1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
|
//---------------------------------------------------------------------
// <copyright file="JoinGraph.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
using System.Globalization;
using System.Linq;
using System.Data.Query.InternalTrees;
using md = System.Data.Metadata.Edm;
//
// The JoinGraph module is responsible for performing the following kinds of
// join elimination.
// This module deals with the following kinds of joins
// * Self-joins: The join can be eliminated, and either of the table instances can be
// used instead
// * Implied self-joins: Same as above
// * PK-FK joins: (More generally, UniqueKey-FK joins): Eliminate the join, and use just the FK table, if no
// column of the PK table is used (other than the join condition)
// * PK-PK joins: Eliminate the right side table, if we have a left-outer join
//
// This module is organized into the following phases.
// * Building an Augmented Tree: In this phase, the original node tree is annotated
// with additional information, and a new "augmented" tree is built up
// * Building up Join Edges: In this phase, the augmented tree is used to populate
// the join graph with equi-join edges
// * Generating transitive edges: Generate transitive join edges
// * Parent-Child (PK-FK) Join Elimination: We walk through the list of join edges, and
// eliminate any redundant tables in parent-child joins
// * Self-join Elimination: We walk through the list of join edges, and eliminate
// any redundant tables
// * Rebuilding the node tree: The augmented node tree is now converted back into
// a regular node tree.
//
namespace System.Data.Query.PlanCompiler
{
#region AugmentedNode
//
// This region describes a number of classes that are used to build an annotated
// (or augmented) node tree. There are 3 main classes defined here
// AugmentedNode - this is the base class for all annotations. This class
// wraps a Node, an id for the node (where the "id" is assigned in DFS order),
// and a list of children. All Nodes that are neither joins, nor scanTables
// are represented by this class
// AugmentedTableNode - the augmentedTableNode is a subclass of AugmentedNode,
// and represents a ScanTable node. In addition to the information above, this
// class keeps track of all join edges that this node participates in,
// whether this table has been eliminated, and finally, how high in the tree
// this node is visible
// AugmentedJoinNode - represents all joins (cross-joins, leftouter, fullouter
// and innerjoins). This class represents a number of column equijoin conditions
// via the LeftVars and RightVars properties, and also keeps track of additional
// (non-equijoin column) join predicates
//
/// <summary>
/// Additional information for a node.
/// </summary>
internal class AugmentedNode
{
#region private state
private int m_id;
private Node m_node;
protected AugmentedNode m_parent;
private List<AugmentedNode> m_children;
private readonly List<JoinEdge> m_joinEdges = new List<JoinEdge>();
#endregion
#region constructors
/// <summary>
/// basic constructor
/// </summary>
/// <param name="id">Id for this node</param>
/// <param name="node">current node</param>
internal AugmentedNode(int id, Node node)
: this(id, node, new List<AugmentedNode>())
{
}
/// <summary>
/// Yet another constructor
/// </summary>
/// <param name="id">Id for this node</param>
/// <param name="node">current node</param>
/// <param name="children">list of children</param>
internal AugmentedNode(int id, Node node, List<AugmentedNode> children)
{
m_id = id;
m_node = node;
m_children = children;
PlanCompiler.Assert(children != null, "null children (gasp!)");
foreach (AugmentedNode chi in m_children)
{
chi.m_parent = this;
}
}
#endregion
#region public properties
/// <summary>
/// Id of this node
/// </summary>
internal int Id { get { return m_id; } }
/// <summary>
/// The node
/// </summary>
internal Node Node { get { return m_node; } }
/// <summary>
/// Parent node
/// </summary>
internal AugmentedNode Parent
{
get { return m_parent; }
}
/// <summary>
/// List of children
/// </summary>
internal List<AugmentedNode> Children
{
get { return m_children; }
}
/// <summary>
/// List of directed edges in which:
/// - If this is an AugmentedTableNode, it is the "left" table
/// - If it is an AugumentedJoinNode, it is the join on which the edge is based
/// </summary>
internal List<JoinEdge> JoinEdges
{
get { return m_joinEdges; }
}
#endregion
}
/// <summary>
/// Additional information for a "Table" node
/// </summary>
internal sealed class AugmentedTableNode : AugmentedNode
{
#region private state
private int m_lastVisibleId;
private Table m_table;
// The replacement table
private AugmentedTableNode m_replacementTable;
// Is this table being moved
private int m_newLocationId;
// List of columns of this table that are nullable (and must have nulls pruned out)
private VarVec m_nullableColumns;
#endregion
#region constructors
/// <summary>
/// Basic constructor
/// </summary>
/// <param name="id">node id</param>
/// <param name="node">scan table node</param>
internal AugmentedTableNode(int id, Node node) : base(id, node)
{
ScanTableOp scanTableOp = (ScanTableOp)node.Op;
m_table = scanTableOp.Table;
m_lastVisibleId = id;
m_replacementTable = this;
m_newLocationId = id;
}
#endregion
#region public properties
/// <summary>
/// The Table
/// </summary>
internal Table Table { get { return m_table; } }
/// <summary>
/// The highest node (id) at which this table is visible
/// </summary>
internal int LastVisibleId
{
get { return m_lastVisibleId; }
set { m_lastVisibleId = value; }
}
/// <summary>
/// Has this table been eliminated
/// </summary>
internal bool IsEliminated
{
get { return m_replacementTable != this; }
}
/// <summary>
/// The replacement table (if any) for this table
/// </summary>
internal AugmentedTableNode ReplacementTable
{
get { return m_replacementTable; }
set { m_replacementTable = value; }
}
/// <summary>
/// New location for this table
/// </summary>
internal int NewLocationId
{
get { return m_newLocationId; }
set { m_newLocationId = value; }
}
/// <summary>
/// Has this table "moved" ?
/// </summary>
internal bool IsMoved
{
get { return m_newLocationId != this.Id; }
}
/// <summary>
/// Get the list of nullable columns (that require special handling)
/// </summary>
internal VarVec NullableColumns
{
get { return m_nullableColumns; }
set { m_nullableColumns = value; }
}
#endregion
}
/// <summary>
/// Additional information for a JoinNode
/// </summary>
internal sealed class AugmentedJoinNode : AugmentedNode
{
#region private state
private List<ColumnVar> m_leftVars;
private List<ColumnVar> m_rightVars;
private Node m_otherPredicate;
#endregion
#region constructors
/// <summary>
/// basic constructor
/// </summary>
/// <param name="id">current node id</param>
/// <param name="node">the join node</param>
/// <param name="leftChild">left side of the join (innerJoin, LOJ and FOJ only)</param>
/// <param name="rightChild">right side of the join</param>
/// <param name="leftVars">left-side equijoin vars</param>
/// <param name="rightVars">right-side equijoin vars</param>
/// <param name="otherPredicate">any remaining predicate</param>
internal AugmentedJoinNode(int id, Node node,
AugmentedNode leftChild, AugmentedNode rightChild,
List<ColumnVar> leftVars, List<ColumnVar> rightVars,
Node otherPredicate)
: this(id, node, new List<AugmentedNode>(new AugmentedNode[] { leftChild, rightChild }))
{
m_otherPredicate = otherPredicate;
m_rightVars = rightVars;
m_leftVars = leftVars;
}
/// <summary>
/// Yet another constructor - used for crossjoins
/// </summary>
/// <param name="id">node id</param>
/// <param name="node">current node</param>
/// <param name="children">list of children</param>
internal AugmentedJoinNode(int id, Node node, List<AugmentedNode> children)
: base(id, node, children)
{
m_leftVars = new List<ColumnVar>();
m_rightVars = new List<ColumnVar>();
}
#endregion
#region public properties
/// <summary>
/// Non-equijoin predicate
/// </summary>
internal Node OtherPredicate { get { return m_otherPredicate; } }
/// <summary>
/// Equijoin columns of the left side
/// </summary>
internal List<ColumnVar> LeftVars { get { return m_leftVars; } }
/// <summary>
/// Equijoin columns of the right side
/// </summary>
internal List<ColumnVar> RightVars { get { return m_rightVars; } }
#endregion
#region private methods
#endregion
}
#endregion
#region JoinGraph
/// <summary>
/// The only join kinds we care about
/// </summary>
internal enum JoinKind
{
Inner,
LeftOuter
}
/// <summary>
/// Represents an "edge" in the join graph.
/// A JoinEdge is a directed equijoin between the left and the right table. The equijoin
/// columns are represented by the LeftVars and the RightVars properties
/// </summary>
internal class JoinEdge
{
#region private state
private AugmentedTableNode m_left;
private AugmentedTableNode m_right;
private AugmentedJoinNode m_joinNode;
private JoinKind m_joinKind;
private List<ColumnVar> m_leftVars;
private List<ColumnVar> m_rightVars;
#endregion
#region constructors
/// <summary>
/// Internal constructor
/// </summary>
/// <param name="left">the left table</param>
/// <param name="right">the right table</param>
/// <param name="joinNode">the owner join node</param>
/// <param name="joinKind">the Join Kind</param>
/// <param name="leftVars">list of equijoin columns of the left table</param>
/// <param name="rightVars">equijoin columns of the right table</param>
private JoinEdge(AugmentedTableNode left, AugmentedTableNode right,
AugmentedJoinNode joinNode, JoinKind joinKind,
List<ColumnVar> leftVars, List<ColumnVar> rightVars)
{
m_left = left;
m_right = right;
m_joinKind = joinKind;
m_joinNode = joinNode;
m_leftVars = leftVars;
m_rightVars = rightVars;
PlanCompiler.Assert(m_leftVars.Count == m_rightVars.Count, "Count mismatch: " + m_leftVars.Count + "," + m_rightVars.Count);
}
#endregion
#region public apis
/// <summary>
/// The left table
/// </summary>
internal AugmentedTableNode Left { get { return m_left; } }
/// <summary>
/// The right table of the join
/// </summary>
internal AugmentedTableNode Right { get { return m_right; } }
/// <summary>
/// The underlying join node, may be null
/// </summary>
internal AugmentedJoinNode JoinNode { get { return m_joinNode; } }
/// <summary>
/// The join kind
/// </summary>
internal JoinKind JoinKind { get { return m_joinKind; } set { m_joinKind = value; } }
/// <summary>
/// Equijoin columns of the left table
/// </summary>
internal List<ColumnVar> LeftVars { get { return m_leftVars; } }
/// <summary>
/// Equijoin columns of the right table
/// </summary>
internal List<ColumnVar> RightVars { get { return m_rightVars; } }
/// <summary>
/// Is this join edge useless?
