1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
|
//---------------------------------------------------------------------
// <copyright file="NestPullup.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
using System.Collections.Generic;
using System.Globalization;
using System.Data.Common;
using md = System.Data.Metadata.Edm;
using System.Data.Query.InternalTrees;
using System.Data.Query.PlanCompiler;
using System.Linq;
namespace System.Data.Query.PlanCompiler
{
/// <summary>
/// This class "pulls" up nest operations to the root of the tree
/// </summary>
/// <remarks>
/// The goal of this module is to eliminate nest operations from the query - more
/// specifically, the nest operations are pulled up to the root of the query instead.
///</remarks>
internal class NestPullup : BasicOpVisitorOfNode
{
#region private state
private PlanCompiler m_compilerState;
/// <summary>
/// map from a collection var to the node where it's defined; the node should be
/// the node that should be used as the replacement for the var if it is referred
/// to in an UnnestOp (through a VarRef) Note that we expect this to contain the
/// PhysicalProjectOp of the node, so we can use the VarList when mapping vars to
/// the copy; (We'll remove the PhysicalProjectOp when we copy it...)
/// </summary>
private Dictionary<Var, Node> m_definingNodeMap = new Dictionary<Var, Node>();
/// <summary>
/// map from var to the var we're supposed to replace it with
/// </summary>
private VarRemapper m_varRemapper;
/// <summary>
/// Map from VarRef vars to what they're referencing; used to enable the defining
/// node map to contain only the definitions, not all the references to it.
/// </summary>
private Dictionary<Var, Var> m_varRefMap = new Dictionary<Var, Var>();
/// <summary>
/// Whether a sort was encountered under an UnnestOp.
/// If so, sort removal needs to be performed.
/// </summary>
private bool m_foundSortUnderUnnest = false;
#endregion
#region constructor
private NestPullup(PlanCompiler compilerState)
{
m_compilerState = compilerState;
m_varRemapper = new VarRemapper(compilerState.Command);
}
#endregion
#region Process Driver
internal static void Process(PlanCompiler compilerState)
{
NestPullup np = new NestPullup(compilerState);
np.Process();
}
/// <summary>
/// The driver routine. Does all the hard work of processing
/// </summary>
private void Process()
{
PlanCompiler.Assert(Command.Root.Op.OpType == OpType.PhysicalProject, "root node is not physicalProject?");
Command.Root = VisitNode(Command.Root);
if (m_foundSortUnderUnnest)
{
SortRemover.Process(Command);
}
}
#endregion
#region private methods
#region VisitorHelpers
/// <summary>
/// the iqt we're processing
/// </summary>
private Command Command { get { return m_compilerState.Command; } }
/// <summary>
/// is the node a NestOp node?
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
private static bool IsNestOpNode(Node n)
{
PlanCompiler.Assert(n.Op.OpType != OpType.SingleStreamNest, "illegal singleStreamNest?");
return (n.Op.OpType == OpType.SingleStreamNest || n.Op.OpType == OpType.MultiStreamNest);
}
/// <summary>
/// Not Supported common processing
///
/// For all those cases where we don't intend to support
/// a nest operation as a child, we have this routine to
/// do the work.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
private Node NestingNotSupported(Op op, Node n)
{
// First, visit my children
VisitChildren(n);
m_varRemapper.RemapNode(n);
// Make sure we don't have a child that is a nest op.
foreach (Node chi in n.Children)
{
if (IsNestOpNode(chi))
{
throw EntityUtil.NestingNotSupported(op, chi.Op);
}
}
return n;
}
/// <summary>
/// Follow the VarRef chain to the defining var
/// </summary>
/// <param name="refVar"></param>
/// <returns></returns>
private Var ResolveVarReference(Var refVar)
{
Var x = refVar;
while (m_varRefMap.TryGetValue(x, out x))
{
refVar = x;
}
return refVar;
}
/// <summary>
/// Update the replacement Var map with the vars from the pulled-up
/// operation; the shape is supposed to be identical, so we should not
/// have more vars on either side, and the order is guaranteed to be
/// the same.
/// </summary>
/// <param name="fromVars"></param>
/// <param name="toVars"></param>
private void UpdateReplacementVarMap(IEnumerable<Var> fromVars, IEnumerable<Var> toVars)
{
IEnumerator<Var> toVarEnumerator = toVars.GetEnumerator();
foreach (Var v in fromVars)
{
if (!toVarEnumerator.MoveNext())
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.ColumnCountMismatch, 2);
}
m_varRemapper.AddMapping(v, toVarEnumerator.Current);
}
if (toVarEnumerator.MoveNext())
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.ColumnCountMismatch, 3);
}
}
#region remapping helpers
/// <summary>
/// Replace a list of sortkeys *IN-PLACE* with the corresponding "mapped" Vars
/// </summary>
/// <param name="sortKeys">sortkeys</param>
/// <param name="varMap">the mapping info for Vars</param>
private static void RemapSortKeys(List<InternalTrees.SortKey> sortKeys, Dictionary<Var, Var> varMap)
{
if (sortKeys != null)
{
foreach (InternalTrees.SortKey sortKey in sortKeys)
{
Var replacementVar;
if (varMap.TryGetValue(sortKey.Var, out replacementVar))
{
sortKey.Var = replacementVar;
}
}
}
}
/// <summary>
/// Produce a "mapped" sequence of the input Var sequence - based on the supplied
/// map
/// </summary>
/// <param name="vars">input var sequence</param>
/// <param name="varMap">var->var map</param>
/// <returns>the mapped var sequence</returns>
private IEnumerable<Var> RemapVars(IEnumerable<Var> vars, Dictionary<Var, Var> varMap)
{
foreach (Var v in vars)
{
Var mappedVar;
if (varMap.TryGetValue(v, out mappedVar))
{
yield return mappedVar;
}
else
{
yield return v;
}
}
}
/// <summary>
/// Produce a "mapped" varList
/// </summary>
/// <param name="varList"></param>
/// <param name="varMap"></param>
/// <returns></returns>
private VarList RemapVarList(VarList varList, Dictionary<Var, Var> varMap)
{
VarList newVarList = Command.CreateVarList(RemapVars(varList, varMap));
return newVarList;
}
/// <summary>
/// Produce a "mapped" varVec
/// </summary>
/// <param name="varVec"></param>
/// <param name="varMap"></param>
/// <returns></returns>
private VarVec RemapVarVec(VarVec varVec, Dictionary<Var, Var> varMap)
{
VarVec newVarVec = Command.CreateVarVec(RemapVars(varVec, varMap));
return newVarVec;
}
#endregion
#endregion
#region AncillaryOp Visitors
/// <summary>
/// VarDefOp
///
/// Essentially, maintains m_varRefMap, adding an entry for each VarDef that has a
/// VarRef on it.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(VarDefOp op, Node n)
{
VisitChildren(n);
// perform any "remapping"
m_varRemapper.RemapNode(n);
if (n.Child0.Op.OpType == OpType.VarRef)
{
m_varRefMap.Add(op.Var, ((VarRefOp)n.Child0.Op).Var);
}
return n;
}
/// <summary>
/// VarRefOp
/// </summary>
/// <remarks>
/// When we remove the UnnestOp, we are left with references to it's column vars that
/// need to be fixed up; we do this by creating a var replacement map when we remove the
/// UnnestOp and whenever we find a reference to a var in the map, we replace it with a
/// reference to the replacement var instead;
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(VarRefOp op, Node n)
{
// First, visit my children (do I have children?)
VisitChildren(n);
// perform any "remapping"
m_varRemapper.RemapNode(n);
return n;
}
#endregion
#region ScalarOp Visitors
/// <summary>
/// We don't yet support nest pullups over Case
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(CaseOp op, Node n)
{
// Make sure we don't have a child that is a nest op.
foreach (Node chi in n.Children)
{
if (chi.Op.OpType == OpType.Collect)
{
throw EntityUtil.NestingNotSupported(op, chi.Op);
}
else if (chi.Op.OpType == OpType.VarRef)
{
Var refVar = ((VarRefOp)chi.Op).Var;
if (m_definingNodeMap.ContainsKey(refVar))
{
throw EntityUtil.NestingNotSupported(op, chi.Op);
}
}
}
return VisitDefault(n);
}
/// <summary>
/// The input to Exists is always a ProjectOp with a single constant var projected.
/// If the input to that ProjectOp contains nesting, it may end up with additional outputs after being
/// processed. If so, we clear out those additional outputs.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(ExistsOp op, Node n)
{
Var inputVar = ((ProjectOp)n.Child0.Op).Outputs.First;
VisitChildren(n);
VarVec newOutputs = ((ProjectOp)n.Child0.Op).Outputs;
if (newOutputs.Count > 1)
{
PlanCompiler.Assert(newOutputs.IsSet(inputVar), "The constant var is not present after NestPull up over the input of ExistsOp.");
newOutputs.Clear();
newOutputs.Set(inputVar);
}
return n;
}
#endregion
#region RelOp Visitors
/// <summary>
/// Default RelOp processing:
///
/// We really don't want to allow any NestOps through; just fail if we don't have
/// something coded.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override Node VisitRelOpDefault(RelOp op, Node n)
{
return NestingNotSupported(op, n);
}
/// <summary>
/// ApplyOp/JoinOp common processing
/// </summary>
/// <remarks>
/// If one of the inputs to any JoinOp/ApplyOp is a NestOp, then the NestOp
/// can be pulled above the join/apply if every input to the join/apply has
/// a key(s). The keys of the NestOp are augmented with the keys of the
/// other join inputs:
///
/// JoinOp/ApplyOp(NestOp(X, ...), Y) => NestOp(JoinOp/ApplyOp(X, Y), ...)
///
/// In addition, if the NestOp is on a 'nullable' side of a join (i.e. right side of
/// LeftOuterJoin/OuterApply or either side of FullOuterJoin), the driving node
/// of that NestOp (X) is capped with a project with a null sentinel and
/// the dependant collection nodes (the rest of the NestOp children)
/// are filtered based on that sentinel:
///
/// LOJ/OA/FOJ (X, NestOp(Y, Z1, Z2, ..ZN)) => NestOp( LOJ/OA/FOJ (X, PROJECT (Y, v = 1)), FILTER(Z1, v!=null), FILTER(Z2, v!=null), ... FILTER(ZN, v!=null))
/// FOJ (NestOp(Y, Z1, Z2, ..ZN), X) => NestOp( LOJ/OA/FOJ (PROJECT (Y, v = 1), X), FILTER(Z1, v!=null), FILTER(Z2, v!=null), ... FILTER(ZN, v!=null))
///
/// Also, FILTER(Zi, v != null) may be transformed to push the filter below any NestOps.
