterApply.
//
PlanCompiler.Assert(DbExpressionKind.CrossApply == e.ExpressionKind || DbExpressionKind.OuterApply == e.ExpressionKind, "Unrecognized DbExpressionKind specified in DbApplyExpression");
//
// Create a new Node with the correct ApplyOp as its Op and the input and apply nodes as its child nodes.
//
ApplyBaseOp applyOp = null;
if (DbExpressionKind.CrossApply == e.ExpressionKind)
{
applyOp = _iqtCommand.CreateCrossApplyOp();
}
else
{
applyOp = _iqtCommand.CreateOuterApplyOp();
}
Node retNode = _iqtCommand.CreateNode(applyOp, inputNode, applyNode);
//
// Create and return a new projection that unifies the vars produced by the input and apply columns into a single record constructor.
//
return ProjectNewRecord(
retNode,
ExtractElementRowType(e.ResultType),
new Var[] { _varMap[inputNode], _varMap[applyNode] }
);
}
public override Node Visit(DbGroupByExpression e)
{
#if DEBUG
// !!! IsCollectionOfRecord() is defined only in DEBUG !!!
PlanCompiler.Assert(IsCollectionOfRecord(e.ResultType), "DbGroupByExpression has invalid result Type (not record collection)");
#endif
//
// Process the input and the keys
//
VarVec keyVarSet = _iqtCommand.CreateVarVec();
VarVec outputVarSet = _iqtCommand.CreateVarVec();
Node inputNode;
List<Node> keyVarDefNodes;
ExpressionBindingScope scope;
ExtractKeys(e, keyVarSet, outputVarSet, out inputNode, out keyVarDefNodes, out scope);
// Get the index of the group aggregate if any
int groupAggregateIndex = -1;
for (int i = 0; i < e.Aggregates.Count; i++)
{
if (e.Aggregates[i].GetType() == typeof(DbGroupAggregate))
{
groupAggregateIndex = i;
break;
}
}
//
//If there is a group aggregate, create a copy of the input
//
Node copyOfInput = null;
List<Node> copyOfKeyVarDefNodes = null;
VarVec copyOutputVarSet = _iqtCommand.CreateVarVec();
VarVec copyKeyVarSet = _iqtCommand.CreateVarVec();
if (groupAggregateIndex >= 0)
{
ExpressionBindingScope copyOfScope; //not needed
ExtractKeys(e, copyKeyVarSet, copyOutputVarSet, out copyOfInput, out copyOfKeyVarDefNodes, out copyOfScope);
}
//
// Bring the Input variable from the DbGroupByExpression into scope
//
scope = new ExpressionBindingScope(_iqtCommand, e.Input.GroupVariableName, scope.ScopeVar);
_varScopes.Push(scope);
//
// Process the Aggregates: For each DbAggregate, produce the corresponding IQT conversion depending on whether the DbAggregate is a DbFunctionAggregate or DbGroupAggregate.
// The converted Node is then used as the child node of a VarDefOp Node that is added to a list of Aggregate VarDefs or Group Aggregate VarDefs correspondingly.
// The Var defined by the converted DbAggregate is added only to the overall list of Vars produced by the GroupBy (not the list of Keys).
//
List<Node> aggVarDefNodes = new List<Node>();
Node groupAggDefNode = null;
for(int idx = 0; idx < e.Aggregates.Count; idx++)
{
DbAggregate agg = e.Aggregates[idx];
Var aggVar;
//
// Produce the converted form of the Arguments to the aggregate
//
IList<Node> argNodes = VisitExprAsScalar(agg.Arguments);
//
// Handle if it is DbFunctionAggregate
//
if (idx != groupAggregateIndex)
{
DbFunctionAggregate funcAgg = agg as DbFunctionAggregate;
PlanCompiler.Assert(funcAgg != null, "Unrecognized DbAggregate used in DbGroupByExpression");
aggVarDefNodes.Add(ProcessFunctionAggregate(funcAgg, argNodes, out aggVar));
}
//
// Handle if it is DbGroupAggregate
//
else
{
groupAggDefNode = ProcessGroupAggregate(keyVarDefNodes, copyOfInput, copyOfKeyVarDefNodes, copyKeyVarSet, e.Input.Expression.ResultType, out aggVar);
}
outputVarSet.Set(aggVar);
}
//
// The Aggregates have now been processed, so remove the group variable from scope.