/// </summary>
internal bool IsEliminated
{
get { return this.Left.IsEliminated || this.Right.IsEliminated; }
}
/// <summary>
/// Factory method
/// </summary>
/// <param name="left">left table</param>
/// <param name="right">right table</param>
/// <param name="joinNode">the owner join node</param>
/// <param name="leftVar">equijoin column of the left table</param>
/// <param name="rightVar">equijoin column of the right table</param>
/// <returns>the new join edge</returns>
internal static JoinEdge CreateJoinEdge(AugmentedTableNode left, AugmentedTableNode right,
AugmentedJoinNode joinNode,
ColumnVar leftVar, ColumnVar rightVar)
{
List<ColumnVar> leftVars = new List<ColumnVar>();
List<ColumnVar> rightVars = new List<ColumnVar>();
leftVars.Add(leftVar);
rightVars.Add(rightVar);
OpType joinOpType = joinNode.Node.Op.OpType;
PlanCompiler.Assert((joinOpType == OpType.LeftOuterJoin || joinOpType == OpType.InnerJoin),
"Unexpected join type for join edge: " + joinOpType);
JoinKind joinKind = joinOpType == OpType.LeftOuterJoin ? JoinKind.LeftOuter : JoinKind.Inner;
JoinEdge joinEdge = new JoinEdge(left, right, joinNode, joinKind, leftVars, rightVars);
return joinEdge;
}
/// <summary>
/// Creates a transitively generated join edge
/// </summary>
/// <param name="left">the left table</param>
/// <param name="right">the right table</param>
/// <param name="joinKind">the join kind</param>
/// <param name="leftVars">left equijoin vars</param>
/// <param name="rightVars">right equijoin vars</param>
/// <returns>the join edge</returns>
internal static JoinEdge CreateTransitiveJoinEdge(AugmentedTableNode left, AugmentedTableNode right, JoinKind joinKind,
List<ColumnVar> leftVars, List<ColumnVar> rightVars)
{
JoinEdge joinEdge = new JoinEdge(left, right, null, joinKind, leftVars, rightVars);
return joinEdge;
}
/// <summary>
/// Add a new "equi-join" condition to this edge
/// </summary>
/// <param name="joinNode">join node producing this condition</param>
/// <param name="leftVar">the left-side column</param>
/// <param name="rightVar">the right-side column</param>
/// <returns>true, if this condition can be added</returns>
internal bool AddCondition(AugmentedJoinNode joinNode, ColumnVar leftVar, ColumnVar rightVar)
{
if (joinNode != m_joinNode)
{
return false;
}
m_leftVars.Add(leftVar);
m_rightVars.Add(rightVar);
return true;
}
#endregion
}
/// <summary>
/// Represents a join graph. The uber-class for join elimination
/// </summary>
internal class JoinGraph
{
#region private state
private Command m_command;
private AugmentedJoinNode m_root;
private List<AugmentedNode> m_vertexes;
private List<AugmentedTableNode> m_tableVertexes;
private Dictionary<Table, AugmentedTableNode> m_tableVertexMap;
private VarMap m_varMap;
private Dictionary<Var, VarVec> m_reverseVarMap;
private Dictionary<Var, AugmentedTableNode> m_varToDefiningNodeMap; //Includes all replacing vars and referenced vars from replacing tables
private Dictionary<Node, Node> m_processedNodes;
private bool m_modifiedGraph;
private ConstraintManager m_constraintManager;
private VarRefManager m_varRefManager;
private bool m_isSqlCe;
#endregion
#region constructors
/// <summary>
/// The basic constructor. Builds up the annotated node tree, and the set of
/// join edges
/// </summary>
/// <param name="command">Current IQT command</param>
/// <param name="constraintManager">current constraint manager</param>
/// <param name="varRefManager">the var ref manager for the tree</param>
/// <param name="joinNode">current join node</param>
internal JoinGraph(Command command, ConstraintManager constraintManager, VarRefManager varRefManager, Node joinNode, bool isSqlCe)
{
m_command = command;
m_constraintManager = constraintManager;
m_varRefManager = varRefManager;
m_isSqlCe = isSqlCe;
m_vertexes = new List<AugmentedNode>();
m_tableVertexes = new List<AugmentedTableNode>();
m_tableVertexMap = new Dictionary<Table, AugmentedTableNode>();
m_varMap = new VarMap();
m_reverseVarMap = new Dictionary<Var, VarVec>();
m_varToDefiningNodeMap = new Dictionary<Var, AugmentedTableNode>();
m_processedNodes = new Dictionary<Node, Node>();
// Build the augmented node tree
m_root = BuildAugmentedNodeTree(joinNode) as AugmentedJoinNode;
PlanCompiler.Assert(m_root != null, "The root isn't a join?");
// Build the join edges
BuildJoinEdges(m_root, m_root.Id);
}
#endregion
#region public methods
/// <summary>
/// Perform all kinds of join elimination. The output is the transformed join tree.
/// The varMap output is a dictionary that maintains var renames - this will be used
/// by the consumer of this module to fix up references to columns of tables
/// that have been eliminated
///
/// The processedNodes dictionary is simply a set of all nodes that have been processed
/// in this module - and need no further "join graph" processing
/// </summary>
/// <param name="varMap">remapped vars</param>
/// <param name="processedNodes">list of nodes that need no further processing</param>
internal Node DoJoinElimination(out VarMap varMap,
out Dictionary<Node, Node> processedNodes)
{
//Turn left outer joins into inner joins when possible
TryTurnLeftOuterJoinsIntoInnerJoins();
// Generate transitive edges
GenerateTransitiveEdges();
// Do real join elimination
EliminateSelfJoins();
EliminateParentChildJoins();
// Build the result tree
Node result = BuildNodeTree();
// Get other output properties
varMap = m_varMap;
processedNodes = m_processedNodes;
return result;
}
#endregion
#region private methods
#region Building the annotated node tree
//
// The goal of this submodule is to build up an annotated node tree for a
// node tree. As described earlier, we attempt to represent all nodes by
// one of the following classes - AugmentedTableNode (for ScanTableOp),
// AugmentedJoinNode (for all joins), and AugmentedNode for anything else.
// We use this information to help enable later stages of this module
//
// We employ a "greedy" strategy to handle as much of the node tree as possible.
// We follow all children of joins - and stop when we see a non-join, non-scan node
//
/// <summary>
/// Get the subset of vars that are Columns
/// </summary>
/// <param name="varVec">a varVec</param>
/// <returns>a subsetted VarVec that only contains the columnVars from the input vec</returns>
private VarVec GetColumnVars(VarVec varVec)
{
VarVec columnVars = m_command.CreateVarVec();
foreach (Var v in varVec)
{
if (v.VarType == VarType.Column)
{
columnVars.Set(v);
}
}
return columnVars;
}
/// <summary>
/// Generate a list of column Vars from the input vec
/// </summary>
/// <param name="columnVars">the list of vars to fill in</param>
/// <param name="vec">the var set</param>
private static void GetColumnVars(List<ColumnVar> columnVars, IEnumerable<Var> vec)
{
foreach (Var v in vec)
{
PlanCompiler.Assert(v.VarType == VarType.Column, "Expected a columnVar. Found " + v.VarType);
columnVars.Add((ColumnVar)v);
}
}
/// <summary>
/// Split up the join predicate into equijoin columns and other predicates.
///
/// For example, if I have a predicate of the form T1.C1 = T2.D1 and T1.C2 > T2.D2
/// we would generate
/// LeftVars = T1.C1
/// RightVars = T2.C1
/// OtherPredicate = T1.C2 > T2.D2
///
/// Special Cases:
/// For fullouter joins, we don't do any splitting - the "OtherPredicate" captures the
/// entire join condition.
/// </summary>
/// <param name="joinNode">the current join node</param>
/// <param name="leftVars">equijoin columns of the left side</param>
/// <param name="rightVars">equijoin columns of the right side</param>
/// <param name="otherPredicateNode">any other predicates</param>
private void SplitPredicate(Node joinNode,
out List<ColumnVar> leftVars, out List<ColumnVar> rightVars,
out Node otherPredicateNode)
{
leftVars = new List<ColumnVar>();
rightVars = new List<ColumnVar>();
otherPredicateNode = joinNode.Child2;
//
// If this is a full-outer join, then don't do any splitting
//
if (joinNode.Op.OpType == OpType.FullOuterJoin)
{
return;
}
Predicate predicate = new Predicate(m_command, joinNode.Child2);
//
// Split the predicate
//
ExtendedNodeInfo leftInputNodeInfo = m_command.GetExtendedNodeInfo(joinNode.Child0);
ExtendedNodeInfo rightInputNodeInfo = m_command.GetExtendedNodeInfo(joinNode.Child1);
VarVec leftDefinitions = GetColumnVars(leftInputNodeInfo.Definitions);
VarVec rightDefinitions = GetColumnVars(rightInputNodeInfo.Definitions);
Predicate otherPredicate;
List<Var> tempLeftVars;
List<Var> tempRightVars;
predicate.GetEquiJoinPredicates(leftDefinitions, rightDefinitions, out tempLeftVars, out tempRightVars, out otherPredicate);
// Get the non-equijoin conditions
otherPredicateNode = otherPredicate.BuildAndTree();
GetColumnVars(leftVars, tempLeftVars);
GetColumnVars(rightVars, tempRightVars);
}
/// <summary>
/// Build up the annotated node tree for the input subtree.
/// If the current node is
/// a ScanTableOp - we build an AugmentedTableNode
/// a join (Inner, LOJ, FOJ, CrossJoin) - we build an AugmentedJoinNode,
/// after first building annotated node trees for the inputs.
/// anything else - we build an AugmentedNode
///
/// We also mark the node as "processed" - so that the caller will not need
/// to build join graphs for this again
/// </summary>
/// <param name="node">input node tree</param>
/// <returns>the annotated node tree</returns>
private AugmentedNode BuildAugmentedNodeTree(Node node)
{
AugmentedNode augmentedNode;
switch (node.Op.OpType)
{
case OpType.ScanTable:
m_processedNodes[node] = node;
ScanTableOp scanTableOp = (ScanTableOp)node.Op;
augmentedNode = new AugmentedTableNode(m_vertexes.Count, node);
m_tableVertexMap[scanTableOp.Table] = (AugmentedTableNode)augmentedNode;
break;
case OpType.InnerJoin:
case OpType.LeftOuterJoin:
case OpType.FullOuterJoin:
m_processedNodes[node] = node;
AugmentedNode left = BuildAugmentedNodeTree(node.Child0);
AugmentedNode right = BuildAugmentedNodeTree(node.Child1);
List<ColumnVar> leftVars;
List<ColumnVar> rightVars;
Node otherPredicate;
SplitPredicate(node, out leftVars, out rightVars, out otherPredicate);
m_varRefManager.AddChildren(node);
augmentedNode = new AugmentedJoinNode(m_vertexes.Count, node, left, right, leftVars, rightVars, otherPredicate);
break;
case OpType.CrossJoin:
m_processedNodes[node] = node;
List<AugmentedNode> children = new List<AugmentedNode>();
foreach (Node chi in node.Children)
{
children.Add(BuildAugmentedNodeTree(chi));
}
augmentedNode = new AugmentedJoinNode(m_vertexes.Count, node, children);
m_varRefManager.AddChildren(node);
break;
default:
augmentedNode = new AugmentedNode(m_vertexes.Count, node);
break;
}
m_vertexes.Add(augmentedNode);
return augmentedNode;
}
#endregion
#region Building JoinEdges
//
// The goal of this module is to take the annotated node tree, and build up a
// a set of JoinEdges - this is arguably, the guts of the joingraph.
//
// Each join edge represents a directed, equijoin (inner, or leftouter) between
// two tables.
//
// We impose various constraints on the input node tree
//
/// <summary>
/// Add a new join edge if possible.
///
/// - Check to see whether the input columns are columns of a table that we're tracking.
/// - Make sure that both the tables are "visible" to the current join node
/// - If there is already a link between the two tables, make sure that the link's
/// join kind is compatible with what we have
/// </summary>
/// <param name="joinNode">current join Node</param>
/// <param name="leftVar">left-side column</param>
/// <param name="rightVar">right-side column</param>
/// <returns></returns>
private bool AddJoinEdge(AugmentedJoinNode joinNode, ColumnVar leftVar, ColumnVar rightVar)
{
AugmentedTableNode leftTableNode;
AugmentedTableNode rightTableNode;
// Are these tables even visible to me?
if (!m_tableVertexMap.TryGetValue(leftVar.Table, out leftTableNode))
{
return false;
}
if (!m_tableVertexMap.TryGetValue(rightVar.Table, out rightTableNode))
{
return false;
}
//
// If the tables participating in the join are not visible at this node,
// then simply return. We will not add the join edge
//
if (leftTableNode.LastVisibleId < joinNode.Id ||
rightTableNode.LastVisibleId < joinNode.Id)
{
return false;
}
//
// Check to see if there is already an "edge" between the 2 tables.