/// The definitions for collection vars corresponding to the filtered collection nodes (in m_definingNodeMap)
/// are also updated to filter based on the sentinel.
///
/// Requires: Every input to the join/apply must have a key.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
private Node ApplyOpJoinOp(Op op, Node n)
{
// First, visit my children
VisitChildren(n);
// Now determine if any of the input nodes are a nestOp.
int countOfNestInputs = 0;
foreach (Node chi in n.Children)
{
NestBaseOp nestOp = chi.Op as NestBaseOp;
if (null != nestOp)
{
countOfNestInputs++;
if (OpType.SingleStreamNest == chi.Op.OpType)
{
// There should not be a SingleStreamNest in the tree, because we made a decision
// that in essence means the only way to get a SingleStreamNest is to have a
// PhysicalProject over something with an underlying NestOp. Having
//
// Project(Collect(PhysicalProject(...)))
//
// isnt good enough, because that will get converted to a MultiStreamNest, with
// the SingleStreamNest as the input to the MultiStreamNest.
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.JoinOverSingleStreamNest);
}
}
}
// If none of the inputs are a nest, then we don't really need to do anything.
if (0 == countOfNestInputs)
{
return n;
}
// We can only pull the nest over a Join/Apply if it has keys, so
// we can order things; if it doesn't have keys, we throw a NotSupported
// exception.
foreach (Node chi in n.Children)
{
if (op.OpType != OpType.MultiStreamNest && chi.Op.IsRelOp)
{
KeyVec keys = Command.PullupKeys(chi);
if (null == keys || keys.NoKeys)
{
throw EntityUtil.KeysRequiredForJoinOverNest(op);
}
}
}
// Alright, we're OK to pull the nestOp over the joinOp/applyOp.
//
// That means:
//
// (1) build a new list of children for the nestOp and for the joinOp/applyOp
// (2) build the new list of collectionInfos for the new nestOp.
List<Node> newNestChildren = new List<Node>();
List<Node> newJoinApplyChildren = new List<Node>();
List<CollectionInfo> newCollectionInfoList = new List<CollectionInfo>();
foreach (Node chi in n.Children)
{
if (chi.Op.OpType == OpType.MultiStreamNest)
{
newCollectionInfoList.AddRange(((MultiStreamNestOp)chi.Op).CollectionInfo);
// SQLBUDT #615513: If the nest op is on a 'nullable' side of join
// (i.e. right side of LeftOuterJoin/OuterApply or either side of FullOuterJoin)
// the driving node of that nest operation needs to be capped with a project with
// a null sentinel and the dependant collection nodes need to be filtered based on that sentinel.
//
// LOJ/OA/FOJ (X, MSN(Y, Z1, Z2, ..ZN)) => MSN( LOJ/OA/FOJ (X, PROJECT (Y, v = 1)), FILTER(Z1, v!=null), FILTER(Z2, v!=null), ... FILTER(ZN, v!=null))
// FOJ (MSN(Y, Z1, Z2, ..ZN), X) => MSN( LOJ/OA/FOJ (PROJECT (Y, v = 1), X), FILTER(Z1, v!=null), FILTER(Z2, v!=null), ... FILTER(ZN, v!=null))
//
// Note: we transform FILTER(Zi, v != null) to push the filter below any MSNs.
if ((op.OpType == OpType.FullOuterJoin)
|| ((op.OpType == OpType.LeftOuterJoin || op.OpType == OpType.OuterApply) && n.Child1.Op.OpType == OpType.MultiStreamNest))
{
Var sentinelVar = null;
newJoinApplyChildren.Add(AugmentNodeWithConstant(chi.Child0, () => Command.CreateNullSentinelOp(), out sentinelVar));
// Update the definitions corresponding ot the collection vars to be filtered based on the sentinel.
foreach (CollectionInfo collectionInfo in ((MultiStreamNestOp)chi.Op).CollectionInfo)
{
m_definingNodeMap[collectionInfo.CollectionVar].Child0 = ApplyIsNotNullFilter(m_definingNodeMap[collectionInfo.CollectionVar].Child0, sentinelVar);
}
for (int i = 1; i < chi.Children.Count; i++)
{
Node newNestChild = ApplyIsNotNullFilter(chi.Children[i], sentinelVar);
newNestChildren.Add(newNestChild);
}
}
else
{
newJoinApplyChildren.Add(chi.Child0);
for (int i = 1; i < chi.Children.Count; i++)
{
newNestChildren.Add(chi.Children[i]);
}
}
}
else
{
newJoinApplyChildren.Add(chi);
}
}
// (3) create the new Join/Apply node using the existing op and the
// new list of children from (1).
Node newJoinApplyNode = Command.CreateNode(op, newJoinApplyChildren);
// (4) insert the apply op as the driving node of the nestOp (put it
// at the beginning of the new nestOps' children.
newNestChildren.Insert(0, newJoinApplyNode);
// (5) build an updated list of output vars based upon the new join/apply
// node, and ensure all the collection vars from the nestOp(s) are
// included.
ExtendedNodeInfo xni = newJoinApplyNode.GetExtendedNodeInfo(Command);
VarVec newOutputVars = Command.CreateVarVec(xni.Definitions);
foreach (CollectionInfo ci in newCollectionInfoList)
{
newOutputVars.Set(ci.CollectionVar);
}
// (6) create the new nestop
NestBaseOp newNestOp = Command.CreateMultiStreamNestOp(new List<InternalTrees.SortKey>(), newOutputVars, newCollectionInfoList);
Node newNode = Command.CreateNode(newNestOp, newNestChildren);
return newNode;
}
/// <summary>
/// Applies a IsNotNull(sentinelVar) filter to the given node.
/// The filter is pushed below all MultiStremNest-s, because this part of the tree has
/// already been visited and it is expected that the MultiStreamNests have bubbled up
/// above the filters.
/// </summary>
/// <param name="node"></param>
/// <param name="sentinelVar"></param>
/// <returns></returns>
private Node ApplyIsNotNullFilter(Node node, Var sentinelVar)
{
Node newFilterChild = node;
Node newFilterParent = null;
while (newFilterChild.Op.OpType == OpType.MultiStreamNest)
{
newFilterParent = newFilterChild;
newFilterChild = newFilterChild.Child0;
}
Node newFilterNode = CapWithIsNotNullFilter(newFilterChild, sentinelVar);
Node result;
if (newFilterParent != null)
{
newFilterParent.Child0 = newFilterNode;
result = node;
}
else
{
result = newFilterNode;
}
return result;
}
/// <summary>
/// Input => Filter(input, Ref(var) is not null)
/// </summary>
/// <param name="input"></param>
/// <param name="var"></param>
/// <returns></returns>
private Node CapWithIsNotNullFilter(Node input, Var var)
{
Node varRefNode = Command.CreateNode(Command.CreateVarRefOp(var));
Node predicateNode = Command.CreateNode(
Command.CreateConditionalOp(OpType.Not),
Command.CreateNode(
Command.CreateConditionalOp(OpType.IsNull),
varRefNode));
Node filterNode = Command.CreateNode(Command.CreateFilterOp(), input, predicateNode);
return filterNode;
}
/// <summary>
/// ApplyOp common processing
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override Node VisitApplyOp(ApplyBaseOp op, Node n)
{
return ApplyOpJoinOp(op, n);
}
/// <summary>
/// DistinctOp
/// </summary>
/// <remarks>
/// The input to a DistinctOp cannot be a NestOp that would imply that
/// we support distinctness over collections - which we dont.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(DistinctOp op, Node n)
{
return NestingNotSupported(op, n);
}
/// <summary>
/// FilterOp
/// </summary>
/// <remarks>
/// If the input to the FilterOp is a NestOp, and if the filter predicate
/// does not reference any of the collection Vars of the nestOp, then the
/// FilterOp can be simply pushed below the NestOp:
///
/// Filter(Nest(X, ...), pred) => Nest(Filter(X, pred), ...)
///
/// Note: even if the filter predicate originally referenced one of the
/// collection vars, as part of our bottom up traversal, the appropriate
/// Var was replaced by a copy of the source of the collection. So, this
/// transformation should always be legal.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(FilterOp op, Node n)
{
// First, visit my children
VisitChildren(n);
// see if the child is a nestOp
NestBaseOp nestOp = n.Child0.Op as NestBaseOp;
if (null != nestOp)
{
#if DEBUG
// check to see if the predicate references any of the collection
// expressions. If it doesn't, then we can push the filter down, but
// even if it does it's probably OK.
NodeInfo predicateNodeInfo = Command.GetNodeInfo(n.Child1);
foreach (CollectionInfo ci in nestOp.CollectionInfo)
{
PlanCompiler.Assert(!predicateNodeInfo.ExternalReferences.IsSet(ci.CollectionVar), "predicate references collection?");
}
#endif //DEBUG
// simply pull up the nest child above ourself.
Node nestOpNode = n.Child0;
Node nestOpInputNode = nestOpNode.Child0;
n.Child0 = nestOpInputNode;
nestOpNode.Child0 = n;
// recompute node info - no need to perform anything for the predicate
Command.RecomputeNodeInfo(n);
Command.RecomputeNodeInfo(nestOpNode);
return nestOpNode;
}
return n;
}
/// <summary>
/// GroupByOp
/// </summary>
/// <remarks>
/// At this point in the process, there really isn't a way we should actually
/// have a NestOp as an input to the GroupByOp, and we currently aren't allowing
/// you to specify a collection as an aggregation Var or key, so if we find a
/// NestOp anywhere on the inputs, it's a NotSupported situation.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(GroupByOp op, Node n)
{
return NestingNotSupported(op, n);
}
/// <summary>
/// GroupByIntoOp
/// </summary>
/// <remarks>
/// Transform the GroupByInto node into a Project over a GroupBy. The project
/// outputs all keys and aggregates produced by the GroupBy and has the definition of the
/// group aggregates var in its var def list.