//
ExitGroupExpressionBinding();
//
// Construct the GroupBy. This consists of a GroupByOp (or GroupByIntoOp) with 3 (or 4) children:
// 1. The Node produced from the Input set
// 2. A VarDefListOp Node that uses the Key VarDefs to define the Key Vars (created above)
// 3. A VarDefListOp Node that uses the Aggregate VarDefs to define the Aggregate Vars (created above)
// 4. For a GroupByIntoOp a verDefLIstOp Node with a single var def node that defines the group aggregate
//
List<Node> groupByChildren = new List<Node>();
groupByChildren.Add(inputNode); // The Node produced from the Input set
groupByChildren.Add( // The Key VarDefs
_iqtCommand.CreateNode(
_iqtCommand.CreateVarDefListOp(),
keyVarDefNodes
));
groupByChildren.Add( // The Aggregate VarDefs
_iqtCommand.CreateNode(
_iqtCommand.CreateVarDefListOp(),
aggVarDefNodes
));
GroupByBaseOp op;
if (groupAggregateIndex >= 0)
{
groupByChildren.Add( // The GroupAggregate VarDef
_iqtCommand.CreateNode(
_iqtCommand.CreateVarDefListOp(),
groupAggDefNode
));
op = _iqtCommand.CreateGroupByIntoOp(keyVarSet, this._iqtCommand.CreateVarVec(_varMap[inputNode]), outputVarSet);
}
else
{
op = _iqtCommand.CreateGroupByOp(keyVarSet, outputVarSet);
}
Node groupByNode = _iqtCommand.CreateNode(
op, groupByChildren);
//
// Create and return a projection that unifies the multiple output vars of the GroupBy into a single record constructor.
//
return ProjectNewRecord(
groupByNode,
ExtractElementRowType(e.ResultType),
outputVarSet //todo: it is not correct to pass a varvec where an ordered list is expected
);
}
private void ExtractKeys(DbGroupByExpression e, VarVec keyVarSet, VarVec outputVarSet, out Node inputNode, out List<Node> keyVarDefNodes, out ExpressionBindingScope scope)
{
inputNode = EnterGroupExpressionBinding(e.Input);
//
// Process the Keys: For each Key, produce the corresponding IQT conversion.
// The converted Node is then used as the child node of a VarDefOp Node that is
// added to a list of Key VarDefs. The Var defined by the converted Key expression
// is added to both the overall list of Vars produced by the GroupBy and the list of Key vars produced by the GroupBy.
//
keyVarDefNodes = new List<Node>();
for (int idx = 0; idx < e.Keys.Count; idx++)
{
DbExpression keyExpr = e.Keys[idx];
Node keyNode = VisitExprAsScalar(keyExpr);
ScalarOp keyOp = keyNode.Op as ScalarOp;
//
// In a valid CQT, each group key expressions will result in a ScalarOp since they
// must be of an equality comparable type.
//
PlanCompiler.Assert(keyOp != null, "GroupBy Key is not a ScalarOp");
//
// Create a ComputedVar with the same type as the Key and add it to both the set of output Vars produced by the GroupBy and the set of Key vars.
//
Var keyVar;
//
// Create a VarDefOp that uses the converted form of the Key to define the ComputedVar and add it to the list of Key VarDefs.
//
keyVarDefNodes.Add(_iqtCommand.CreateVarDefNode(keyNode, out keyVar));
outputVarSet.Set(keyVar);
keyVarSet.Set(keyVar);
}
//
// Before the Aggregates are processed, the Input variable must be taken out of scope and the 'group' variable introduced into scope in its place
// This is done as follows:
// 1. Pop the current ExpressionBindingScope from the stack
// 2. Create a new ExpressionBindingScope using the same Var but the name of the 'group' variable from the DbGroupByExpression's DbGroupExpressionBinding
// 3. Push this new scope onto the variable scope stack.