// If there is, then simply add a predicate to that edge. Otherwise, create
// an edge
//
foreach (JoinEdge joinEdge in leftTableNode.JoinEdges)
{
if (joinEdge.Right.Table.Equals(rightVar.Table))
{
// Try and add this new condition to the existing edge
return joinEdge.AddCondition(joinNode, leftVar, rightVar);
}
}
// Create a new join edge
JoinEdge newJoinEdge = JoinEdge.CreateJoinEdge(leftTableNode, rightTableNode, joinNode, leftVar, rightVar);
leftTableNode.JoinEdges.Add(newJoinEdge);
joinNode.JoinEdges.Add(newJoinEdge);
return true;
}
/// <summary>
/// Check to see if all columns in the input varList are from the same table
/// Degenerate case: if the list is empty, we still return true
/// </summary>
/// <param name="varList">list of columns</param>
/// <returns>true, if every column is from the same table</returns>
private static bool SingleTableVars(IEnumerable<ColumnVar> varList)
{
Table table = null;
foreach (ColumnVar v in varList)
{
if (table == null)
{
table = v.Table;
}
else if (v.Table != table)
{
return false;
}
}
return true;
}
/// <summary>
/// Build a set of JoinEdges for this join.
/// For cross joins, we simply invoke this function recursively on the children, and return
///
/// For other joins,
/// - We first compute the "visibility" for the left and right branches
/// - For full outer joins, the "visibility" is the current join node's id. (ie)
/// the tables below are not to be considered as candidates for JoinEdges anywhere
/// above this FOJ node
/// - For left outer joins, the "visibility" of the left child is the input "maxVisibility"
/// parameter. For the right child, the "visibility" is the current join node's id
/// - For inner joins, the visibility for both children is the "maxVisibility" parameter
/// - We then check to see if the join condition is "ok". If the current join node
/// is a full-outer join, OR if the joinNode has an OtherPredicate (ie) stuff
/// other than equijoin column conditions, then we don't build any joinedges.
/// - Otherwise, we build join edges for each equijoin column
///
/// </summary>
/// <param name="joinNode">current join node</param>
/// <param name="maxVisibility">the highest node where any of the tables below is visible</param>
private void BuildJoinEdges(AugmentedJoinNode joinNode, int maxVisibility)
{
OpType opType = joinNode.Node.Op.OpType;
//
// Simply visit the children for cross-joins
//
if (opType == OpType.CrossJoin)
{
foreach (AugmentedNode chi in joinNode.Children)
{
BuildJoinEdges(chi, maxVisibility);
}
return;
}
//
// If the current node is a leftouterjoin, or a full outer join, then
// none of the tables below should be visible anymore
//
int leftMaxVisibility;
int rightMaxVisibility;
if (opType == OpType.FullOuterJoin)
{
leftMaxVisibility = joinNode.Id;
rightMaxVisibility = joinNode.Id;
}
else if (opType == OpType.LeftOuterJoin)
{
leftMaxVisibility = maxVisibility;
rightMaxVisibility = joinNode.Id;
}
else
{
leftMaxVisibility = maxVisibility;
rightMaxVisibility = maxVisibility;
}
BuildJoinEdges(joinNode.Children[0], leftMaxVisibility);
BuildJoinEdges(joinNode.Children[1], rightMaxVisibility);
// Now handle the predicate
// Special cases. Nothing further if there exists anything other than
// a set of equi-join predicates
if (joinNode.Node.Op.OpType == OpType.FullOuterJoin ||
joinNode.OtherPredicate != null ||
joinNode.LeftVars.Count == 0)
{
return;
}
//
// If we have a left-outer join, and the join predicate involves more than one table on the
// right side, then quit
//
if ((opType == OpType.LeftOuterJoin) &&
(!SingleTableVars(joinNode.RightVars) || !SingleTableVars(joinNode.LeftVars)))
{
return;
}
JoinKind joinKind = (opType == OpType.LeftOuterJoin) ? JoinKind.LeftOuter : JoinKind.Inner;
for (int i = 0; i < joinNode.LeftVars.Count; i++)
{
// Add a join edge.
if (AddJoinEdge(joinNode, joinNode.LeftVars[i], joinNode.RightVars[i]))
{
// If we have an inner join, then add a "reverse" edge, but only
// if the previous AddEdge was successful
if (joinKind == JoinKind.Inner)
{
AddJoinEdge(joinNode, joinNode.RightVars[i], joinNode.LeftVars[i]);
}
}
}
}
/// <summary>
/// Builds up the list of join edges. If the current node is
/// a ScanTable - we simply set the "LastVisibleId" property to the maxVisibility
/// parameter
/// a join - we invoke the BuildJoinEdges() function on the join node
/// anything else - do nothing
/// </summary>
/// <param name="node"></param>
/// <param name="maxVisibility">highest node that this node is visible at</param>
private void BuildJoinEdges(AugmentedNode node, int maxVisibility)
{
switch (node.Node.Op.OpType)
{
case OpType.FullOuterJoin:
case OpType.LeftOuterJoin:
case OpType.InnerJoin:
case OpType.CrossJoin:
BuildJoinEdges(node as AugmentedJoinNode, maxVisibility);
// Now visit the predicate
break;
case OpType.ScanTable:
AugmentedTableNode tableNode = (AugmentedTableNode)node;
tableNode.LastVisibleId = maxVisibility;
break;
default:
break;
}
return;
}
#endregion
#region Transitive Edge generation
//
// The goal of this module is to generate transitive join edges.
// In general, if A is joined to B, and B is joined to C, then A can be joined to
// C as well.
// We apply the rules below to determine if we can indeed generate transitive
// join edges
// Assume that J1 = (A, B), and J2=(B,C)
// - J1.Kind must be the same as J2.Kind (both must be Inner, or both must be LeftOuterJoins)
// - If J1 is a left-outer join, then A,B and C must all be instances of the same table
// - The same columns of B must participate in the joins with A and C
// If all of these conditions are satisfied, we generate a new edge between A and C
// If we're dealing with an inner join, we also generate a C-A edge
//
// Note: We never produce any duplicate edges (ie) if an edge already exists between
// A and C in the example above, we don't try to generate a new edge, or modify the existing
// edge
//
/// <summary>
/// If edge1 represents (T1, T2), and edge2 represents (T2, T3), try and
/// create a (T1,T3) edge.
///
/// The transitive edge is created if all of the following conditions hold:
/// 1. edge1 and edge2 are of the same join kind
/// 2. If edge1 and edge2 are Left Outer Joins, then
/// a. both edges represent joins on the same columns, and
/// b. at least one of the edges represents a self join
/// 3. For inner joins:
/// The intersection of the columns on which are the joins represented
/// by edge1 and edge2 is non-empty, the transitive edge is created to represent
/// a join on that intersection.
/// If an edge already exists between these tables, then don't add a new edge
/// </summary>
/// <param name="edge1"></param>
/// <param name="edge2"></param>
private bool GenerateTransitiveEdge(JoinEdge edge1, JoinEdge edge2)
{
PlanCompiler.Assert(edge1.Right == edge2.Left, "need a common table for transitive predicate generation");
// Ignore the "mirror" image.
if (edge2.Right == edge1.Left)
{
return false;
}
// Check to see if the joins are of the same type.
if (edge1.JoinKind != edge2.JoinKind)
{
return false;
}
// Allow left-outer-joins only for self-joins
if (edge1.JoinKind == JoinKind.LeftOuter &&
(edge1.Left != edge1.Right || edge2.Left != edge2.Right))
{
return false;
}
// For LeftOuterJoin, the joins must be on the same columns.
// Prerequisite for that is they have the same number of vars.
if (edge1.JoinKind == JoinKind.LeftOuter && edge1.RightVars.Count != edge2.LeftVars.Count)
{
return false;
}
// check to see whether there already exists an edge for the combination
// of these tables
foreach (JoinEdge edge3 in edge1.Left.JoinEdges)
{
if (edge3.Right == edge2.Right)
{
return false;
}
}
//
// Find the subset of columns that are common between the edges
// For Left Outer Join, that should be all columns from the edges.
// The algorithm for finding the common columns is based on
// sort - merge join. In particular, for each edge we create an ordered key-value pair list
// where the key value pair has the var coming from the inner (shared table)as a key
// and the corresponding var from the other table
IEnumerable<KeyValuePair<ColumnVar, ColumnVar>> orderedEdge1Vars = CreateOrderedKeyValueList(edge1.RightVars, edge1.LeftVars);
IEnumerable<KeyValuePair<ColumnVar, ColumnVar>> orderedEdge2Vars = CreateOrderedKeyValueList(edge2.LeftVars, edge2.RightVars);
IEnumerator<KeyValuePair<ColumnVar, ColumnVar>> orderedEdge1VarsEnumerator = orderedEdge1Vars.GetEnumerator();
IEnumerator<KeyValuePair<ColumnVar, ColumnVar>> orderedEdge2VarsEnumerator = orderedEdge2Vars.GetEnumerator();
List<ColumnVar> leftVars = new List<ColumnVar>();
List<ColumnVar> rightVars = new List<ColumnVar>();
bool hasMore = orderedEdge1VarsEnumerator.MoveNext() && orderedEdge2VarsEnumerator.MoveNext();
while (hasMore)
{
if (orderedEdge1VarsEnumerator.Current.Key == orderedEdge2VarsEnumerator.Current.Key)
{
leftVars.Add(orderedEdge1VarsEnumerator.Current.Value);
rightVars.Add(orderedEdge2VarsEnumerator.Current.Value);
hasMore = orderedEdge1VarsEnumerator.MoveNext() &&
orderedEdge2VarsEnumerator.MoveNext();
}
else if (edge1.JoinKind == JoinKind.LeftOuter)
{
return false;
}
else if (orderedEdge1VarsEnumerator.Current.Key.Id > orderedEdge2VarsEnumerator.Current.Key.Id)
{
hasMore = orderedEdge2VarsEnumerator.MoveNext();
}
else
{
hasMore = orderedEdge1VarsEnumerator.MoveNext();
}
}
// Ok, we're now ready to finally create a new edge
JoinEdge newEdge = JoinEdge.CreateTransitiveJoinEdge(edge1.Left, edge2.Right, edge1.JoinKind,
leftVars, rightVars);
edge1.Left.JoinEdges.Add(newEdge);
if (edge1.JoinKind == JoinKind.Inner)
{
JoinEdge reverseEdge = JoinEdge.CreateTransitiveJoinEdge(edge2.Right, edge1.Left, edge1.JoinKind,
rightVars, leftVars);
edge2.Right.JoinEdges.Add(reverseEdge);
}
return true;
}
/// <summary>
/// Given a list of key vars a list of corresponding value vars, creates a list
/// of key-value pairs that is ordered based on the keys
/// </summary>
/// <param name="keyVars"></param>
/// <param name="valueVars"></param>
/// <returns></returns>
private static IEnumerable<KeyValuePair<ColumnVar, ColumnVar>> CreateOrderedKeyValueList(List<ColumnVar> keyVars, List<ColumnVar> valueVars)
{
List<KeyValuePair<ColumnVar, ColumnVar>> edgeVars = new List<KeyValuePair<ColumnVar, ColumnVar>>(keyVars.Count);
for (int i = 0; i < keyVars.Count; i++)
{
edgeVars.Add(new KeyValuePair<ColumnVar, ColumnVar>(keyVars[i], valueVars[i]));
}
return edgeVars.OrderBy(kv => kv.Key.Id);
}
/// <summary>
/// Try to turn left outer joins into inner joins
///
/// Turn an augmented join node that represents a Left Outer Join into an Inner join
/// if all its edges are candidates to be turned into an Inner Join
///
/// An edge representing A LOJ B is a candidate to be turned into an inner join (A INNER JOIN B)
/// if the following conditions hold:
///
/// 1. a) There is a foreign key constraint (parent-child relationship) between B and A,
/// the join is on the constraint, and the joined columns in B are non-nullable, or
///
/// b) There is a foreign key constraint between A and B, the join is on the constraint,
/// and the child multiplicity is One. However, this scenario cannot be specified in the ssdl,
/// thus this case has not be implemented, and
///
/// 2. All the rows from the right table B are preserved (i.e. not filtered out) at the level of the join.