///
/// GroupByInto({key1, key2, ... , keyn}, {fa1, fa1, ... , fan}, {ga1, ga2, ..., gn}) =>
/// Project(GroupBy({key1, key2, ... , keyn}, {fa1, fa1, ... , fan}), // input
/// {ga1, ga2, ..., gn} // vardeflist
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(GroupByIntoOp op, Node n)
{
PlanCompiler.Assert(n.HasChild3 && n.Child3.Children.Count > 0, "GroupByIntoOp with no group aggregates?");
Node varDefListNode = n.Child3;
VarVec projectOpOutputs = Command.CreateVarVec(op.Outputs);
VarVec groupByOutputs = op.Outputs;
// Local definitions
foreach (Node chi in varDefListNode.Children)
{
VarDefOp varDefOp = chi.Op as VarDefOp;
groupByOutputs.Clear(varDefOp.Var);
}
//Create the new groupByOp
Node groupByNode = Command.CreateNode(
Command.CreateGroupByOp(op.Keys, groupByOutputs), n.Child0, n.Child1, n.Child2);
Node projectNode = Command.CreateNode(
Command.CreateProjectOp(projectOpOutputs),
groupByNode, varDefListNode);
return VisitNode(projectNode);
}
/// <summary>
/// JoinOp common processing
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override Node VisitJoinOp(JoinBaseOp op, Node n)
{
return ApplyOpJoinOp(op, n);
}
/// <summary>
/// ProjectOp
/// </summary>
/// <remarks>
/// If after visiting the children, the ProjectOp's input is a SortOp, swap the ProjectOp and the SortOp,
/// to allow the SortOp to bubble up and be honored. This may only occur if the original input to the
/// ProjectOp was an UnnestOp.
///
/// There are three cases to handle in ProjectOp:
///
/// (1) The input is not a NestOp; but the ProjectOp locally defines some Vars
/// as collections:
///
/// ProjectOp(X,{a,CollectOp(PhysicalProjectOp(Y)),b,...}) ==> MsnOp(ProjectOp'(X,{a,b,...}),Y)
/// ProjectOp(X,{a,VarRef(ref-to-collect-var-Y),b,...}) ==> MsnOp(ProjectOp'(X,{a,b,...}),copy-of-Y)
///
/// Where:
/// ProjectOp' is ProjectOp less any vars that were collection vars, plus
/// any additional Vars needed by the collection.
///
/// (2) The input is a NestOp, but the ProjectOp does not local define some Vars
/// as collections:
///
/// ProjectOp(MsnOp(X,Y,...)) => MsnOp'(ProjectOp'(X),Y,...)
///
/// Where:
/// ProjectOp' is ProjectOp plus any additional Vars needed by NestOp
/// (see NestOp.Outputs except the collection vars)
///
/// MsnOp' should be MsnOp. Additionally, its Outputs should be enhanced
/// to include any Vars produced by the ProjectOp
///
/// (3) The combination of both (1) and (2) -- both the vars define a collection,
/// and the input is also a nestOp. we handle this by first processing Case1,
/// then processing Case2.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(ProjectOp op, Node n)
{
#if DEBUG
string input = Dump.ToXml(Command, n);
#endif //DEBUG
// First, visit my children
VisitChildren(n);
m_varRemapper.RemapNode(n);
Node newNode;
// If the ProjectOp's input is a SortOp, swap the ProjectOp and the SortOp,
// to allow the SortOp to buble up and be honored. This may only occur if the original input to the
// ProjectOp was an UnnestOp (or a Project over a Unnest Op).
if (n.Child0.Op.OpType == OpType.Sort)
{
Node sortNode = n.Child0;
foreach (System.Data.Query.InternalTrees.SortKey key in ((SortOp)sortNode.Op).Keys)
{
if (!Command.GetExtendedNodeInfo(sortNode).ExternalReferences.IsSet(key.Var))
{
op.Outputs.Set(key.Var);
}
}
n.Child0 = sortNode.Child0;
this.Command.RecomputeNodeInfo(n);
sortNode.Child0 = HandleProjectNode(n);
this.Command.RecomputeNodeInfo(sortNode);
newNode = sortNode;
}
else
{
newNode = HandleProjectNode(n);
}
#if DEBUG
int size = input.Length;// GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, newNode);
#endif //DEBUG
return newNode;
}
/// <summary>
/// Helper method for <see cref="Visit(ProjectOp, Node)"/>.
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
private Node HandleProjectNode(Node n)
{
// First, convert any nestOp inputs;
Node newNode = ProjectOpCase1(n);
// Then, if we have a NestOp as an input (and we didn't
// produce a NestOp when handling Case1) pull it over our
// ProjectOp.
if (newNode.Op.OpType == OpType.Project && IsNestOpNode(newNode.Child0))
{
newNode = ProjectOpCase2(newNode);
}
// Finally we fold any nested NestOps into one.
newNode = MergeNestedNestOps(newNode);
return newNode;
}
/// <summary>
/// Fold nested MultiStreamNestOps into one:
///
/// MSN(MSN(X,Y),Z) ==> MSN(X,Y,Z)
///
/// NOTE: It would be incorrect to merge NestOps from the non-driving node
/// into one nest op, because that would change the intent. Instead,
/// we let those go through the tree and wait until we get to the top
/// level PhysicalProject, when we'll use the ConvertToSingleStreamNest
/// process to handle them.
///
/// NOTE: We should never have three levels of nestOps, because we should
/// have folded the lower two together when we constructed one of them.
///
/// We also remove unreferenced collections, that is, if any collection is
/// not referred to by the top level-NestOp, we can safely remove it from
/// the merged NestOp we produce.
/// </summary>
/// <param name="nestNode"></param>
/// <returns></returns>
private Node MergeNestedNestOps(Node nestNode)
{
// First, determine if there is anything we can actually do. If we
// aren't given a NestOp or if it's driving node isn't a NestOp we
// can just ignore this.
if (!IsNestOpNode(nestNode) || !IsNestOpNode(nestNode.Child0))
{
return nestNode;
}
#if DEBUG
string input = Dump.ToXml(Command, nestNode);
#endif //DEBUG
NestBaseOp nestOp = (NestBaseOp)nestNode.Op;
Node nestedNestNode = nestNode.Child0;
NestBaseOp nestedNestOp = (NestBaseOp)nestedNestNode.Op;
// Get the collection Vars from the top level NestOp
VarVec nestOpCollectionOutputs = Command.CreateVarVec();
foreach (CollectionInfo ci in nestOp.CollectionInfo)
{
nestOpCollectionOutputs.Set(ci.CollectionVar);
}
// Now construct a new list of inputs, collections; and output vars.
List<Node> newNestInputs = new List<Node>();
List<CollectionInfo> newCollectionInfo = new List<CollectionInfo>();
VarVec newOutputVars = Command.CreateVarVec(nestOp.Outputs);
// Add the new DrivingNode;
newNestInputs.Add(nestedNestNode.Child0);
// Now add each of the nested nodes collections, but only when they're
// referenced by the top level nestOp's outputs.
for (int i = 1; i < nestedNestNode.Children.Count; i++)
{
CollectionInfo ci = nestedNestOp.CollectionInfo[i - 1];
if (nestOpCollectionOutputs.IsSet(ci.CollectionVar) || newOutputVars.IsSet(ci.CollectionVar))
{
newCollectionInfo.Add(ci);
newNestInputs.Add(nestedNestNode.Children[i]);
PlanCompiler.Assert(newOutputVars.IsSet(ci.CollectionVar), "collectionVar not in output Vars?"); // I must have missed something...
}
}
// Then add in the rest of the inputs to the top level nest node (and
// they're collection Infos)
for (int i = 1; i < nestNode.Children.Count; i++)
{
CollectionInfo ci = nestOp.CollectionInfo[i - 1];
newCollectionInfo.Add(ci);
newNestInputs.Add(nestNode.Children[i]);
PlanCompiler.Assert(newOutputVars.IsSet(ci.CollectionVar), "collectionVar not in output Vars?"); // I must have missed something...
}
//The prefix sort keys for the new nest op should include these of the input nestOp followed by the nestedNestOp
//(The nestOp-s that are being merged may have prefix sort keys propagated to them by constrainedSortOp-s pushed below them.
List<InternalTrees.SortKey> sortKeys = ConsolidateSortKeys(nestOp.PrefixSortKeys, nestedNestOp.PrefixSortKeys);
// Make sure we pullup the sort keys in our output too...
foreach (InternalTrees.SortKey sk in sortKeys)
{
newOutputVars.Set(sk.Var);
}
// Ready to go; build the new NestNode, etc.
MultiStreamNestOp newNestOp = Command.CreateMultiStreamNestOp(sortKeys, newOutputVars, newCollectionInfo);
Node newNode = Command.CreateNode(newNestOp, newNestInputs);
// Finally, recompute node info
Command.RecomputeNodeInfo(newNode);
#if DEBUG
int size = input.Length;// GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, newNode);
#endif //DEBUG
return newNode;
}
/// <summary>
/// ProjectOp(X,{a,CollectOp(PhysicalProjectOp(Y)),b,...}) ==> MsnOp(ProjectOp'(X,{a,b,...}),Y)
/// ProjectOp(X,{a,VarRef(ref-to-collect-var-Y),b,...}) ==> MsnOp(ProjectOp'(X,{a,b,...}),copy-of-Y)
///
/// Remove CollectOps from projection, constructing a NestOp
/// over the ProjectOp.
/// </summary>
/// <param name="projectNode"></param>
/// <returns></returns>
private Node ProjectOpCase1(Node projectNode)
{
#if DEBUG
string input = Dump.ToXml(Command, projectNode);
#endif //DEBUG
ProjectOp op = (ProjectOp)projectNode.Op;
// Check to see if any of the computed Vars are in fact NestOps, and
// construct a collection column map for them.