//
scope = ExitExpressionBinding();
}
private Node ProcessFunctionAggregate(DbFunctionAggregate funcAgg, IList<Node> argNodes, out Var aggVar)
{
Node aggNode = _iqtCommand.CreateNode(
_iqtCommand.CreateAggregateOp(funcAgg.Function, funcAgg.Distinct),
argNodes
);
//
// Create a VarDefOp that uses the converted form of the DbAggregate to define the ComputedVar
//
return _iqtCommand.CreateVarDefNode(aggNode, out aggVar);
}
/// <summary>
/// Translation for GroupAggregate
///
/// Create the translation as :
///
/// Collect
/// |
/// PhysicalProject
/// |
/// GroupNodeDefinition
///
/// Here, GroupNodeDefinition is:
/// 1. If there are no keys: copyOfInput;
/// 2. If there are keys:
///
/// Filter (keyDef1 = copyOfKeyDef1 or keyDef1 is null and copyOfKeyDef1 is null) and ... and (keyDefn = copyOfKeyDefn or keyDefn is null and copyOfKeyDefn is null)
/// |
/// Project (copyOfInput, copyOfKeyDef1, copyOfKeyDef1, ... copyOfKeyDefn)
/// |
/// copyOfInput
///
/// </summary>
/// <param name="keyVarDefNodes"></param>
/// <param name="copyOfInput"></param>
/// <param name="copyOfkeyVarDefNodes"></param>
/// <param name="copyKeyVarSet"></param>
/// <param name="inputResultType"></param>
/// <param name="groupAggVar"></param>
/// <returns></returns>
private Node ProcessGroupAggregate(List<Node> keyVarDefNodes, Node copyOfInput, List<Node> copyOfkeyVarDefNodes, VarVec copyKeyVarSet, TypeUsage inputResultType, out Var groupAggVar)
{
Var inputVar = this._varMap[copyOfInput];
Node groupDefNode = copyOfInput;
if (keyVarDefNodes.Count > 0)
{
VarVec projectOutpus = _iqtCommand.CreateVarVec();
projectOutpus.Set(inputVar);
projectOutpus.Or(copyKeyVarSet);
Node projectNodeWithKeys = _iqtCommand.CreateNode(
_iqtCommand.CreateProjectOp(projectOutpus),
groupDefNode, //the input
_iqtCommand.CreateNode( //the key var defs
_iqtCommand.CreateVarDefListOp(),
copyOfkeyVarDefNodes
));
List<Node> flattentedKeys = new List<Node>();
List<Node> copyFlattenedKeys = new List<Node>();
for (int i = 0; i < keyVarDefNodes.Count; i++)
{
Node keyVarDef = keyVarDefNodes[i];
Node copyOfKeyVarDef = copyOfkeyVarDefNodes[i];
Var keyVar = ((VarDefOp)keyVarDef.Op).Var;
Var copyOfKeyVar = ((VarDefOp)copyOfKeyVarDef.Op).Var;
//
// The keys of type row need to be flattened, because grouping by a row means grouping by its individual
// members and thus we have to check the individual members whether they are null.
// IsNull(x) where x is a row type does not mean whether the individual properties of x are null,
// but rather whether the entire row is null.
//
FlattenProperties(_iqtCommand.CreateNode(_iqtCommand.CreateVarRefOp(keyVar)), flattentedKeys);
FlattenProperties(_iqtCommand.CreateNode(_iqtCommand.CreateVarRefOp(copyOfKeyVar)), copyFlattenedKeys);
}
PlanCompiler.Assert(flattentedKeys.Count == copyFlattenedKeys.Count, "The flattened keys lists should have the same nubmer of elements");
Node filterPredicateNode = null;
for(int j = 0; j< flattentedKeys.Count; j++)
{
Node keyNode = flattentedKeys[j];
Node copyKeyNode = copyFlattenedKeys[j];
//
// Create the predicate for a single key
// keyVar = copyOfKeyVar or keyVar is null and copyOfKeyVar is null
//
Node predicate = _iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.Or),
_iqtCommand.CreateNode(
_iqtCommand.CreateComparisonOp(OpType.EQ), keyNode, copyKeyNode),
_iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.And),
_iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.IsNull),
OpCopier.Copy(_iqtCommand, keyNode)),
_iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.IsNull),
OpCopier.Copy(_iqtCommand, copyKeyNode))));
if (filterPredicateNode == null)
{
filterPredicateNode = predicate;
}
else
{
filterPredicateNode = _iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.And),
filterPredicateNode, predicate);
}
}
Node filterNode = _iqtCommand.CreateNode(
_iqtCommand.CreateFilterOp(), projectNodeWithKeys, filterPredicateNode);
groupDefNode = filterNode;
}
//Cap with Collect over PhysicalProject
_varMap[groupDefNode] = inputVar;
groupDefNode = ConvertRelOpToScalarOpTree(groupDefNode, inputResultType);
Node result = _iqtCommand.CreateVarDefNode(groupDefNode, out groupAggVar);
return result;
}
/// <summary>
/// If the return type of the input node is a RowType it flattens its individual non-row properties.