/// This means that if B is participating in any joins prior to being joined with A, these have to be
/// left outer joins and B has to be a driver (on the left spine).
///
/// This second condition does not apply for SQL CE becase it has optimizations that help execute
/// queries faster when at least one OUTER JOIN statement is still present in the SQL query. If we
/// convert all OUTER JOIN statements into INNER JOINS then these optimizations don't kick in. In
/// order to maintain compatibility to .NET 4.0 we had to create a special case for SQL CE.
/// See DevDiv bug #462067 for more details. Also see bug DevDev2 bug#488375 for the UseFx40CompatMode check.
/// </summary>
private void TryTurnLeftOuterJoinsIntoInnerJoins()
{
foreach (AugmentedJoinNode augmentedJoinNode in m_vertexes.OfType<AugmentedJoinNode>().Where(j => j.Node.Op.OpType == OpType.LeftOuterJoin && j.JoinEdges.Count > 0))
{
bool useCompatMode = m_isSqlCe || EntityUtil.UseFx40CompatMode;
if (useCompatMode ? (augmentedJoinNode.Children.All(c => c is AugmentedTableNode) && augmentedJoinNode.JoinEdges.All(joinEdge => IsConstraintPresentForTurningIntoInnerJoin(joinEdge)))
: (CanAllJoinEdgesBeTurnedIntoInnerJoins(augmentedJoinNode.Children[1], augmentedJoinNode.JoinEdges)))
{
augmentedJoinNode.Node.Op = m_command.CreateInnerJoinOp();
m_modifiedGraph = true;
List<JoinEdge> newJoinEdges = new List<JoinEdge>(augmentedJoinNode.JoinEdges.Count);
foreach (JoinEdge joinEdge in augmentedJoinNode.JoinEdges)
{
joinEdge.JoinKind = JoinKind.Inner;
if (!ContainsJoinEdgeForTable(joinEdge.Right.JoinEdges, joinEdge.Left.Table))
{
//create the mirroring join edge
JoinEdge newJoinEdge = JoinEdge.CreateJoinEdge(joinEdge.Right, joinEdge.Left, augmentedJoinNode, joinEdge.RightVars[0], joinEdge.LeftVars[0]);
joinEdge.Right.JoinEdges.Add(newJoinEdge);
newJoinEdges.Add(newJoinEdge);
for (int i = 1; i < joinEdge.LeftVars.Count; i++)
{
newJoinEdge.AddCondition(augmentedJoinNode, joinEdge.RightVars[i], joinEdge.LeftVars[i]);
}
}
}
augmentedJoinNode.JoinEdges.AddRange(newJoinEdges);
}
}
}
/// <summary>
/// Are all the rows from the given table that is part of the subtree rooted
/// at the given root preserved on the root.
/// This is true if:
/// - The root represents the table
/// - The table is a on the left spine of a left outer join tree
/// </summary>
/// <param name="root"></param>
/// <param name="table"></param>
/// <returns></returns>
private bool AreAllTableRowsPreserved(AugmentedNode root, AugmentedTableNode table)
{
if (root is AugmentedTableNode)
{
return true;
}
AugmentedJoinNode parent;
AugmentedNode currentNode = table;
do
{
parent = (AugmentedJoinNode)currentNode.Parent;
if (parent.Node.Op.OpType != OpType.LeftOuterJoin || parent.Children[0] != currentNode)
{
return false;
}
currentNode = parent;
} while (currentNode != root);
return true;
}
/// <summary>
/// Does the set of given joinEdges contain a join edge to a given table
/// </summary>
/// <param name="joinEdges"></param>
/// <param name="table"></param>
/// <returns></returns>
private bool ContainsJoinEdgeForTable(IEnumerable<JoinEdge> joinEdges, Table table)
{
foreach (JoinEdge joinEdge in joinEdges)
{
if (joinEdge.Right.Table.Equals(table))
{
return true;
}
}
return false;
}
/// <summary>
/// Determines whether each of the given joinEdges can be turned into an inner join
/// NOTE: Due to how we create join edges, currenlty there can only be one join edge in this group
/// See <cref="CanJoinEdgeBeTurnedIntoInnerJoin"/> for details.
/// </summary>
/// <param name="rightNode"></param>
/// <param name="joinEdges"></param>
/// <returns></returns>
private bool CanAllJoinEdgesBeTurnedIntoInnerJoins(AugmentedNode rightNode, IEnumerable<JoinEdge> joinEdges)
{
foreach (JoinEdge joinEdge in joinEdges)
{
if (!CanJoinEdgeBeTurnedIntoInnerJoin(rightNode, joinEdge))
{
return false;
}
}
return true;
}
/// <summary>
/// A LOJ B edge can be turned into an inner join if:
///
/// 1. There is a foreign key constraint based on which such transformation is possible
///
/// 2. All the rows from the right table B are preserved (i.e. not filtered out) at the level of the join.
/// This means that if B is participating in any joins prior to being joined with A, these have to be
/// left outer joins and B has to be a driver (on the left spine).
/// </summary>
/// <param name="rightNode"></param>
/// <param name="joinEdge"></param>
/// <returns></returns>
private bool CanJoinEdgeBeTurnedIntoInnerJoin(AugmentedNode rightNode, JoinEdge joinEdge)
{
return AreAllTableRowsPreserved(rightNode, joinEdge.Right) && IsConstraintPresentForTurningIntoInnerJoin(joinEdge);
}
/// <summary>
/// A necessary condition for an A LOJ B edge to be turned into an inner join is
/// the existence of one of the following constraints:
///
/// a) There is a foreign key constraint (parent-child relationship) between B and A,
/// the join is on the constraint, and the joined columns in B are non-nullable, or
///
/// b) There is a foreign key constraint between A and B, the join is on the constraint,
/// and the child multiplicity is One. However, this scenario cannot be specified in the ssdl,
/// thus this case has not be implemented
/// </summary>
/// <param name="joinEdge"></param>
/// <returns></returns>
private bool IsConstraintPresentForTurningIntoInnerJoin(JoinEdge joinEdge)
{
List<ForeignKeyConstraint> fkConstraints;
if (m_constraintManager.IsParentChildRelationship(joinEdge.Right.Table.TableMetadata.Extent, joinEdge.Left.Table.TableMetadata.Extent, out fkConstraints))
{
PlanCompiler.Assert(fkConstraints != null && fkConstraints.Count > 0, "invalid fk constraints?");
foreach (ForeignKeyConstraint fkConstraint in fkConstraints)
{
IList<ColumnVar> columnVars;
if (IsJoinOnFkConstraint(fkConstraint, joinEdge.RightVars, joinEdge.LeftVars, out columnVars))
{
if (fkConstraint.ParentKeys.Count == joinEdge.RightVars.Count &&
columnVars.Where(v => v.ColumnMetadata.IsNullable).Count() == 0)
{
return true;
}
}
}
}
return false;
}
/// <summary>
/// Generate a set of transitive edges
/// </summary>
private void GenerateTransitiveEdges()
{
foreach (AugmentedNode augmentedNode in m_vertexes)
{
AugmentedTableNode tableNode = augmentedNode as AugmentedTableNode;
if (tableNode == null)
{
continue;
}
//
// The reason we use absolute indexing rather than 'foreach'ing is because
// the inner calls may add new entries to the collections, and cause the
// enumeration to throw
//
int i = 0;
while (i < tableNode.JoinEdges.Count)
{
JoinEdge e1 = tableNode.JoinEdges[i];
int j = 0;
AugmentedTableNode rightTable = e1.Right;
while (j < rightTable.JoinEdges.Count)
{
JoinEdge e2 = rightTable.JoinEdges[j];
GenerateTransitiveEdge(e1, e2);
j++;
}
i++;
}
}
}
#endregion
#region Join Elimination Helpers
//
// Utility routines used both by selfjoin elimination and parent-child join
// elimination
//
/// <summary>
/// Checks whether a given table can be eliminated to be replaced by the given replacingTable
/// with regards to possible participation in the driving (left) subtree of Left Outer Joins.
///
/// In order for elimination to happen, one of the two tables has to logically move,
/// either the replacement table to the original table's location, or the table to the
/// replacing table's location.
///
/// For the table that would have to move, it checks whether such move would be valid
/// with regards to its participation as driver in Left Outer Joins (<see cref=CanBeMoved/>)
/// </summary>
/// <param name="table"></param>
/// <param name="replacingTable"></param>
/// <returns></returns>
private static bool CanBeEliminatedBasedOnLojParticipation(AugmentedTableNode table, AugmentedTableNode replacingTable)
{
//The table with lower id, would have to be logically located at the other table's location
//Check whether it can be moved there
if (replacingTable.Id < table.NewLocationId)
{
return CanBeMovedBasedOnLojParticipation(table, replacingTable);
}
else
{
return CanBeMovedBasedOnLojParticipation(replacingTable, table);
}
}
/// <summary>
/// Can the right table of the given tableJoinEdge be eliminated and replaced by the right table of the replacingTableJoinEdge
/// based on both tables participation in other joins.
/// It can be if:
/// - The table coming from tableJoinEdge does not participate in any other join on the way up to the least common ancestor
/// - The table coming from replacingTableJoinEdge does not get filtered on the way up to the least common ancestor
/// </summary>
/// <param name="tableJoinEdge"></param>
/// <param name="replacingTableJoinEdge"></param>
/// <returns></returns>
private static bool CanBeEliminatedViaStarJoinBasedOnOtherJoinParticipation(JoinEdge tableJoinEdge, JoinEdge replacingTableJoinEdge)
{
if (tableJoinEdge.JoinNode == null || replacingTableJoinEdge.JoinNode == null)
{
return false;
}
AugmentedNode leastCommonAncestor = GetLeastCommonAncestor(tableJoinEdge.Right, replacingTableJoinEdge.Right);
return
!CanGetFileredByJoins(tableJoinEdge, leastCommonAncestor, true) &&
!CanGetFileredByJoins(replacingTableJoinEdge, leastCommonAncestor, false);
}
/// <summary>
/// Can the right table of the joinEdge be filtered by joins on the the way up the the given leastCommonAncestor.