List<CollectionInfo> collectionInfoList = new List<CollectionInfo>();
List<Node> newChildren = new List<Node>();
List<Node> collectionNodes = new List<Node>();
VarVec externalReferences = Command.CreateVarVec();
VarVec collectionReferences = Command.CreateVarVec();
List<Node> definedVars = new List<Node>();
List<Node> referencedVars = new List<Node>();
foreach (Node chi in projectNode.Child1.Children)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
Node definingExprNode = chi.Child0;
if (OpType.Collect == definingExprNode.Op.OpType)
{
PlanCompiler.Assert(definingExprNode.HasChild0, "collect without input?");
PlanCompiler.Assert(OpType.PhysicalProject == definingExprNode.Child0.Op.OpType, "collect without physicalProject?");
Node physicalProjectNode = definingExprNode.Child0;
// Update collection var->defining node map;
m_definingNodeMap.Add(varDefOp.Var, physicalProjectNode);
ConvertToNestOpInput(physicalProjectNode, varDefOp.Var, collectionInfoList, collectionNodes, externalReferences, collectionReferences);
}
else if (OpType.VarRef == definingExprNode.Op.OpType)
{
Var refVar = ((VarRefOp)definingExprNode.Op).Var;
Node physicalProjectNode;
if (m_definingNodeMap.TryGetValue(refVar, out physicalProjectNode))
{
physicalProjectNode = CopyCollectionVarDefinition(physicalProjectNode);
//SQLBUDT #602888: We need to track the copy too, in case we need to reuse it
m_definingNodeMap.Add(varDefOp.Var, physicalProjectNode);
ConvertToNestOpInput(physicalProjectNode, varDefOp.Var, collectionInfoList, collectionNodes, externalReferences, collectionReferences);
}
else
{
referencedVars.Add(chi);
newChildren.Add(chi);
}
}
else
{
definedVars.Add(chi);
newChildren.Add(chi);
}
}
// If we haven't identified a set of collection nodes, then we're done.
if (0 == collectionNodes.Count)
{
return projectNode;
}
// OK, we found something. We have some heavy lifting to perform.
// Then we need to build up a MultiStreamNestOp above the ProjectOp and the
// new collection nodes to get what we really need.
// pretend that the keys included everything from the new projectOp
VarVec outputVars = Command.CreateVarVec(op.Outputs);
// First we need to modify this physicalProjectNode to leave out the collection
// Vars that we've just seen.
VarVec newProjectVars = Command.CreateVarVec(op.Outputs);
newProjectVars.Minus(collectionReferences);
// If there are any external references from any of the collections, add
// those to the projectOp explicitly. This must be ok because the projectOp
// could not have had any left-correlation
newProjectVars.Or(externalReferences);
// Create the new projectOp, and hook it into this one. The new projectOp
// no longer references the collections in it's children; of course we only
// construct a new projectOp if it actually projects out some Vars.
if (!newProjectVars.IsEmpty)
{
if (IsNestOpNode(projectNode.Child0))
{
// If the input is a nest node, we need to figure out what to do with the
// rest of the in the VarDefList; we can't just pitch them, but we also
// really want to have the input be a nestop.
//
// What we do is essentially push any non-collection VarDefs down under
// the driving node of the MSN:
//
// Project[Z,Y,W](Msn(X,Y),VarDef(Z=blah),VarDef(W=Collect(etc)) ==> MSN(MSN(Project[Z](X,VarDef(Z=blah)),Y),W)
//
// An optimization, of course being to not push anything down when there
// aren't any extra vars defined.
if (definedVars.Count == 0 && referencedVars.Count == 0)
{
// We'll just pick the NestNode; we expect MergeNestedNestOps to merge
// it into what we're about to generate later.
projectNode = projectNode.Child0;
EnsureReferencedVarsAreRemoved(referencedVars, outputVars);
}
else
{
NestBaseOp nestedNestOp = (NestBaseOp)projectNode.Child0.Op;
// Build the new ProjectOp to be used as input to the new nestedNestOp;
// it's input is the input to the current nestedNestOp and a new
// VarDefList with only the vars that were defined on the top level
// ProjectOp.
List<Node> newNestedProjectNodeInputs = new List<Node>();
newNestedProjectNodeInputs.Add(projectNode.Child0.Child0);
referencedVars.AddRange(definedVars);
newNestedProjectNodeInputs.Add(Command.CreateNode(Command.CreateVarDefListOp(), referencedVars));
VarVec newNestedProjectOutputs = Command.CreateVarVec(nestedNestOp.Outputs);
// SQLBUDT #508722: We need to remove the collection vars,
// these are not produced by the project
foreach (CollectionInfo ci in nestedNestOp.CollectionInfo)
{
newNestedProjectOutputs.Clear(ci.CollectionVar);
}
foreach (Node varDefNode in referencedVars)
{
newNestedProjectOutputs.Set(((VarDefOp)varDefNode.Op).Var);
}
Node newNestedProjectNode = Command.CreateNode(Command.CreateProjectOp(newNestedProjectOutputs), newNestedProjectNodeInputs);
// Now build the new nestedNestedNestOp, with the new nestedProjectOp
// as it's input; we have to update the outputs of the NestOp to include
// the vars we pushed down.
VarVec newNestedNestOutputs = Command.CreateVarVec(newNestedProjectOutputs);
newNestedNestOutputs.Or(nestedNestOp.Outputs);
MultiStreamNestOp newNestedNestOp = Command.CreateMultiStreamNestOp(
nestedNestOp.PrefixSortKeys,
newNestedNestOutputs,
nestedNestOp.CollectionInfo);
List<Node> newNestedNestNodeInputs = new List<Node>();
newNestedNestNodeInputs.Add(newNestedProjectNode);
for (int j = 1; j < projectNode.Child0.Children.Count; j++)
{
newNestedNestNodeInputs.Add(projectNode.Child0.Children[j]);
}
projectNode = Command.CreateNode(newNestedNestOp, newNestedNestNodeInputs);
// We don't need to remove or remap referenced vars here because
// we're including them on the node we create; they won't become
// invalid.
}
}
else
{
ProjectOp newProjectOp = Command.CreateProjectOp(newProjectVars);
projectNode.Child1 = Command.CreateNode(projectNode.Child1.Op, newChildren);
projectNode.Op = newProjectOp;
EnsureReferencedVarsAreRemapped(referencedVars);
}
}
else
{
projectNode = projectNode.Child0;
EnsureReferencedVarsAreRemoved(referencedVars, outputVars);
}
// We need to make sure that we project out any external references to the driving
// node that the nested collections have, or we're going to end up with unresolvable
// vars when we pull them up over the current driving node. Of course, we only
// want the references that are actually ON the driving node.
externalReferences.And(projectNode.GetExtendedNodeInfo(Command).Definitions);
outputVars.Or(externalReferences);
// There are currently no prefix sortkeys. The processing for a SortOp may later
// introduce some prefix sortkeys, but there aren't any now.
MultiStreamNestOp nestOp = Command.CreateMultiStreamNestOp(new List<InternalTrees.SortKey>(), outputVars, collectionInfoList);
// Insert the current node at the head of the the list of collections
collectionNodes.Insert(0, projectNode);
Node nestNode = Command.CreateNode(nestOp, collectionNodes);
// Finally, recompute node info
Command.RecomputeNodeInfo(projectNode);
Command.RecomputeNodeInfo(nestNode);
#if DEBUG
int size = input.Length;// GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, nestNode);
#endif //DEBUG
return nestNode;
}
/// <summary>
/// If we're going to eat the ProjectNode, then we at least need to make
/// sure we remap any vars it defines as varRefs, and ensure that any
/// references to them are switched.
/// </summary>
/// <param name="referencedVars"></param>
/// <param name="outputVars"></param>
private void EnsureReferencedVarsAreRemoved(List<Node> referencedVars, VarVec outputVars)
{
foreach (Node chi in referencedVars)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
Var defVar = varDefOp.Var;
Var refVar = ResolveVarReference(defVar);
m_varRemapper.AddMapping(defVar, refVar);
outputVars.Clear(defVar);
outputVars.Set(refVar);
}
}
/// <summary>
/// We need to make sure that we remap the column maps that we're pulling
/// up to point to the defined var, not it's reference.
/// </summary>
/// <param name="referencedVars"></param>
private void EnsureReferencedVarsAreRemapped(List<Node> referencedVars)
{
foreach (Node chi in referencedVars)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
Var defVar = varDefOp.Var;
Var refVar = ResolveVarReference(defVar);
m_varRemapper.AddMapping(refVar, defVar);
}
}
/// <summary>
/// Convert a CollectOp subtree (when used as the defining expression for a
/// VarDefOp) into a reasonable input to a NestOp.
/// </summary>
/// <remarks>
/// There are a couple of cases that we handle here:
///
/// (a) PhysicalProject(X) ==> X
/// (b) PhysicalProject(Sort(X)) ==> Sort(X)
///
/// </remarks>
/// <param name="physicalProjectNode">the child of the CollectOp</param>
/// <param name="collectionVar">the collectionVar being defined</param>
/// <param name="collectionInfoList">where to append the new collectionInfo</param>
/// <param name="collectionNodes">where to append the collectionNode</param>
/// <param name="externalReferences">a bit vector of external references of the physicalProject</param>
/// <param name="collectionReferences">a bit vector of collection vars</param>
private void ConvertToNestOpInput(Node physicalProjectNode, Var collectionVar, List<CollectionInfo> collectionInfoList, List<Node> collectionNodes, VarVec externalReferences, VarVec collectionReferences)
{
// Keep track of any external references the physicalProjectOp has
externalReferences.Or(Command.GetNodeInfo(physicalProjectNode).ExternalReferences);
// Case: (a) PhysicalProject(X) ==> X
Node nestOpInput = physicalProjectNode.Child0;
// Now build the collectionInfo for this input, including the flattened
// list of vars, which is essentially the outputs from the physicalProject
// with the sortKey vars that aren't already in the outputs we already
// have.