/// The produced nodes are added to the given flattenedProperties list
/// </summary>
/// <param name="input"></param>
/// <param name="flattenedProperties"></param>
private void FlattenProperties(Node input, IList<Node> flattenedProperties)
{
if (input.Op.Type.EdmType.BuiltInTypeKind == BuiltInTypeKind.RowType)
{
IList<EdmProperty> properties = TypeHelpers.GetProperties(input.Op.Type);
PlanCompiler.Assert(properties.Count != 0, "No nested properties for RowType");
for (int i = 0; i < properties.Count; i++)
{
Node newInput = (i == 0) ? input : OpCopier.Copy(_iqtCommand, input);
FlattenProperties(_iqtCommand.CreateNode(_iqtCommand.CreatePropertyOp(properties[i]), newInput), flattenedProperties);
}
}
else
{
flattenedProperties.Add(input);
}
}
/// <summary>
/// Common processing for the identical input and sort order arguments to the unrelated
/// DbSkipExpression and DbSortExpression types.
/// </summary>
/// <param name="input">The input DbExpressionBinding from the DbSkipExpression or DbSortExpression</param>
/// <param name="sortOrder">The list of SortClauses from the DbSkipExpression or DbSortExpression</param>
/// <param name="sortKeys">A list to contain the converted SortKeys produced from the SortClauses</param>
/// <param name="inputVar">The Var produced by the input to the DbSkipExpression or DbSortExpression</param>
/// <returns>
/// The converted form of the input to the DbSkipExpression or DbSortExpression, capped by a
/// ProjectOp that defines and Vars referenced by the SortKeys.
/// </returns>
private Node VisitSortArguments(DbExpressionBinding input, IList<DbSortClause> sortOrder, List<SortKey> sortKeys, out Var inputVar)
{
//
// Skip/DbSortExpression conversion first produces a ProjectOp over the original input.
// This is done to ensure that the new (Constrained)SortOp itself does not
// contain any local variable definitions (in the form of a VarDefList child node)
// which makes it simpler to pull SortOps over ProjectOps later in the PlanCompiler
// (specifically the PreProcessor).
// The new ProjectOp projects the output Var of the input along with any Vars referenced
// by the SortKeys, and its VarDefList child defines those Vars.
//
// Bring the variable defined by the DbSortExpression's input set into scope
// and retrieve it from the Node => Var map for later use.
//
Node inputNode = EnterExpressionBinding(input);
inputVar = _varMap[inputNode];
//
// Convert the SortClauses, building a new VarDefOp Node for each one.
//
VarVec projectedVars = _iqtCommand.CreateVarVec();
projectedVars.Set(inputVar);
List<Node> sortVarDefs = new List<Node>();
PlanCompiler.Assert(sortKeys.Count == 0, "Non-empty SortKey list before adding converted SortClauses");
for (int idx = 0; idx < sortOrder.Count; idx++)
{
DbSortClause clause = sortOrder[idx];
//
// Convert the DbSortClause DbExpression to a Node/Op pair
//
Node exprNode = VisitExprAsScalar(clause.Expression);
//
// In a valid CQT, DbSortClause expressions must have a result of an OrderComparable Type,
// and such expressions will always convert to ScalarOps.
//
ScalarOp specOp = exprNode.Op as ScalarOp;
PlanCompiler.Assert(specOp != null, "DbSortClause Expression converted to non-ScalarOp");
//
// Create a new ComputedVar with the same Type as the result Type of the DbSortClause DbExpression
//
Var specVar;
//
// Create a new VarDefOp Node that defines the ComputedVar and add it both to the
// list of VarDefs and the VarVec of produced Vars that will be used to create a
// SortKey-defining ProjectOp over the Sort input.
//
sortVarDefs.Add(_iqtCommand.CreateVarDefNode(exprNode, out specVar));
projectedVars.Set(specVar);
//
// Create a new IQT SortKey that references the ComputedVar and has the same
// Ascending and Collation as the original DbSortClause, then add it to the list of SortKeys.
//
SortKey sortKey = null;
if (string.IsNullOrEmpty(clause.Collation))
{
sortKey = Command.CreateSortKey(specVar, clause.Ascending);
}
else
{
sortKey = Command.CreateSortKey(specVar, clause.Ascending, clause.Collation);
}
sortKeys.Add(sortKey);
}
//
// Now that the SortClauses have been converted, remove the Input set's variable from scope.
//
ExitExpressionBinding();
//
// Cap the Input with a ProjectOp that pushes the sort key VarDefs down to that projection.
//
inputNode =
_iqtCommand.CreateNode(
_iqtCommand.CreateProjectOp(projectedVars),
inputNode,
_iqtCommand.CreateNode(
_iqtCommand.CreateVarDefListOp(),
sortVarDefs
)
);
return inputNode;
}
public override Node Visit(DbSkipExpression expression)
{
//
// Invoke common processing of Skip/DbSortExpression arguments.