/// It can, if
/// - dissallowAnyJoin is specified, or
/// - if it is on the right side of a left outer join or participates in any inner join, thus it is only
/// allowed to be on the left side of a left outer join
/// </summary>
/// <param name="joinEdge"></param>
/// <param name="leastCommonAncestor"></param>
/// <param name="disallowAnyJoin"></param>
/// <returns></returns>
private static bool CanGetFileredByJoins(JoinEdge joinEdge, AugmentedNode leastCommonAncestor, bool disallowAnyJoin)
{
AugmentedNode currentNode = joinEdge.Right;
AugmentedNode currentParent = currentNode.Parent;
while (currentParent != null && currentNode != leastCommonAncestor)
{
//If the current node is a rigth child of a left outer join return or participates in a inner join
if (currentParent.Node != joinEdge.JoinNode.Node &&
(disallowAnyJoin || currentParent.Node.Op.OpType != OpType.LeftOuterJoin || currentParent.Children[0] != currentNode)
)
{
return true;
}
currentNode = currentNode.Parent;
currentParent = currentNode.Parent;
}
return false;
}
/// <summary>
/// Determines whether the given table can be moved to the replacing table's location
/// with regards to participation in the driving (left) subtree of Left Outer Joins.
/// If the table to be moved is part of the driving (left) subtree of a Left Outer Join
/// and the replacing table is not part of that subtree then the table cannot be moved,
/// otherwise it can.
/// </summary>
/// <param name="table"></param>
/// <param name="replacingTable"></param>
/// <returns></returns>
private static bool CanBeMovedBasedOnLojParticipation(AugmentedTableNode table, AugmentedTableNode replacingTable)
{
AugmentedNode leastCommonAncestor = GetLeastCommonAncestor(table, replacingTable);
AugmentedNode currentNode = table;
while (currentNode.Parent != null && currentNode != leastCommonAncestor)
{
//If the current node is a left child of an left outer join return
if (currentNode.Parent.Node.Op.OpType == OpType.LeftOuterJoin &&
currentNode.Parent.Children[0] == currentNode)
{
return false;
}
currentNode = currentNode.Parent;
}
return true;
}
/// <summary>
/// Gets the least common ancestor for two given nodes in the tree
/// </summary>
/// <param name="node1"></param>
/// <param name="node2"></param>
/// <returns></returns>
private static AugmentedNode GetLeastCommonAncestor(AugmentedNode node1, AugmentedNode node2)
{
if (node1.Id == node2.Id)
{
return node1;
}
AugmentedNode currentParent;
AugmentedNode rigthNode;
if (node1.Id < node2.Id)
{
currentParent = node1;
rigthNode = node2;
}
else
{
currentParent = node2;
rigthNode = node1;
}
while (currentParent.Id < rigthNode.Id)
{
currentParent = currentParent.Parent;
}
return currentParent;
}
/// <summary>
/// This function marks a table as eliminated. The replacement varmap
/// is updated with columns of the table being mapped to the corresponding columns
/// of the replacement table
/// </summary>
/// <param name="tableNode">table being replaced</param>
/// <param name="replacementNode">the table being used in its place</param>
/// <param name="tableVars">list of vars to replace</param>
/// <param name="replacementVars">list of vars to replace with</param>
/// <typeparam name="T">Var or one of its subtypes</typeparam>
private void MarkTableAsEliminated<T>(AugmentedTableNode tableNode, AugmentedTableNode replacementNode,
List<T> tableVars, List<T> replacementVars) where T : Var
{
PlanCompiler.Assert(tableVars != null && replacementVars != null, "null vars");
PlanCompiler.Assert(tableVars.Count == replacementVars.Count, "var count mismatch");
PlanCompiler.Assert(tableVars.Count > 0, "no vars in the table ?");
m_modifiedGraph = true;
// Set up the replacement table (if necessary)
if (tableNode.Id < replacementNode.NewLocationId)
{
tableNode.ReplacementTable = replacementNode;
replacementNode.NewLocationId = tableNode.Id;
}
else
{
tableNode.ReplacementTable = null;
}
// Add mappings for each var of the table
for (int i = 0; i < tableVars.Count; i++)
{
//
// Bug 446708: Make sure that the "replacement" column is
// referenced, if the the current column is referenced
//
if (tableNode.Table.ReferencedColumns.IsSet(tableVars[i]))
{
m_varMap[tableVars[i]] = replacementVars[i];
AddReverseMapping(replacementVars[i], tableVars[i]);
replacementNode.Table.ReferencedColumns.Set(replacementVars[i]);
}
}
//
// It should be possible to retrieve the location of each replacing var
// It should also be possible to retrieve the location of each referenced var
// defined on a replacing table, because replacing tables may get moved.
//
foreach (Var var in replacementNode.Table.ReferencedColumns)
{
m_varToDefiningNodeMap[var] = replacementNode;
}
}
/// <summary>
/// Record that replacingVar is replacing replacedVar.
/// Also, replacedVar was previously replacing any other vars,
/// add these to the list of replaced vars for the replacingVar too.
/// The info about the replacedVar no longer needs to be maintained.
/// </summary>
/// <param name="replacingVar"></param>
/// <param name="replacedVar"></param>
private void AddReverseMapping(Var replacingVar, Var replacedVar)
{
VarVec oldReplacedVars;
if (m_reverseVarMap.TryGetValue(replacedVar, out oldReplacedVars))
{
m_reverseVarMap.Remove(replacedVar);
}
VarVec replacedVars;
if (!m_reverseVarMap.TryGetValue(replacingVar, out replacedVars))
{
// Try to reuse oldReplacedVars
if (oldReplacedVars != null)
{
replacedVars = oldReplacedVars;
}
else
{
replacedVars = this.m_command.CreateVarVec();
}
m_reverseVarMap[replacingVar] = replacedVars;
}
else if (oldReplacedVars != null)
{
replacedVars.Or(oldReplacedVars);
}
replacedVars.Set(replacedVar);
}
#endregion
#region SelfJoin Elimination
//
// The goal of this submodule is to eliminate selfjoins. We consider two kinds
// of selfjoins here - explicit, and implicit.
//
// An explicit selfjoin J is a join between tables T1 and T2, where T1 and T2
// are instances of the same table. Furthemore, T1 and T2 must be joined on their
// key columns (and no more).
//
// An implicit self-join is of the form (X, A1, A2, ...) where A1, A2 etc.
// are all instances of the same table, and X is joined to A1, A2 etc. on the same
// columns. We also call this a "star" selfjoin, since "X" is logically the
// being star-joined to all the other tables here
//
/// <summary>
/// This function marks a table (part of a selfjoin) as eliminated. The replacement varmap
/// is updated with columns of the table being mapped to the corresponding columns
/// of the replacement table
/// </summary>
/// <param name="tableNode">table being replaced</param>
/// <param name="replacementNode">the table being used in its place</param>
private void EliminateSelfJoinedTable(AugmentedTableNode tableNode, AugmentedTableNode replacementNode)
{
MarkTableAsEliminated<Var>(tableNode, replacementNode, tableNode.Table.Columns, replacementNode.Table.Columns);
}
/// <summary>
/// This function is a helper function for star selfjoin elimination. All the
/// "right" tables of the join edges in the input list are instances of the same table.
///
/// Precondition: Each joinedge is of the form (X, Ai),
/// where X is the star-joined table, and A1...An are all instances of the same
/// table A
///
/// This function first creates groups of join edges such that all tables
/// in a group:
/// 1. are joined to the center (X) on the same columns
/// 2. are of the same join kind
/// 3. are joined on all key columns of table A
/// 4. if the join type is Left Outer Join, they are not joined on any other columns
///
/// For each group, we then identify the table with the
/// smallest "Id", and choose that to replace all the other tables from that group
///
/// </summary>
/// <param name="joinEdges">list of join edges</param>
private void EliminateStarSelfJoin(List<JoinEdge> joinEdges)
{
List<List<JoinEdge>> compatibleGroups = new List<List<JoinEdge>>();
foreach (JoinEdge joinEdge in joinEdges)
{
// Try to put the join edge in some of the existing groups
bool matched = false;
foreach (List<JoinEdge> joinEdgeList in compatibleGroups)
{
if (AreMatchingForStarSelfJoinElimination(joinEdgeList[0], joinEdge))
{
joinEdgeList.Add(joinEdge);
matched = true;
break;
}
}
// If the join edge could not be part of any of the existing groups,
// see whether it quailifes for leading a new group
if (!matched && QualifiesForStarSelfJoinGroup(joinEdge))
{
List<JoinEdge> newList = new List<JoinEdge>();
newList.Add(joinEdge);
compatibleGroups.Add(newList);
}
}
foreach (List<JoinEdge> joinList in compatibleGroups.Where(l => l.Count > 1))
{
// Identify the table with the smallest id, and use that as the candidate
JoinEdge smallestEdge = joinList[0];
foreach (JoinEdge joinEdge in joinList)
{
if (smallestEdge.Right.Id > joinEdge.Right.Id)
{
smallestEdge = joinEdge;
}
}
// Now walk through all the edges in the group, and mark all the tables as eliminated
foreach (JoinEdge joinEdge in joinList)
{
if (joinEdge == smallestEdge)
{
continue;
}
if (CanBeEliminatedViaStarJoinBasedOnOtherJoinParticipation(joinEdge, smallestEdge))
{
EliminateSelfJoinedTable(joinEdge.Right, smallestEdge.Right);
}
}
}
}
/// <summary>
/// Two edges match for star self join elimination if:
/// 1. are joined to the center (X) on the same columns
/// 2. are of the same join kind
/// </summary>
/// <param name="edge1"></param>
/// <param name="edge2"></param>
/// <returns></returns>
private bool AreMatchingForStarSelfJoinElimination(JoinEdge edge1, JoinEdge edge2)
{
// In order for the join edges to be compatible thay have to
// represent joins on the same number of columns and of the same join kinds.
if (edge2.LeftVars.Count != edge1.LeftVars.Count ||
edge2.JoinKind != edge1.JoinKind)
{
return false;
}
// Now make sure that we're joining on the same columns
for (int j = 0; j < edge2.LeftVars.Count; j++)
{
// Check for reference equality on the left-table Vars. Check for
// name equality on the right table vars
if (!edge2.LeftVars[j].Equals(edge1.LeftVars[j]) ||
!edge2.RightVars[j].ColumnMetadata.Name.Equals(edge1.RightVars[j].ColumnMetadata.Name))
{
return false;
}
}
return true;
}
/// <summary>
/// A join edge qualifies for starting a group for star self join elimination if:
/// 1. the join is on all key columns of the right table,
/// 2. if the join type is Left Outer Join, the join is on no columns
/// other than the keys of the right table.
/// NOTE: The second limitation is really arbitrary, to should be possible
/// to also allow other conditions
/// </summary>
/// <param name="joinEdge"></param>
/// <returns></returns>
private bool QualifiesForStarSelfJoinGroup(JoinEdge joinEdge)
{
//
// Now make sure that all key columns of the right table are used
//
VarVec keyVars = m_command.CreateVarVec(joinEdge.Right.Table.Keys);
foreach (Var v in joinEdge.RightVars)
{
// Make sure that no other column is referenced in case of an outer join
if (joinEdge.JoinKind == JoinKind.LeftOuter && !keyVars.IsSet(v))
{
return false;
}
keyVars.Clear(v);
}
if (!keyVars.IsEmpty)
{
return false;
}
return true;
}
/// <summary>
/// Eliminates any star self joins. This function looks at all the tables that
/// this table is joined to, groups the tables based on the table name (metadata),
/// and then tries selfjoin elimination on each group (see function above)
/// </summary>
/// <param name="tableNode">the star-joined table?</param>
private void EliminateStarSelfJoins(AugmentedTableNode tableNode)
{
// First build up a number of equivalence classes. Each equivalence class
// contains instances of the same table
Dictionary<md.EntitySetBase, List<JoinEdge>> groupedEdges = new Dictionary<md.EntitySetBase, List<JoinEdge>>();
foreach (JoinEdge joinEdge in tableNode.JoinEdges)
{
// Ignore useless edges
if (joinEdge.IsEliminated)
{
continue;
}
List<JoinEdge> edges;
if (!groupedEdges.TryGetValue(joinEdge.Right.Table.TableMetadata.Extent, out edges))
{
edges = new List<JoinEdge>();
groupedEdges[joinEdge.Right.Table.TableMetadata.Extent] = edges;
}
edges.Add(joinEdge);
}
// Now walk through each equivalence class, and identify if we can eliminate some of
// the self-joins
foreach (KeyValuePair<md.EntitySetBase, List<JoinEdge>> kv in groupedEdges)
{
// If there's only one table in the class, skip this and move on
if (kv.Value.Count <= 1)
{
continue;
}
// Try and do the real dirty work
EliminateStarSelfJoin(kv.Value);
}
}
/// <summary>
/// Eliminate a self-join edge.