PhysicalProjectOp physicalProjectOp = (PhysicalProjectOp)physicalProjectNode.Op;
VarList flattenedElementVarList = Command.CreateVarList(physicalProjectOp.Outputs);
VarVec flattenedElementVarVec = Command.CreateVarVec(flattenedElementVarList); // Use a VarVec to make the lookups faster
List<InternalTrees.SortKey> sortKeys = null;
if (OpType.Sort == nestOpInput.Op.OpType)
{
// Case: (b) PhysicalProject(Sort(X)) ==> Sort(X)
SortOp sortOp = (SortOp)nestOpInput.Op;
sortKeys = OpCopier.Copy(Command, sortOp.Keys);
foreach (InternalTrees.SortKey sk in sortKeys)
{
if (!flattenedElementVarVec.IsSet(sk.Var))
{
flattenedElementVarList.Add(sk.Var);
flattenedElementVarVec.Set(sk.Var);
}
}
}
else
{
sortKeys = new List<InternalTrees.SortKey>();
}
// Get the keys for the collection
VarVec keyVars = Command.GetExtendedNodeInfo(nestOpInput).Keys.KeyVars;
//Check whether all key are projected
VarVec keyVarsClone = keyVars.Clone();
keyVarsClone.Minus(flattenedElementVarVec);
VarVec keys = (keyVarsClone.IsEmpty) ? keyVars.Clone() : Command.CreateVarVec();
// Create the collectionInfo
CollectionInfo collectionInfo = Command.CreateCollectionInfo(collectionVar, physicalProjectOp.ColumnMap.Element, flattenedElementVarList, keys, sortKeys, null/*discriminatorValue*/);
// Now update the collections we're tracking.
collectionInfoList.Add(collectionInfo);
collectionNodes.Add(nestOpInput);
collectionReferences.Set(collectionVar);
}
/// <summary>
/// Case 2 for ProjectOp: NestOp is the input:
///
/// ProjectOp(NestOp(X,Y,...)) => NestOp'(ProjectOp'(X),Y,...)
///
/// Remove collection references from the ProjectOp and pull the
/// NestOp over it, adding any outputs that the projectOp added.
///
/// The outputs are important here; expanding the above:
///
/// P{a,n}(N{x1,x2,x3,y}(X,Y)) => N{a,x1,x2,x3,y}(P{a,x1,x2,x3}(X),Y)
///
/// Strategy:
///
/// (1) Determine oldNestOpCollectionOutputs
/// (2) oldNestOpNonCollectionOutputs = oldNestOpOutputs - oldNestOpCollectionOutputs;
/// (3) oldProjectOpNonCollectionOutputs = oldProjectOpOutputs - oldNestOpCollectionOutputs
/// (4) oldProjectOpCollectionOutputs = oldProjectOpOutputs - oldProjectOpNonCollectionOutputs
/// (5) build a new list of collectionInfo's for the new NestOp, including
/// only oldProjectOpCollectionOutputs.
/// (6) leftCorrelationVars = vars that are defined by the left most child of the input nestOpNode
/// and used in the subtrees rooted at the other children of the input nestOpNode
/// (7) newProjectOpOutputs = oldProjectOpNonCollectionOutputs + oldNestOpNonCollectionOutputs + leftCorrelationVars
///
/// (8) newProjectOpChildren = ....
///
/// Of course everything needs to be "derefed", that is, expressed in the projectOp Var Ids.
///
/// (9) Set ProjectOp's input to NestOp's input
/// (10) Set NestOp's input to ProjectOp.
/// </summary>
/// <param name="projectNode"></param>
/// <returns></returns>
private Node ProjectOpCase2(Node projectNode)
{
#if DEBUG
string input = Dump.ToXml(Command, projectNode);
#endif //DEBUG
ProjectOp projectOp = (ProjectOp)projectNode.Op;
Node nestNode = projectNode.Child0;
NestBaseOp nestOp = nestNode.Op as NestBaseOp;
#if DEBUG
// NOTE: I do not believe that we need to remap the nest op in terms of
// the project op, but I can't prove it right now; if the assert
// below fires, I was wrong.
//Dictionary<Var, Var> projectToNestVarMap = new Dictionary<Var, Var>();
Command.RecomputeNodeInfo(projectNode);
ExtendedNodeInfo projectNodeInfo = Command.GetExtendedNodeInfo(projectNode);
ExtendedNodeInfo nestNodeInfo = Command.GetExtendedNodeInfo(nestNode);
foreach (Node chi in projectNode.Child1.Children)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
Node definingExprNode = chi.Child0;
if (OpType.VarRef == definingExprNode.Op.OpType)
{
VarRefOp varRefOp = (VarRefOp)definingExprNode.Op;
PlanCompiler.Assert(varRefOp.Var == varDefOp.Var || !projectNodeInfo.LocalDefinitions.IsSet(varRefOp.Var), "need to remap vars!");
//if (!projectToNestVarMap.ContainsKey(varRefOp.Var)) {
// projectToNestVarMap.Add(varRefOp.Var, varDefOp.Var);
//}
}
}
#endif //DEBUG
// (1) Determine oldNestOpCollectionOutputs
VarVec oldNestOpCollectionOutputs = Command.CreateVarVec();
foreach (CollectionInfo ci in nestOp.CollectionInfo)
{
oldNestOpCollectionOutputs.Set(ci.CollectionVar);
}
// (2) oldNestOpNonCollectionOutputs = oldNestOpOutputs - oldNestOpCollectionOutputs;
VarVec oldNestOpNonCollectionOutputs = Command.CreateVarVec(nestOp.Outputs);
oldNestOpNonCollectionOutputs.Minus(oldNestOpCollectionOutputs);
// (3) oldProjectOpNonCollectionOutputs = oldProjectOpOutputs - oldNestOpCollectionOutputs
VarVec oldProjectOpNonCollectionOutputs = Command.CreateVarVec(projectOp.Outputs);
oldProjectOpNonCollectionOutputs.Minus(oldNestOpCollectionOutputs);
// (4) oldProjectOpCollectionOutputs = oldProjectOpOutputs - oldProjectOpNonCollectionOutputs
VarVec oldProjectOpCollectionOutputs = Command.CreateVarVec(projectOp.Outputs);
oldProjectOpCollectionOutputs.Minus(oldProjectOpNonCollectionOutputs);
// (5) build a new list of collectionInfo's for the new NestOp, including
// only oldProjectOpCollectionOutputs.
VarVec collectionsToRemove = Command.CreateVarVec(oldNestOpCollectionOutputs);
collectionsToRemove.Minus(oldProjectOpCollectionOutputs);
List<CollectionInfo> newCollectionInfoList;
List<Node> newNestNodeChildren;
if (collectionsToRemove.IsEmpty)
{
newCollectionInfoList = nestOp.CollectionInfo;
newNestNodeChildren = new List<Node>(nestNode.Children);
}
else
{
newCollectionInfoList = new List<CollectionInfo>();
newNestNodeChildren = new List<Node>();
newNestNodeChildren.Add(nestNode.Child0);
int i = 1;
foreach (CollectionInfo ci in nestOp.CollectionInfo)
{
if (!collectionsToRemove.IsSet(ci.CollectionVar))
{
newCollectionInfoList.Add(ci);
newNestNodeChildren.Add(nestNode.Children[i]);
}
i++;
}
}
// (6) leftCorrelationVars = vars that are defined by the left most child of the input nestOpNode
// and used in the subtrees rooted at the other children of the input nestOpNode
// #479547: These need to be added to the outputs of the project
VarVec leftCorrelationVars = Command.CreateVarVec();
for (int i = 1; i < nestNode.Children.Count; i++)
{
leftCorrelationVars.Or(nestNode.Children[i].GetExtendedNodeInfo(Command).ExternalReferences);
}
leftCorrelationVars.And(nestNode.Child0.GetExtendedNodeInfo(this.Command).Definitions);
// (7) newProjectOpOutputs = oldProjectOpNonCollectionOutputs + oldNestOpNonCollectionOutputs + leftCorrelationVars
VarVec newProjectOpOutputs = Command.CreateVarVec(oldProjectOpNonCollectionOutputs);
newProjectOpOutputs.Or(oldNestOpNonCollectionOutputs);
newProjectOpOutputs.Or(leftCorrelationVars);
// (8) newProjectOpChildren = ....
List<Node> newProjectOpChildren = new List<Node>(projectNode.Child1.Children.Count);
foreach (Node chi in projectNode.Child1.Children)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
if (newProjectOpOutputs.IsSet(varDefOp.Var))
{
newProjectOpChildren.Add(chi);
}
}
// (9) and (10), do the switch.
if (0 != newCollectionInfoList.Count)
{
// In some cases, the only var in the projection is the collection var; so
// the new projectOp will have an empty projection list; we can't just pullup
// the input, so we add a temporary constant op to it, ensuring that we don't
// have an empty projection list.
if (newProjectOpOutputs.IsEmpty)
{
PlanCompiler.Assert(newProjectOpChildren.Count == 0, "outputs is empty with non-zero count of children?");
NullOp tempOp = Command.CreateNullOp(Command.StringType);
Node tempNode = Command.CreateNode(tempOp);
Var tempVar;
Node varDefNode = Command.CreateVarDefNode(tempNode, out tempVar);
newProjectOpChildren.Add(varDefNode);
newProjectOpOutputs.Set(tempVar);
}
}
// Update the projectOp node with the new list of vars and
// the new list of children.
projectNode.Op = Command.CreateProjectOp(Command.CreateVarVec(newProjectOpOutputs));
projectNode.Child1 = Command.CreateNode(projectNode.Child1.Op, newProjectOpChildren);
if (0 == newCollectionInfoList.Count)
{
// There are no remaining nested collections (because none of them
// were actually referenced) We just pullup the driving node of the
// nest and eliminate the nestOp entirely.
projectNode.Child0 = nestNode.Child0;
nestNode = projectNode;
}
else
{
// We need to make sure that we project out any external references to the driving
// node that the nested collections have, or we're going to end up with unresolvable
// vars when we pull them up over the current driving node.