//
Var inputVar;
List<SortKey> sortKeys = new List<SortKey>();
Node inputNode = VisitSortArguments(expression.Input, expression.SortOrder, sortKeys, out inputVar);
//
// Visit the Skip Count
//
Node countNode = VisitExprAsScalar(expression.Count);
//
// Create a new Node that has a new ConstrainedSortOp based on the SortKeys as its Op
// and the following children:
// - The Input node from VisitSortArguments
// - The converted form of the skip count
// - A NullOp of type Int64 to indicate that no limit operation is applied
//
Node skipNode =
_iqtCommand.CreateNode(
_iqtCommand.CreateConstrainedSortOp(sortKeys),
inputNode,
countNode,
_iqtCommand.CreateNode(_iqtCommand.CreateNullOp(_iqtCommand.IntegerType))
);
// Update the Node --> Var mapping for the new ConstrainedSort Node.
// ConstrainedSortOp maps to the same Op that its RelOp input maps to.
_varMap[skipNode] = inputVar;
return skipNode;
}
public override Node Visit(DbSortExpression e)
{
//
// Invoke common processing of Skip/DbSortExpression arguments.
//
Var inputVar;
List<SortKey> sortKeys = new List<SortKey>();
Node inputNode = VisitSortArguments(e.Input, e.SortOrder, sortKeys, out inputVar);
//
// Create a new SortOp that uses the constructed SortKeys.
//
SortOp newSortOp = _iqtCommand.CreateSortOp(sortKeys);
//
// Create a new SortOp Node that has the new SortOp as its Op the Key-defining ProjectOp Node as its only child.
//
Node newSortNode = _iqtCommand.CreateNode(newSortOp, inputNode);
// Update the Node --> Var mapping for the new Sort Node.
// SortOp maps to the same Op that its RelOp input maps to.
_varMap[newSortNode] = inputVar;
return newSortNode;
}
public override Node Visit(DbQuantifierExpression e)
{
Node retNode = null;
//
// Any converts to Exists(Filter(Input, Predicate))
// All converts to Not(Exists(Filter(Input, Or(Not(Predicate), IsNull(Predicate)))))
//
PlanCompiler.Assert(DbExpressionKind.Any == e.ExpressionKind || DbExpressionKind.All == e.ExpressionKind, "Invalid DbExpressionKind in DbQuantifierExpression");
//
// Bring the input's variable into scope
//
Node inputNode = EnterExpressionBinding(e.Input);
//
// Convert the predicate
//
Node predicateNode = VisitExprAsPredicate(e.Predicate);
//
// If the quantifier is All then the predicate must become 'Not(Predicate) Or IsNull(Predicate)',
// since the converted form of the predicate should exclude a member of the input set if and only if
// the predicate evaluates to False - filtering only with the negated predicate would also exclude members
// for which that negated predicate evaluates to null, possibly resulting in an erroneous empty result set
// and causing the quantifier to produce a false positive result.
//
if (DbExpressionKind.All == e.ExpressionKind)
{
// Create the 'Not(Predicate)' branch of the Or.
predicateNode = _iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.Not),
predicateNode
);
// Visit the original predicate for use in the 'IsNull(Predicate)' branch of the Or.
// Note that this is treated as a scalar value rather than a Boolean predicate.
Node predicateCopy = VisitExprAsScalar(e.Predicate);
// Create the 'IsNull(Predicate)' branch of the Or.
predicateCopy = _iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.IsNull),
predicateCopy
);
// Finally, combine the branches with a Boolean 'Or' Op to create the updated predicate node.
predicateNode = _iqtCommand.CreateNode(
_iqtCommand.CreateConditionalOp(OpType.Or),
predicateNode,
predicateCopy
);
}
//
// Remove the input's variable from scope
//
ExitExpressionBinding();
//
// Create a FilterOp around the original input set and map the FilterOp to the Var produced by the original input set.
//
Var inputVar = _varMap[inputNode];
inputNode = _iqtCommand.CreateNode(_iqtCommand.CreateFilterOp(), inputNode, predicateNode);
_varMap[inputNode] = inputVar;
//
// Create an ExistsOp around the filtered set to perform the quantifier operation.
//
retNode = _iqtCommand.CreateNode(_iqtCommand.CreateExistsOp(), inputNode);
//
// For All, the exists operation as currently built must now be negated.
//
if (DbExpressionKind.All == e.ExpressionKind)
{
retNode = _iqtCommand.CreateNode(_iqtCommand.CreateConditionalOp(OpType.Not), retNode);
}
return retNode;
}
#endregion
}
}
|