/// </summary>
/// <param name="joinEdge">the join edge</param>
/// <returns>tur, if we did eliminate the self-join</returns>
private bool EliminateSelfJoin(JoinEdge joinEdge)
{
// Nothing further to do, if the right-side has already been eliminated
if (joinEdge.IsEliminated)
{
return false;
}
// Am I a self-join?
if (!joinEdge.Left.Table.TableMetadata.Extent.Equals(joinEdge.Right.Table.TableMetadata.Extent))
{
return false;
}
// Check to see that only the corresponding columns are being compared
for (int i = 0; i < joinEdge.LeftVars.Count; i++)
{
if (!joinEdge.LeftVars[i].ColumnMetadata.Name.Equals(joinEdge.RightVars[i].ColumnMetadata.Name))
{
return false;
}
}
//
// Now make sure that the join edge includes every single key column
// For left-outer joins, we must have no columns other than the key columns
//
VarVec keyVars = m_command.CreateVarVec(joinEdge.Left.Table.Keys);
foreach (Var v in joinEdge.LeftVars)
{
if (joinEdge.JoinKind == JoinKind.LeftOuter && !keyVars.IsSet(v))
{
return false;
}
keyVars.Clear(v);
}
// Are some keys left over?
if (!keyVars.IsEmpty)
{
return false;
}
if (!CanBeEliminatedBasedOnLojParticipation(joinEdge.Right, joinEdge.Left))
{
return false;
}
// Mark the right-table as eliminated
// Get the parent node for the right node, and replace the parent by the corresponding
// left node
EliminateSelfJoinedTable(joinEdge.Right, joinEdge.Left);
return true;
}
/// <summary>
/// Eliminate self-joins for this table (if any)
/// </summary>
/// <param name="tableNode">current table</param>
private void EliminateSelfJoins(AugmentedTableNode tableNode)
{
// Is this node already eliminated?
if (tableNode.IsEliminated)
{
return;
}
// First try and eliminate all explicit self-joins
foreach (JoinEdge joinEdge in tableNode.JoinEdges)
{
EliminateSelfJoin(joinEdge);
}
}
/// <summary>
/// Eliminate all selfjoins
/// </summary>
private void EliminateSelfJoins()
{
foreach (AugmentedNode augmentedNode in m_vertexes)
{
AugmentedTableNode tableNode = augmentedNode as AugmentedTableNode;
if (tableNode != null)
{
EliminateSelfJoins(tableNode);
EliminateStarSelfJoins(tableNode);
}
}
}
#endregion
#region Parent-Child join elimination
//
// The goal of this submodule is to eliminate parent-child joins. We consider two kinds
// of parent-child joins here.
//
// The first category of joins involves a 1-1 or 1-n relationship between a parent
// and child table, where the tables are (inner) joined on the key columns (pk, fk), and no
// other columns of the parent table are referenced. In this case, the parent table
// can be eliminated, and the child table used in place. There are two special considerations
// here.
// First, the foreign key columns may be nullable - in this case, we need to prune
// out rows where these null values might occur (since they would have been pruned
// out by the join). In effect, we add a filter node above the table node, if there
// are any nullable foreign keys.
// The second case is where the parent table appears "lexically" before the child
// table in the query. In this case, the child table will need to "move" to the
// parent table's location - this is needed for scenarios where there may be other
// intervening tables where the parent table's key columns are referenced - and these
// cannot see the equivalent columns of the child table, unless the child table is
// moved to that location.
//
// The second category of joins involves a 1-1 relationship between the parent and
// child table, where the parent table is left outer joined to the child table
// on the key columns. If no other columns of the child table are referenced in the
// query, then the child table can be eliminated.
//
/// <summary>
/// Eliminate the left table
/// </summary>
/// <param name="joinEdge"></param>
private void EliminateLeftTable(JoinEdge joinEdge)
{
PlanCompiler.Assert(joinEdge.JoinKind == JoinKind.Inner, "Expected inner join");
MarkTableAsEliminated<ColumnVar>(joinEdge.Left, joinEdge.Right, joinEdge.LeftVars, joinEdge.RightVars);
//
// Find the list of non-nullable columns
//
if (joinEdge.Right.NullableColumns == null)
{
joinEdge.Right.NullableColumns = m_command.CreateVarVec();
}
foreach (ColumnVar v in joinEdge.RightVars)
{
//
// if the column is known to be non-nullable, then we don't need to
// add a filter condition to prune out nulls later.
//
if (v.ColumnMetadata.IsNullable)
{
joinEdge.Right.NullableColumns.Set(v);
}
}
}
/// <summary>
/// Eliminate the right table
/// </summary>
/// <param name="joinEdge"></param>
private void EliminateRightTable(JoinEdge joinEdge)
{
PlanCompiler.Assert(joinEdge.JoinKind == JoinKind.LeftOuter, "Expected left-outer-join");
PlanCompiler.Assert(joinEdge.Left.Id < joinEdge.Right.Id,
"(left-id, right-id) = (" + joinEdge.Left.Id + "," + joinEdge.Right.Id + ")");
MarkTableAsEliminated<ColumnVar>(joinEdge.Right, joinEdge.Left, joinEdge.RightVars, joinEdge.LeftVars);
}
/// <summary>
/// Do we reference any nonkey columns from this table
/// </summary>
/// <param name="table">the table instance</param>
/// <returns>true, if there are any nonkey references</returns>
private static bool HasNonKeyReferences(Table table)
{
return !table.Keys.Subsumes(table.ReferencedColumns);
}
/// <summary>
/// Are any of the key columns from the right table of the given join edge referenced
/// elsewhere (outside the join condition)
/// </summary>
/// <param name="joinEdge"></param>
/// <returns></returns>
private bool RightTableHasKeyReferences(JoinEdge joinEdge)
{
//For transitive edges we don't have a joinNode.
if (joinEdge.JoinNode == null)
{
// Note: We have not been able to hit this yet. If we find many cases in which we hit this,
// we can see if we can do more tracking. This way we may be missing cases that could be optimized.
return true;
}
// In addition to all the keys of the right table we need to also check for all
// the vars they may be replacing.
VarVec keys = null;
foreach (var key in joinEdge.Right.Table.Keys)
{
VarVec replacedVars;
if (m_reverseVarMap.TryGetValue(key, out replacedVars))
{
if (keys == null)
{
keys = joinEdge.Right.Table.Keys.Clone();
}
keys.Or(replacedVars);
}
}
//If the keys were not replacing any vars, no need to clone
if (keys == null)
{
keys = joinEdge.Right.Table.Keys;
}
return m_varRefManager.HasKeyReferences(keys, joinEdge.Right.Node, joinEdge.JoinNode.Node);
}
/// <summary>
/// Eliminate a parent-child join, given a fk constraint
/// </summary>
/// <param name="joinEdge">the current join edge</param>
/// <param name="fkConstraint">the referential integrity constraint</param>
/// <returns></returns>
private bool TryEliminateParentChildJoin(JoinEdge joinEdge, ForeignKeyConstraint fkConstraint)
{
//
// Consider join elimination for left-outer-joins only if we have a 1 - 1 or 1 - 0..1 relationship
//
if (joinEdge.JoinKind == JoinKind.LeftOuter && fkConstraint.ChildMultiplicity == md.RelationshipMultiplicity.Many)
{
return false;
}
IList<ColumnVar> childColumnVars;
if (!IsJoinOnFkConstraint(fkConstraint, joinEdge.LeftVars, joinEdge.RightVars, out childColumnVars))
{
return false;
}
//
// For inner joins, try and eliminate the parent table
//
if (joinEdge.JoinKind == JoinKind.Inner)
{
if (HasNonKeyReferences(joinEdge.Left.Table))
{
return false;
}
if (!CanBeEliminatedBasedOnLojParticipation(joinEdge.Right, joinEdge.Left))
{
return false;
}
// Mark the parent (left-side) table as "eliminated"
EliminateLeftTable(joinEdge);
return true;
}
//
// For left outer joins, try and eliminate the child table
//
else
{
// SQLBUDT #512375: For the 1 - 0..1 we also verify that the child's columns are not
// referenced outside the join condition, thus passing true for allowRefsForJoinedOnFkOnly only
// if the multiplicity is 1 - 1
return TryEliminateRightTable(joinEdge, fkConstraint.ChildKeys.Count, fkConstraint.ChildMultiplicity == md.RelationshipMultiplicity.One);
}
}
/// <summary>
/// Given a ForeignKeyConstraint and lists of vars on which the tables are joined,
/// it checks whether the join condition includes (but is not necessarily joined only on)
/// the foreign key constraint.
/// </summary>
/// <param name="fkConstraint"></param>
/// <param name="parentVars"></param>
/// <param name="childVars"></param>
/// <param name="childForeignKeyVars"></param>
/// <returns></returns>
private static bool IsJoinOnFkConstraint(ForeignKeyConstraint fkConstraint, IList<ColumnVar> parentVars, IList<ColumnVar> childVars, out IList<ColumnVar> childForeignKeyVars)
{
childForeignKeyVars = new List<ColumnVar>(fkConstraint.ChildKeys.Count);
//
// Make sure that every one of the parent key properties is referenced
//
foreach (string keyProp in fkConstraint.ParentKeys)
{
bool foundKey = false;
foreach (ColumnVar cv in parentVars)
{
if (cv.ColumnMetadata.Name.Equals(keyProp))
{
foundKey = true;
break;
}
}
if (!foundKey)
{
return false;
}
}
//
// Make sure that every one of the child key properties is referenced
// and furthermore equi-joined to the corresponding parent key properties
//
foreach (string keyProp in fkConstraint.ChildKeys)
{
bool foundKey = false;
for (int pos = 0; pos < parentVars.Count; pos++)
{
ColumnVar rightVar = childVars[pos];
if (rightVar.ColumnMetadata.Name.Equals(keyProp))
{
childForeignKeyVars.Add(rightVar);
foundKey = true;
string parentPropertyName;
ColumnVar leftVar = parentVars[pos];
if (!fkConstraint.GetParentProperty(rightVar.ColumnMetadata.Name, out parentPropertyName) ||
!parentPropertyName.Equals(leftVar.ColumnMetadata.Name))
{
return false;
}
break;
}
}
if (!foundKey)
{
return false;
}
}
return true;
}
/// <summary>
/// Try to eliminate the parent table from a
/// child Left Outer Join parent
/// join, given a fk constraint
///
/// More specific:
///
/// P(p1, p2, p3,) is the parent table, and C(c1, c2, c3, ) is the child table.