VarVec nestOpOutputs = Command.CreateVarVec(projectOp.Outputs);
for (int i = 1; i < newNestNodeChildren.Count; i++)
{
nestOpOutputs.Or(newNestNodeChildren[i].GetNodeInfo(Command).ExternalReferences);
}
// We need to make sure we project out the sort keys too...
foreach (InternalTrees.SortKey sk in nestOp.PrefixSortKeys)
{
nestOpOutputs.Set(sk.Var);
}
nestNode.Op = Command.CreateMultiStreamNestOp(nestOp.PrefixSortKeys, nestOpOutputs, newCollectionInfoList);
// we need to create a new node because we may have removed some of the collections.
nestNode = Command.CreateNode(nestNode.Op, newNestNodeChildren);
// Pull the nestNode up over the projectNode, and adjust
// their inputs accordingly.
projectNode.Child0 = nestNode.Child0;
nestNode.Child0 = projectNode;
Command.RecomputeNodeInfo(projectNode);
}
// Finally, recompute node info
Command.RecomputeNodeInfo(nestNode);
#if DEBUG
int size = input.Length; // GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, nestNode);
#endif //DEBUG
return nestNode;
}
/// <summary>
/// SetOp common processing
/// </summary>
/// <remarks>
/// The input to an IntersectOp or an ExceptOp cannot be a NestOp that
/// would imply that we support distinctness over collections - which
/// we dont.
///
/// UnionAllOp is somewhat trickier. We would need a way to percolate keys
/// up the UnionAllOp and Im ok with not supporting this case for now.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override Node VisitSetOp(SetOp op, Node n)
{
return NestingNotSupported(op, n);
}
/// <summary>
/// SingleRowOp
///
/// SingleRowOp(NestOp(x,...)) => NestOp(SingleRowOp(x),...)
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(SingleRowOp op, Node n)
{
VisitChildren(n);
if (IsNestOpNode(n.Child0))
{
n = n.Child0;
Node newSingleRowOpNode = Command.CreateNode(op, n.Child0);
n.Child0 = newSingleRowOpNode;
Command.RecomputeNodeInfo(n);
}
return n;
}
/// <summary>
/// SortOp
/// </summary>
/// <remarks>
/// If the input to a SortOp is a NestOp, then none of the sort
/// keys can be collection Vars of the NestOp we don't support
/// sorts over collections.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(SortOp op, Node n)
{
// Visit the children
VisitChildren(n);
m_varRemapper.RemapNode(n);
// If the child is a NestOp, then simply push the sortkeys into the
// "prefixKeys" of the nestOp, and return the NestOp itself.
// The SortOp has now been merged into the NestOp
NestBaseOp nestOp = n.Child0.Op as NestBaseOp;
if (nestOp != null)
{
n.Child0.Op = GetNestOpWithConsolidatedSortKeys(nestOp, op.Keys);
return n.Child0;
}
return n;
}
/// <summary>
/// ConstrainedSortOp
/// </summary>
/// <remarks>
/// Push the ConstrainedSortOp onto the driving node of the NestOp:
///
/// ConstrainedSortOp(NestOp(X,Y,...)) ==> NestOp(ConstrainedSortOp(X),Y,...)
///
/// There should not be any need for var renaming, because the ConstrainedSortOp cannot
/// refer to any vars from the NestOp
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(ConstrainedSortOp op, Node n)
{
// Visit the children
VisitChildren(n);
// If the input is a nest op, we push the ConstrainedSort onto
// the driving node.
NestBaseOp nestOp = n.Child0.Op as NestBaseOp;
if (nestOp != null)
{
Node nestNode = n.Child0;
n.Child0 = nestNode.Child0;
nestNode.Child0 = n;
nestNode.Op = GetNestOpWithConsolidatedSortKeys(nestOp, op.Keys);
n = nestNode;
}
return n;
}
/// <summary>
/// Helper method used by Visit(ConstrainedSortOp, Node)and Visit(SortOp, Node).
/// It returns a NestBaseOp equivalent to the inputNestOp, only with the given sortKeys
/// prepended to the prefix sort keys already on the inputNestOp.
/// </summary>
/// <param name="inputNestOp"></param>
/// <param name="sortKeys"></param>
/// <returns></returns>
private NestBaseOp GetNestOpWithConsolidatedSortKeys(NestBaseOp inputNestOp, List<InternalTrees.SortKey> sortKeys)
{
NestBaseOp result;
// Include the sort keys as the prefix sort keys;
// Note that we can't actually have a SSNest at this point in
// the tree; they're only introduced once we've processed the
// entire tree.
if (inputNestOp.PrefixSortKeys.Count == 0)
{
foreach (InternalTrees.SortKey sk in sortKeys)
{
//SQLBUDT #507170 - We can't just add the sort keys, we need to copy them,
// to avoid changes to one to affect the other
inputNestOp.PrefixSortKeys.Add(Command.CreateSortKey(sk.Var, sk.AscendingSort, sk.Collation));
}
result = inputNestOp;
}
else
{
VarVec sortVars = Command.CreateVarVec();
// First add the sort keys from the SortBaseOp, then the NestOp keys
List<InternalTrees.SortKey> sortKeyList = ConsolidateSortKeys(sortKeys, inputNestOp.PrefixSortKeys);
PlanCompiler.Assert(inputNestOp is MultiStreamNestOp, "Unexpected SingleStreamNestOp?");
// Finally, build a new NestOp with the keys...
result = Command.CreateMultiStreamNestOp(sortKeyList, inputNestOp.Outputs, inputNestOp.CollectionInfo);
}
return result;
}
/// <summary>
/// Helper method that given two lists of sort keys creates a single list of sort keys without duplicates.
/// First the keys from the first given list are added, then from the second one.
/// </summary>
/// <param name="sortKeyList1"></param>
/// <param name="sortKeyList2"></param>
/// <returns></returns>
private List<InternalTrees.SortKey> ConsolidateSortKeys(List<InternalTrees.SortKey> sortKeyList1, List<InternalTrees.SortKey> sortKeyList2)
{
VarVec sortVars = Command.CreateVarVec();
List<InternalTrees.SortKey> sortKeyList = new List<InternalTrees.SortKey>();
foreach (InternalTrees.SortKey sk in sortKeyList1)
{
if (!sortVars.IsSet(sk.Var))
{
sortVars.Set(sk.Var);
//SQLBUDT #507170 - We can't just add the sort keys, we need to copy them,
// to avoid changes to one to affect the other
sortKeyList.Add(Command.CreateSortKey(sk.Var, sk.AscendingSort, sk.Collation));
}
}
foreach (InternalTrees.SortKey sk in sortKeyList2)
{
if (!sortVars.IsSet(sk.Var))
{
sortVars.Set(sk.Var);
sortKeyList.Add(Command.CreateSortKey(sk.Var, sk.AscendingSort, sk.Collation));
}
}
return sortKeyList;
}
/// <summary>
/// UnnestOp
/// </summary>
/// <remarks>
/// Logically, the UnnestOp can simply be replaced with the defining expression
/// corresponding to the Var property of the UnnestOp. The tricky part is that
/// the UnnestOp produces a set of ColumnVars which may be referenced in other
/// parts of the query, and these need to be replaced by the corresponding Vars
/// produced by the defining expression.
///
/// There are essentially four cases:
///
/// Case 1: The UnnestOps Var is a UDT. Only the store can handle this, so we
/// pass it on without changing it.
///
/// Case 2: The UnnestOp has a Function as its input. This implies that the
/// store has TVFs, which it can Unnest, so we let it handle that and do
/// nothing.
///
/// Case 3: The UnnestOp Var defines a Nested collection. We'll just replace
/// the UnnestOp with the Input:
///
/// UnnestOp(VarDef(CollectOp(PhysicalProjectOp(input)))) => input
///
/// Case 4: The UnnestOp Var refers to a Nested collection from elsewhere. As we
/// discover NestOps, we maintain a var->PhysicalProject Node map. When
/// we get this case, we just make a copy of the PhysicalProject node, for
/// the referenced Var, and we replace the UnnestOp with it.
///
/// UnnestOp(VarDef(VarRef(v))) ==> copy-of-defining-node-for-v
///
/// Then, we need to update all references to the output Vars (ColumnVars) produced
/// by the Unnest to instead refer to the Vars produced by the copy of the subquery.
/// We produce a map from the Vars of the subquery to the corresponding vars of the
/// UnnestOp. We then use this map as we walk up the tree, and replace any references
/// to the Unnest Vars by the new Vars.
///
/// To simplify this process, as part of the ITreeGenerator, whenever we generate
/// an UnnestOp, we will generate a ProjectOp above it which simply selects out
/// all Vars from the UnnestOp; and has no local definitions. This allows us to
/// restrict the Var->Var replacement to just ProjectOp.
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(UnnestOp op, Node n)
{
#if DEBUG
string input = Dump.ToXml(Command, n);
#endif //DEBUG
// First, visit my children
VisitChildren(n);
// If we're unnesting a UDT, then simply return - we cannot eliminate this unnest
// It must be handled by the store
md.CollectionType collType = TypeHelpers.GetEdmType<md.CollectionType>(op.Var.Type);
if (TypeUtils.IsUdt(collType.TypeUsage))
{
return n;
}
// Find the VarDef node for the var we're supposed to unnest.
PlanCompiler.Assert(n.Child0.Op.OpType == OpType.VarDef, "Unnest without VarDef input?");
PlanCompiler.Assert(((VarDefOp)n.Child0.Op).Var == op.Var, "Unnest var not found?");
PlanCompiler.Assert(n.Child0.HasChild0, "VarDef without input?");
Node newNode = n.Child0.Child0;
if (OpType.Function == newNode.Op.OpType)
{
// If we have an unnest over a function, there's nothing more we can do
// This really means that the underlying store has the ability to
// support TVFs, and therefore unnests, and we simply leave it as is
return n;
}
else if (OpType.Collect == newNode.Op.OpType)
{
// UnnestOp(VarDef(CollectOp(PhysicalProjectOp(x)))) ==> x
PlanCompiler.Assert(newNode.HasChild0, "collect without input?");
newNode = newNode.Child0;
PlanCompiler.Assert(newNode.Op.OpType == OpType.PhysicalProject, "collect without physicalProject?");
// Ensure others that reference my var will know to use me;
m_definingNodeMap.Add(op.Var, newNode);
}
else if (OpType.VarRef == newNode.Op.OpType)
{
// UnnestOp(VarDef(VarRef(v))) ==> copy-of-defining-node-for-v
//
// The Unnest's input is a VarRef; we need to replace it with
// the defining node, and ensure we fixup the vars.