/// Say p1,p2 is the PK of P, and c1,c2 is the FK from C to P
///
/// SELECT
/// From C LOJ P ON (p1 = c1 and p2 = c2)
/// WHERE
///
/// If only the keys are used from P, we should but should be carefull about composite keys with nullable foreign key columns.
/// If a composite foreign key has been defined on columns that allow nulls,
/// and at least one of the columns, upon the insert or update of a row, is set to null, then the foreign key constraint will be satisfied
/// on SqlServer.
///
/// Thus we should do the elimination only if
/// 1. The key is not composite
/// 2. All columns on the child side are non nullable
/// </summary>
/// <param name="joinEdge">the current join edge</param>
/// <param name="fkConstraint">the referential integrity constraint</param>
/// <returns></returns>
private bool TryEliminateChildParentJoin(JoinEdge joinEdge, ForeignKeyConstraint fkConstraint)
{
IList<ColumnVar> childColumnVars;
if (!IsJoinOnFkConstraint(fkConstraint, joinEdge.RightVars, joinEdge.LeftVars, out childColumnVars))
{
return false;
}
//Verify that either the foreign key is:
// 1. Non composite, or
// 2. All columns on the child side are non nullable
// NOTE: Technically we could also allow the case when only one column on the child side is nullable
// and its corresponding column on the parent side is the only column referenced from the parent table.
if (childColumnVars.Count > 1 && childColumnVars.Where(v => v.ColumnMetadata.IsNullable).Count() > 0)
{
return false;
}
return TryEliminateRightTable(joinEdge, fkConstraint.ParentKeys.Count, true);
}
/// <summary>
/// Helper method to try to eliminate the right table given a join edge.
/// The right table should be eliminated if:
/// 1. It does not have non key references, and
/// 2. Either its columns are not referenced anywhere outside the join condition or,
/// if allowRefsForJoinedOnFkOnly is true, the join condition is only on the fk constraint
/// (which we deduct by only checking the count, since we already checked that the conditions do
/// include the fk constraint.
/// 3. It can be eliminated based on possible participation in a left outer join
/// </summary>
/// <param name="joinEdge"></param>
/// <param name="fkConstraintKeyCount"></param>
/// <param name="allowRefsForJoinedOnFkOnly"
/// <returns></returns>
private bool TryEliminateRightTable(JoinEdge joinEdge, int fkConstraintKeyCount, bool allowRefsForJoinedOnFkOnly)
{
if (HasNonKeyReferences(joinEdge.Right.Table))
{
return false;
}
if ((!allowRefsForJoinedOnFkOnly || joinEdge.RightVars.Count != fkConstraintKeyCount) && RightTableHasKeyReferences(joinEdge))
{
return false;
}
if (!CanBeEliminatedBasedOnLojParticipation(joinEdge.Right, joinEdge.Left))
{
return false;
}
// Eliminate the child table
EliminateRightTable(joinEdge);
return true;
}
/// <summary>
/// Eliminate the join if possible, for this edge
/// </summary>
/// <param name="joinEdge">the current join edge</param>
private void EliminateParentChildJoin(JoinEdge joinEdge)
{
List<ForeignKeyConstraint> fkConstraints;
// Is there a foreign key constraint between these 2 tables?
if (m_constraintManager.IsParentChildRelationship(joinEdge.Left.Table.TableMetadata.Extent, joinEdge.Right.Table.TableMetadata.Extent,
out fkConstraints))
{
PlanCompiler.Assert(fkConstraints != null && fkConstraints.Count > 0, "invalid fk constraints?");
// Now walk through the list of foreign key constraints and attempt join
// elimination
foreach (ForeignKeyConstraint fkConstraint in fkConstraints)
{
if (TryEliminateParentChildJoin(joinEdge, fkConstraint))
{
return;
}
}
}
// For LeftOuterJoin we should check for the opportunity to eliminate based on a parent-child
// relationship in the opposite direction too. For inner joins that should not be an issue
// as the opposite join edge would have been generated too.
if (joinEdge.JoinKind == JoinKind.LeftOuter)
{
if (m_constraintManager.IsParentChildRelationship(joinEdge.Right.Table.TableMetadata.Extent, joinEdge.Left.Table.TableMetadata.Extent,
out fkConstraints))
{
PlanCompiler.Assert(fkConstraints != null && fkConstraints.Count > 0, "invalid fk constraints?");
// Now walk through the list of foreign key constraints and attempt join
// elimination
foreach (ForeignKeyConstraint fkConstraint in fkConstraints)
{
if (TryEliminateChildParentJoin(joinEdge, fkConstraint))
{
return;
}
}
}
}
}
/// <summary>
/// Eliminate parent child nodes that this node participates in
/// </summary>
/// <param name="tableNode">the "left" table in a join</param>
private void EliminateParentChildJoins(AugmentedTableNode tableNode)
{
foreach (JoinEdge joinEdge in tableNode.JoinEdges)
{
EliminateParentChildJoin(joinEdge);
if (tableNode.IsEliminated)
{
return;
}
}
}
/// <summary>
/// Eliminate all parent-child joins in the join graph
/// </summary>
private void EliminateParentChildJoins()
{
foreach (AugmentedNode node in m_vertexes)
{
AugmentedTableNode tableNode = node as AugmentedTableNode;
if (tableNode != null && !tableNode.IsEliminated)
{
EliminateParentChildJoins(tableNode);
}
}
}
#endregion
#region Rebuilding the Node Tree
//
// The goal of this submodule is to rebuild the node tree from the annotated node tree,
// and getting rid of eliminated tables along the way
//
#region Main Rebuilding Methods
/// <summary>
/// Return the result of join elimination
/// </summary>
/// <returns>the transformed node tree</returns>
private Node BuildNodeTree()
{
// Has anything changed? If not, then simply return the original tree.
if (!m_modifiedGraph)
{
return m_root.Node;
}
// Generate transitive closure for all Vars in the varMap
VarMap newVarMap = new VarMap();
foreach (KeyValuePair<Var, Var> kv in m_varMap)
{
Var newVar1 = kv.Value;
Var newVar2;
while (m_varMap.TryGetValue(newVar1, out newVar2))
{
PlanCompiler.Assert(newVar2 != null, "null var mapping?");
newVar1 = newVar2;
}
newVarMap[kv.Key] = newVar1;
}
m_varMap = newVarMap;
// Otherwise build the tree
Dictionary<Node, int> predicates;
Node newNode = RebuildNodeTree(m_root, out predicates);
PlanCompiler.Assert(newNode != null, "Resulting node tree is null");
PlanCompiler.Assert(predicates == null || predicates.Count == 0, "Leaking predicates?");
return newNode;
}
/// <summary>
/// Build a filter node (if necessary) to prune out null values for the specified
/// columns
/// </summary>
/// <param name="inputNode"></param>
/// <param name="nonNullableColumns"></param>
/// <returns></returns>
private Node BuildFilterForNullableColumns(Node inputNode, VarVec nonNullableColumns)
{
if (nonNullableColumns == null)
{
return inputNode;
}
VarVec remappedVarVec = nonNullableColumns.Remap(m_varMap);
if (remappedVarVec.IsEmpty)
{
return inputNode;
}
Node predNode = null;
foreach (Var v in remappedVarVec)
{
Node varRefNode = m_command.CreateNode(m_command.CreateVarRefOp(v));
Node isNotNullNode = m_command.CreateNode(m_command.CreateConditionalOp(OpType.IsNull), varRefNode);
isNotNullNode = m_command.CreateNode(m_command.CreateConditionalOp(OpType.Not), isNotNullNode);
if (predNode == null)
{
predNode = isNotNullNode;
}
else
{
predNode = m_command.CreateNode(m_command.CreateConditionalOp(OpType.And),
predNode, isNotNullNode);
}
}
PlanCompiler.Assert(predNode != null, "Null predicate?");
Node filterNode = m_command.CreateNode(m_command.CreateFilterOp(), inputNode, predNode);
return filterNode;
}
/// <summary>
/// Adds a filter node (if necessary) on top of the input node.
/// Returns the input node, if the filter predicate is null - otherwise, adds a
/// a new filter node above the input
/// </summary>
/// <param name="inputNode">the input node</param>
/// <param name="predicateNode">the filter predicate</param>
/// <returns></returns>
private Node BuildFilterNode(Node inputNode, Node predicateNode)
{
if (predicateNode == null)
{
return inputNode;
}
else
{
return m_command.CreateNode(m_command.CreateFilterOp(), inputNode, predicateNode);
}
}
/// <summary>
/// Rebuilds the predicate for a join node and caculates the minimum location id at which it can be specified.
/// The predicate is an AND of the equijoin conditions and the "otherPredicate".
///
/// We first remap all columns in the equijoin predicates - if a column pair
/// resolves to the same column, then we skip that pair.
///
/// The minimum location id at which a predicate can be specified is the minimum location id that is
/// still at or above the minimum location id of all participating vars. By default, it is the location id
/// of the input join node. However, because a table producing a participating var may be moved or
/// replaced by another table, the rebuilt predicate may need to be specified at higher location id.
/// </summary>
/// <param name="joinNode">the current join node</param>
/// <param name="minLocationId">the minimum location id (AugumentedNode.Id) at which this predicate can be specified</param>
/// <returns>the rebuilt predicate</returns>
private Node RebuildPredicate(AugmentedJoinNode joinNode, out int minLocationId)
{
//
// It is safe to initilaze the output location id to the location id of the joinNode. The nodes at lower
// location ids have already been processed, thus even if the least common ancestor of all participating
// vars is lower than the location id of the joinNode, the rebuilt predicate would not be propagated
// to nodes at lower location ids.
//
minLocationId = joinNode.Id;
//Get the minimum location Id at which the other predicate can be specified.
if (joinNode.OtherPredicate != null)
{
foreach (Var var in joinNode.OtherPredicate.GetNodeInfo(this.m_command).ExternalReferences)
{
Var newVar;
if (!m_varMap.TryGetValue(var, out newVar))
{
newVar = var;
}
minLocationId = GetLeastCommonAncestor(minLocationId, GetLocationId(newVar, minLocationId));
}
}
Node predicateNode = joinNode.OtherPredicate;
for (int i = 0; i < joinNode.LeftVars.Count; i++)
{
Var newLeftVar;
Var newRightVar;
if (!m_varMap.TryGetValue(joinNode.LeftVars[i], out newLeftVar))
{
newLeftVar = joinNode.LeftVars[i];
}
if (!m_varMap.TryGetValue(joinNode.RightVars[i], out newRightVar))
{
newRightVar = joinNode.RightVars[i];
}
if (newLeftVar.Equals(newRightVar))
{
continue;
}
minLocationId = GetLeastCommonAncestor(minLocationId, GetLocationId(newLeftVar, minLocationId));
minLocationId = GetLeastCommonAncestor(minLocationId, GetLocationId(newRightVar, minLocationId));
Node leftVarNode = m_command.CreateNode(m_command.CreateVarRefOp(newLeftVar));
Node rightVarNode = m_command.CreateNode(m_command.CreateVarRefOp(newRightVar));
Node equalsNode = m_command.CreateNode(m_command.CreateComparisonOp(OpType.EQ),
leftVarNode, rightVarNode);
if (predicateNode != null)
{
predicateNode = PlanCompilerUtil.CombinePredicates(equalsNode, predicateNode, m_command);
}
else
{
predicateNode = equalsNode;
}
}
return predicateNode;
}
/// <summary>
/// Rebuilds a crossjoin node tree. We visit each child of the cross join, and get
/// back a list of nodes. If the list of nodes has
/// 0 children - we return null
/// 1 child - we return the single child
/// otherwise - we build a new crossjoin op with all the children
/// </summary>
/// <param name="joinNode">the crossjoin node</param>
/// <returns>new node tree</returns>
private Node RebuildNodeTreeForCrossJoins(AugmentedJoinNode joinNode)
{
List<Node> newChildren = new List<Node>();
foreach (AugmentedNode chi in joinNode.Children)
{
Dictionary<Node, int> predicates;
newChildren.Add(RebuildNodeTree(chi, out predicates));
PlanCompiler.Assert(predicates == null || predicates.Count == 0, "Leaking predicates");
}
if (newChildren.Count == 0)
{
return null;
}
else if (newChildren.Count == 1)
{
return newChildren[0];
}
else
{
Node newJoinNode = m_command.CreateNode(m_command.CreateCrossJoinOp(), newChildren);
m_processedNodes[newJoinNode] = newJoinNode;
return newJoinNode;
}
}
/// <summary>
/// Rebuilds the node tree for a join.
/// For crossjoins, we delegate to the function above. For other cases, we first
/// invoke this function recursively on the left and the right inputs.
/// </summary>
/// <param name="joinNode">the annotated join node tree</param>
/// <param name="predicates">A dictionary of output predicates that should be included in ancestor joins
/// along with the minimum location id at which they can be specified</param>
/// <returns>rebuilt tree</returns>
private Node RebuildNodeTree(AugmentedJoinNode joinNode, out Dictionary<Node, int> predicates)
{
//
// Handle the simple cases first - cross joins
//
if (joinNode.Node.Op.OpType == OpType.CrossJoin)
{
predicates = null;
return RebuildNodeTreeForCrossJoins(joinNode);
}
Dictionary<Node, int> leftPredicates;
Dictionary<Node, int> rightPredicates;
Node leftNode = RebuildNodeTree(joinNode.Children[0], out leftPredicates);
Node rightNode = RebuildNodeTree(joinNode.Children[1], out rightPredicates);
int localPredicateMinLocationId;
Node localPredicateNode;
// The special case first, when we may 'eat' the local predicate
if (leftNode != null && rightNode == null && joinNode.Node.Op.OpType == OpType.LeftOuterJoin)
{
// Ignore the local predicate
// Is this correct always? What kind of assertions can we make here?
localPredicateMinLocationId = joinNode.Id;
localPredicateNode = null;
}
else
{
localPredicateNode = RebuildPredicate(joinNode, out localPredicateMinLocationId);
}
localPredicateNode = CombinePredicateNodes(joinNode.Id, localPredicateNode, localPredicateMinLocationId, leftPredicates, rightPredicates, out predicates);
if (leftNode == null && rightNode == null)
{
if (localPredicateNode == null)
{
return null;
}
else
{
Node singleRowTableNode = m_command.CreateNode(m_command.CreateSingleRowTableOp());
return BuildFilterNode(singleRowTableNode, localPredicateNode);
}
}
else if (leftNode == null)
{
return BuildFilterNode(rightNode, localPredicateNode);
}
else if (rightNode == null)
{
return BuildFilterNode(leftNode, localPredicateNode);
}
else
{
if (localPredicateNode == null)
{
localPredicateNode = m_command.CreateNode(m_command.CreateTrueOp());
}
Node newJoinNode = m_command.CreateNode(joinNode.Node.Op,
leftNode, rightNode, localPredicateNode);
m_processedNodes[newJoinNode] = newJoinNode;
return newJoinNode;
}
}
/// <summary>
/// Rebuild the node tree for a TableNode.
///
/// - Keep following the ReplacementTable links until we get to a node that
/// is either null, or has a "false" value for the IsEliminated property
/// - If the result is null, then simply return null
/// - If the tableNode we ended up with has already been "placed" in the resulting
/// node tree, then return null again
/// - If the tableNode has a set of non-nullable columns, then build a filterNode
/// above the ScanTable node (pruning out null values); otherwise, simply return
/// the ScanTable node
/// </summary>
/// <param name="tableNode">the "augmented" tableNode</param>
/// <returns>rebuilt node tree for this node</returns>
private Node RebuildNodeTree(AugmentedTableNode tableNode)
{
AugmentedTableNode replacementNode = tableNode;
//
// If this table has already been moved - nothing further to do.
//
if (tableNode.IsMoved)
{
return null;
}
//
// Identify the replacement table for this node
//
while (replacementNode.IsEliminated)
{
replacementNode = replacementNode.ReplacementTable;
if (replacementNode == null)
{
return null;
}
}
//
// Check to see if the replacement node has already been put
// in place in the node tree (possibly as part of eliminating some other join).
// In that case, we don't need to do anything further - simply return null
//
if (replacementNode.NewLocationId < tableNode.Id)
{
return null;
}
//
// ok: so we now have a replacement node that must be used in place
// of the current table. Check to see if the replacement node has any
// columns that would require nulls to be pruned out
//
Node filterNode = BuildFilterForNullableColumns(replacementNode.Node, replacementNode.NullableColumns);
return filterNode;
}
/// <summary>
/// Rebuilds the node tree from the annotated node tree. This function is
/// simply a dispatcher
/// ScanTable - call RebuildNodeTree for ScanTable
/// Join - call RebuildNodeTree for joinOp
/// Anything else - return the underlying node
/// </summary>
/// <param name="augmentedNode">annotated node tree</param>
/// <param name="predicates">the output predicate that should be included in the parent join</param>
/// <returns>the rebuilt node tree</returns>
private Node RebuildNodeTree(AugmentedNode augmentedNode, out Dictionary<Node, int> predicates)
{
switch (augmentedNode.Node.Op.OpType)
{
case OpType.ScanTable:
predicates = null;
return RebuildNodeTree((AugmentedTableNode)augmentedNode);
case OpType.CrossJoin:
case OpType.LeftOuterJoin:
case OpType.InnerJoin:
case OpType.FullOuterJoin:
return RebuildNodeTree((AugmentedJoinNode)augmentedNode, out predicates);
default:
predicates = null;
return augmentedNode.Node;
}
}
#endregion
#region Helper Methods for Rebuilding the Node Tree
/// <summary>
/// Helper method for RebuildNodeTree.
/// Given predicate nodes and the minimum location ids at which they can be specified, it creates:
/// 1. A single predicate AND-ing all input predicates with a minimum location id that is less or equal to the given targetNodeId.
/// 2. A dictionary of all other input predicates and their target minimum location ids.
/// </summary>
/// <param name="targetNodeId">The location id of the resulting predicate </param>
/// <param name="localPredicateNode">A predicate</param>
/// <param name="localPredicateMinLocationId">The location id for the localPredicateNode</param>
/// <param name="leftPredicates">A dictionary of predicates and the minimum location id at which they can be specified</param>
/// <param name="rightPredicates">A dictionary of predicates and the minimum location id at which they can be specified</param>
/// <param name="outPredicates">An output dictionary of predicates and the minimum location id at which they can be specified
/// that includes all input predicates with minimum location id greater then targetNodeId</param>
/// <returns>A single predicate "AND"-ing all input predicates with a minimum location id that is less or equal to the tiven targetNodeId.</returns>
private Node CombinePredicateNodes(int targetNodeId, Node localPredicateNode, int localPredicateMinLocationId, Dictionary<Node, int> leftPredicates, Dictionary<Node, int> rightPredicates, out Dictionary<Node, int> outPredicates)
{
Node result = null;
outPredicates = new Dictionary<Node, int>();
if (localPredicateNode != null)
{
result = ClassifyPredicate(targetNodeId, localPredicateNode, localPredicateMinLocationId, result, outPredicates);
}
if (leftPredicates != null)
{
foreach (KeyValuePair<Node, int> predicatePair in leftPredicates)
{
result = ClassifyPredicate(targetNodeId, predicatePair.Key, predicatePair.Value, result, outPredicates);
}
}
if (rightPredicates != null)
{
foreach (KeyValuePair<Node, int> predicatePair in rightPredicates)
{
result = ClassifyPredicate(targetNodeId, predicatePair.Key, predicatePair.Value, result, outPredicates);
}
}
return result;
}
/// <summary>
/// Helper method for <see cref="CombinePredicateNodes"/>
/// If the predicateMinimuLocationId is less or equal to the target location id of the current result, it is AND-ed with the
/// current result, otherwise it is included in the list of predicates that need to be propagated up (outPredicates)
/// </summary>
/// <param name="targetNodeId"></param>
/// <param name="predicateNode"></param>
/// <param name="predicateMinLocationId"></param>
/// <param name="result"></param>
/// <param name="outPredicates"></param>
/// <returns></returns>
private Node ClassifyPredicate(int targetNodeId, Node predicateNode, int predicateMinLocationId, Node result, Dictionary<Node, int> outPredicates)
{
if (targetNodeId >= predicateMinLocationId)
{
result = CombinePredicates(result, predicateNode);
}
else
{
outPredicates.Add(predicateNode, predicateMinLocationId);
}
return result;
}
/// <summary>
/// Combines two predicates into one by AND-ing them.
/// </summary>
/// <param name="node1"></param>
/// <param name="node2"></param>
/// <returns></returns>
private Node CombinePredicates(Node node1, Node node2)
{
if (node1 == null)
{
return node2;
}
if (node2 == null)
{
return node1;
}
return PlanCompilerUtil.CombinePredicates(node1, node2, m_command);
}
/// <summary>
/// Get the location id of the AugumentedTableNode at which the given var is defined.
/// If the var is not in th m_varToDefiningNodeMap, then it return the input defaultLocationId
/// </summary>
/// <param name="var"></param>
/// <param name="defaultLocationId"></param>
/// <returns></returns>
private int GetLocationId(Var var, int defaultLocationId)
{
AugmentedTableNode node;
if (m_varToDefiningNodeMap.TryGetValue(var, out node))
{
if (node.IsMoved)
{
return node.NewLocationId;
}
return node.Id;
}
return defaultLocationId;
}
/// <summary>
/// Gets the location id of least common ancestor for two nodes in the tree given their location ids
/// </summary>
/// <param name="nodeId1"></param>
/// <param name="nodeId2"></param>
/// <returns></returns>
private int GetLeastCommonAncestor(int nodeId1, int nodeId2)
{
if (nodeId1 == nodeId2)
{
return nodeId1;
}
AugmentedNode currentNode = m_root;
AugmentedNode child1Parent = currentNode;
AugmentedNode child2Parent = currentNode;
while (child1Parent == child2Parent)
{
currentNode = child1Parent;
if (currentNode.Id == nodeId1 || currentNode.Id == nodeId2)
{
return currentNode.Id;
}
child1Parent = PickSubtree(nodeId1, currentNode);
child2Parent = PickSubtree(nodeId2, currentNode);
}
return currentNode.Id;
}
/// <summary>
/// Helper method for <see cref="GetLeastCommonAncestor(int, int)"/>
/// Given a root node pick its immediate child to which the node identifed with the given nodeId bellongs.
/// </summary>
/// <param name="nodeId"></param>
/// <param name="root"></param>
/// <returns>
/// The immediate child of the given root that is root of the subree that
/// contains the node with the given nodeId.
/// </returns>
private static AugmentedNode PickSubtree(int nodeId, AugmentedNode root)
{
AugmentedNode subree = root.Children[0];
int i = 1;
while ((subree.Id < nodeId) && (i < root.Children.Count))
{
subree = root.Children[i];
i++;
}
return subree;
}
#endregion
#endregion
#endregion
}
#endregion
}
|