Var refVar = ((VarRefOp)newNode.Op).Var;
Node refVarDefiningNode;
bool found = m_definingNodeMap.TryGetValue(refVar, out refVarDefiningNode);
PlanCompiler.Assert(found, "Could not find a definition for a referenced collection var");
newNode = CopyCollectionVarDefinition(refVarDefiningNode);
PlanCompiler.Assert(newNode.Op.OpType == OpType.PhysicalProject, "driving node is not physicalProject?");
}
else
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.InvalidInternalTree, 2, newNode.Op.OpType);
}
IEnumerable<Var> inputVars = ((PhysicalProjectOp)newNode.Op).Outputs;
PlanCompiler.Assert(newNode.HasChild0, "physicalProject without input?");
newNode = newNode.Child0;
// Dev10 #530752 : it is not correct to just remove the sort key
if (newNode.Op.OpType == OpType.Sort)
{
m_foundSortUnderUnnest = true;
}
// Update the replacement vars to reflect the pulled up operation
UpdateReplacementVarMap(op.Table.Columns, inputVars);
#if DEBUG
int size = input.Length; // GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, newNode);
#endif //DEBUG
return newNode;
}
/// <summary>
/// Copies the given defining node for a collection var, but also makes sure to 'register' all newly
/// created collection vars (i.e. copied).
///
///SQLBUDT #557427: The defining node that is being copied may itself contain definitions to other
/// collection vars. These defintions would be present in m_definingNodeMap. However, after we make a copy
/// of the defining node, we need to make sure to also put 'matching' definitions of these other collection
/// vars into m_definingNodeMap.
/// The dictionary collectionVarDefinitions (below) contains the copied definitions of such collection vars.
/// but without the wrapping PhysicalProjectOp.
///
/// Example: m_definingNodeMap contains (var1, definition1) and (var2, definintion2).
/// var2 is defined inside the definition of var1.
/// Here we copy definition1 -> definintion1'.
/// We need to add to m_definitionNodeMap (var2', definition2').
/// definition2' should be a copy of definiton2 in the context of to definition1',
/// i.e. definition2' should relate to definition1' in same way that definition2 relates to definition1
/// /// </summary>
/// <param name="refVarDefiningNode"></param>
/// <returns></returns>
private Node CopyCollectionVarDefinition(Node refVarDefiningNode)
{
VarMap varMap;
Dictionary<Var, Node> collectionVarDefinitions;
Node newNode = OpCopierTrackingCollectionVars.Copy(Command, refVarDefiningNode, out varMap, out collectionVarDefinitions);
if (collectionVarDefinitions.Count != 0)
{
VarMap reverseMap = varMap.GetReverseMap();
foreach (KeyValuePair<Var, Node> collectionVarDefinitionPair in collectionVarDefinitions)
{
//
// Getting the matching definition for a collection map (i.e. definition2' from the example above)
//
// Definitions of collection vars are rooted at a PhysicalProjectOp,
// i.e. definition2 = PhysicalProjectOp(output2, columnMap2, definingSubtree2)
//
// The collectionVarDefinitions dictionary gives us the defining nodes rooted at what would a child
// of such PhysicalProjectOp, i.e. definingSubtree2'.
//
// definition2' = PhysicalProjectOp(CopyWithRemap(output2), CopyWithRemap(columnMap2), definingSubtree2')
//
Node keyDefiningNode;
Var keyDefiningVar = reverseMap[collectionVarDefinitionPair.Key];
//Note: we should not call ResolveVarReference(keyDefiningNode), we can only use the exact var
if (m_definingNodeMap.TryGetValue(keyDefiningVar, out keyDefiningNode))
{
PhysicalProjectOp originalPhysicalProjectOp = (PhysicalProjectOp)keyDefiningNode.Op;
VarList newOutputs = VarRemapper.RemapVarList(Command, varMap, originalPhysicalProjectOp.Outputs);
SimpleCollectionColumnMap newColumnMap = (SimpleCollectionColumnMap)ColumnMapCopier.Copy(originalPhysicalProjectOp.ColumnMap, varMap);
PhysicalProjectOp newPhysicalProjectOp = Command.CreatePhysicalProjectOp(newOutputs, newColumnMap);
Node newDefiningNode = Command.CreateNode(newPhysicalProjectOp, collectionVarDefinitionPair.Value);
m_definingNodeMap.Add(collectionVarDefinitionPair.Key, newDefiningNode);
}
}
}
return newNode;
}
#endregion
#region PhysicalOp Visitors
/// <summary>
/// MultiStreamNestOp/SingleStreamNestOp common processing.
///
/// Pretty much just verifies that we didn't leave a NestOp behind.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
///
protected override Node VisitNestOp(NestBaseOp op, Node n)
{
// First, visit my children
VisitChildren(n);
// If any of the children are a nestOp, then we have a
// problem; it shouldn't have happened.
foreach (Node chi in n.Children)
{
if (IsNestOpNode(chi))
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.NestOverNest);
}
}
return n;
}
/// <summary>
/// PhysicalProjectOp
/// </summary>
/// <remarks>
/// Tranformation:
///
/// PhysicalProjectOp(MultiStreamNestOp(...)) => PhysicalProjectOp(SortOp(...))
///
/// Strategy:
///
/// (1) Convert MultiStreamNestOp(...) => SingleStreamNestOp(...)
/// (2) Convert SingleStreamNestOp(...) => SortOp(...)
/// (3) Fixup the column maps.
///
/// </remarks>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(PhysicalProjectOp op, Node n)
{
// cannot be multi-input (not at this point)
PlanCompiler.Assert(n.Children.Count == 1, "multiple inputs to physicalProject?");
// First visit my children
VisitChildren(n);
m_varRemapper.RemapNode(n);
// Wait until we're processing the root physicalProjectNode to convert the nestOp
// to sort/union all; it's much easier to unnest them if we don't monkey with them
// until then.
//
// Also, even if we're the root physicalProjectNode and the children aren't NestOps,
// then there's nothing further to do.
if (n != Command.Root || !IsNestOpNode(n.Child0))
{
return n;
}
#if DEBUG
string input = Dump.ToXml(Command, n);
#endif //DEBUG
Node nestNode = n.Child0;
// OK, we're now guaranteed to be processing a root physicalProjectNode with at
// least one MultiStreamNestOp as it's input. First step is to convert that into
// a single SingleStreamNestOp.
//
// NOTE: if we ever wanted to support MARS, we would probably avoid the conversion
// to SingleStreamNest here, and do something to optimize this a bit
// differently for MARS. But that's a future feature.
Dictionary<Var, ColumnMap> varRefReplacementMap = new Dictionary<Var, ColumnMap>();
//Dev10_579146: The parameters that are output should be retained.
VarList outputVars = Command.CreateVarList(op.Outputs.Where(v => v.VarType == VarType.Parameter));
SimpleColumnMap[] keyColumnMaps;
nestNode = ConvertToSingleStreamNest(nestNode, varRefReplacementMap, outputVars, out keyColumnMaps);
SingleStreamNestOp ssnOp = (SingleStreamNestOp)nestNode.Op;
// Build up the sort node (if necessary).
Node sortNode = BuildSortForNestElimination(ssnOp, nestNode);
// Create a new column map using the columnMapPatcher that was updated by the
// conversion to SingleStreamNest process.
SimpleCollectionColumnMap newProjectColumnMap = (SimpleCollectionColumnMap)ColumnMapTranslator.Translate(((PhysicalProjectOp)n.Op).ColumnMap, varRefReplacementMap);
newProjectColumnMap = new SimpleCollectionColumnMap(newProjectColumnMap.Type, newProjectColumnMap.Name, newProjectColumnMap.Element, keyColumnMaps, null);
// Ok, build the new PhysicalProjectOp, slap the sortNode as its input
// and we're all done.
n.Op = Command.CreatePhysicalProjectOp(outputVars, newProjectColumnMap);
n.Child0 = sortNode;
#if DEBUG
int size = input.Length;// GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, n);
#endif //DEBUG
return n;
}
/// <summary>
/// Build up a sort node above the nestOp's input - only if there
/// are any sort keys to produce
/// </summary>
/// <param name="ssnOp"></param>
/// <param name="nestNode"></param>
/// <returns></returns>
private Node BuildSortForNestElimination(SingleStreamNestOp ssnOp, Node nestNode)
{
Node sortNode;
List<InternalTrees.SortKey> sortKeyList = BuildSortKeyList(ssnOp);
// Now if, at this point, there aren't any sort keys then remove the
// sort operation, otherwise, build a new SortNode;
if (sortKeyList.Count > 0)
{
SortOp sortOp = Command.CreateSortOp(sortKeyList);
sortNode = Command.CreateNode(sortOp, nestNode.Child0);
}
else
{
// No sort keys => single_row_table => no need to sort
sortNode = nestNode.Child0;
}
return sortNode;
}
/// <summary>
/// Build up the list of sortkeys. This list should comprise (in order):
///
/// - Any prefix sort keys (these represent sort operations on the
/// driving table, that were logically above the nest)
/// - The keys of the nest operation
/// - The discriminator column for the nest operation
/// - the list of postfix sort keys (used to represent nested collections)
///
/// Note that we only add the first occurrance of a var to the list; further
/// references to the same variable would be trumped by the first one.
/// </summary>
/// <param name="ssnOp"></param>
/// <returns></returns>
private List<InternalTrees.SortKey> BuildSortKeyList(SingleStreamNestOp ssnOp)
{
VarVec sortVars = Command.CreateVarVec();
// First add the prefix sort keys
List<InternalTrees.SortKey> sortKeyList = new List<InternalTrees.SortKey>();
foreach (InternalTrees.SortKey sk in ssnOp.PrefixSortKeys)
{
if (!sortVars.IsSet(sk.Var))
{
sortVars.Set(sk.Var);
sortKeyList.Add(sk);
}
}
// Then add the nestop keys
foreach (Var v in ssnOp.Keys)
{
if (!sortVars.IsSet(v))
{
sortVars.Set(v);
InternalTrees.SortKey sk = Command.CreateSortKey(v);
sortKeyList.Add(sk);
}
}
// Then add the discriminator var
PlanCompiler.Assert(!sortVars.IsSet(ssnOp.Discriminator), "prefix sort on discriminator?");
sortKeyList.Add(Command.CreateSortKey(ssnOp.Discriminator));
// Finally, add the postfix keys
foreach (InternalTrees.SortKey sk in ssnOp.PostfixSortKeys)
{
if (!sortVars.IsSet(sk.Var))
{
sortVars.Set(sk.Var);
sortKeyList.Add(sk);
}
}
return sortKeyList;
}
/// <summary>
/// convert MultiStreamNestOp to SingleStreamNestOp
/// </summary>
/// <remarks>
/// A MultiStreamNestOp is typically of the form M(D, N1, N2, ..., Nk)
/// where D is the driver stream, and N1, N2 etc. represent the collections.
///
/// In general, this can be converted into a SingleStreamNestOp over:
///
/// (D+ outerApply N1) AugmentedUnionAll (D+ outerApply N2) ...
///
/// Where:
///
/// D+ is D with an extra discriminator column that helps to identify
/// the specific collection.
///
/// AugmentedUnionAll is simply a unionAll where each branch of the
/// unionAll is augmented with nulls for the corresponding columns
/// of other tables in the branch
///
/// The simple case where there is only a single nested collection is easier
/// to address, and can be represented by:
///
/// MultiStreamNest(D, N1) => SingleStreamNest(OuterApply(D, N1))
///
/// The more complex case, where there is more than one nested column, requires
/// quite a bit more work:
///
/// MultiStreamNest(D, X, Y,...) => SingleStreamNest(UnionAll(Project{"1", D1...Dn, X1...Xn, nY1...nYn}(OuterApply(D, X)), Project{"2", D1...Dn, nX1...nXn, Y1...Yn}(OuterApply(D, Y)), ...))
///
/// Where:
/// D is the driving collection
/// D1...Dn are the columns from the driving collection
/// X is the first nested collection
/// X1...Xn are the columns from the first nested collection
/// nX1...nXn are null values for all columns from the first nested collection
/// Y is the second nested collection
/// Y1...Yn are the columns from the second nested collection
/// nY1...nYn are null values for all columns from the second nested collection
/// </remarks>
/// <param name="nestNode"></param>
/// <param name="varRefReplacementMap"></param>
/// <param name="flattenedOutputVarList"></param>
/// <param name="parentKeyColumnMaps"></param>
/// <returns></returns>
private Node ConvertToSingleStreamNest(Node nestNode, Dictionary<Var, ColumnMap> varRefReplacementMap, VarList flattenedOutputVarList, out SimpleColumnMap[] parentKeyColumnMaps)
{
#if DEBUG
string input = Dump.ToXml(Command, nestNode);
#endif //DEBUG
MultiStreamNestOp nestOp = (MultiStreamNestOp)nestNode.Op;
// We can't convert this node to a SingleStreamNest until all it's MultiStreamNest
// inputs are converted, so do that first.
for (int i = 1; i < nestNode.Children.Count; i++)
{
Node chi = nestNode.Children[i];
if (chi.Op.OpType == OpType.MultiStreamNest)
{
CollectionInfo chiCi = nestOp.CollectionInfo[i - 1];
VarList childFlattenedOutputVars = Command.CreateVarList();
SimpleColumnMap[] childKeyColumnMaps;
nestNode.Children[i] = ConvertToSingleStreamNest(chi, varRefReplacementMap, childFlattenedOutputVars, out childKeyColumnMaps);
// Now this may seem odd here, and it may look like we should have done this
// inside the recursive ConvertToSingleStreamNest call above, but that call
// doesn't have access to the CollectionInfo for it's parent, which is what
// we need to manipulate before we enter the loop below where we try and fold
// THIS nestOp nodes into a singleStreamNestOp.
ColumnMap childColumnMap = ColumnMapTranslator.Translate(chiCi.ColumnMap, varRefReplacementMap);
VarVec childKeys = Command.CreateVarVec(((SingleStreamNestOp)nestNode.Children[i].Op).Keys);
nestOp.CollectionInfo[i - 1] = Command.CreateCollectionInfo(chiCi.CollectionVar,
childColumnMap,
childFlattenedOutputVars,
childKeys,
chiCi.SortKeys,
null /*discriminatorValue*/
);
}
}
// Make sure that the driving node has keys defined. Otherwise we're in
// trouble; we must be able to infer keys from the driving node.
Node drivingNode = nestNode.Child0;
KeyVec drivingNodeKeys = Command.PullupKeys(drivingNode);
if (drivingNodeKeys.NoKeys)
{
// Microsoft: In this case we used to wrap drivingNode into a projection that would also project Edm.NewGuid() thus giving us a synthetic key.
// This solution did not work however due to a bug in SQL Server that allowed pulling non-deterministic functions above joins and applies, thus
// producing incorrect results. SQL Server bug was filed in "sqlbuvsts01\Sql Server" database as #725272.
// The only known path how we can get a keyless drivingNode is if
// - drivingNode is over a TVF call
// - TVF is declared as Collection(Row) is SSDL (the only form of TVF definitions at the moment)
// - TVF is not mapped to entities
// Note that if TVF is mapped to entities via function import mapping, and the user query is actually the call of the
// function import, we infer keys for the TVF from the c-space entity keys and their mappings.
throw EntityUtil.KeysRequiredForNesting();
}
// Get a deterministic ordering of Vars from this node.
// NOTE: we're using the drivingNode's definitions, which is a VarVec so it
// won't match the order of the input's columns, but the key thing is
// that we use the same order for all nested children, so it's OK.
ExtendedNodeInfo drivingNodeInfo = Command.GetExtendedNodeInfo(drivingNode);
VarVec drivingNodeVarVec = drivingNodeInfo.Definitions;
VarList drivingNodeVars = Command.CreateVarList(drivingNodeVarVec);
// Normalize all collection inputs to the nestOp. Specifically, remove any
// SortOps (adding the sort keys to the postfix sortkey list). Additionally,
// add a discriminatorVar to each collection child
VarList discriminatorVarList;
List<List<InternalTrees.SortKey>> postfixSortKeyList;
NormalizeNestOpInputs(nestOp, nestNode, out discriminatorVarList, out postfixSortKeyList);
// Now build up the union-all subquery
List<Dictionary<Var, Var>> varMapList;
Var outputDiscriminatorVar;
Node unionAllNode = BuildUnionAllSubqueryForNestOp(nestOp, nestNode, drivingNodeVars, discriminatorVarList, out outputDiscriminatorVar, out varMapList);
Dictionary<Var, Var> drivingNodeVarMap = varMapList[0];
// OK. We've finally created the UnionAll over each of the project/outerApply
// combinations. We know that the output columns will be:
//
// Discriminator, DrivingColumns, Collection1Columns, Collection2Columns, ...
//
// Now, rebuild the columnMaps, since all of the columns in the original column
// maps are now referencing newer variables. To do that, we'll walk the list of
// outputs from the unionAll, and construct new VarRefColumnMaps for each one,
// and adding it to a ColumnMapPatcher, which we'll use to actually fix everything
// up.
//
// While we're at it, we'll build a new list of top-level output columns, which
// should include only the Discriminator, the columns from the driving collection,
// and and one column for each of the nested collections.
// Start building the flattenedOutputVarList that the top level PhysicalProjectOp
// is to output.
flattenedOutputVarList.AddRange(RemapVars(drivingNodeVars, drivingNodeVarMap));
VarVec flattenedOutputVarVec = Command.CreateVarVec(flattenedOutputVarList);
VarVec nestOpOutputs = Command.CreateVarVec(flattenedOutputVarVec);
// Add any adjustments to the driving nodes vars to the column map patcher
foreach (KeyValuePair<Var, Var> kv in drivingNodeVarMap)
{
if (kv.Key != kv.Value)
{
varRefReplacementMap[kv.Key] = new VarRefColumnMap(kv.Value);
}
}
RemapSortKeys(nestOp.PrefixSortKeys, drivingNodeVarMap);
List<InternalTrees.SortKey> newPostfixSortKeys = new List<InternalTrees.SortKey>();
List<CollectionInfo> newCollectionInfoList = new List<CollectionInfo>();
// Build the discriminator column map, and ensure it's in the outputs
VarRefColumnMap discriminatorColumnMap = new VarRefColumnMap(outputDiscriminatorVar);
nestOpOutputs.Set(outputDiscriminatorVar);
if (!flattenedOutputVarVec.IsSet(outputDiscriminatorVar))
{
flattenedOutputVarList.Add(outputDiscriminatorVar);
flattenedOutputVarVec.Set(outputDiscriminatorVar);
}
// Build the key column maps, and ensure they're in the outputs as well.
VarVec parentKeys = RemapVarVec(drivingNodeKeys.KeyVars, drivingNodeVarMap);
parentKeyColumnMaps = new SimpleColumnMap[parentKeys.Count];
int index = 0;
foreach (Var keyVar in parentKeys)
{
parentKeyColumnMaps[index] = new VarRefColumnMap(keyVar);
index++;
if (!flattenedOutputVarVec.IsSet(keyVar))
{
flattenedOutputVarList.Add(keyVar);
flattenedOutputVarVec.Set(keyVar);
}
}
// Now that we've handled the driving node, deal with each of the
// nested inputs, in sequence.
for (int i = 1; i < nestNode.Children.Count; i++)
{
CollectionInfo ci = nestOp.CollectionInfo[i - 1];
List<InternalTrees.SortKey> postfixSortKeys = postfixSortKeyList[i];
RemapSortKeys(postfixSortKeys, varMapList[i]);
newPostfixSortKeys.AddRange(postfixSortKeys);
ColumnMap newColumnMap = ColumnMapTranslator.Translate(ci.ColumnMap, varMapList[i]);
VarList newFlattenedElementVars = RemapVarList(ci.FlattenedElementVars, varMapList[i]);
VarVec newCollectionKeys = RemapVarVec(ci.Keys, varMapList[i]);
RemapSortKeys(ci.SortKeys, varMapList[i]);
CollectionInfo newCollectionInfo = Command.CreateCollectionInfo(
ci.CollectionVar,
newColumnMap,
newFlattenedElementVars,
newCollectionKeys,
ci.SortKeys,
i);
newCollectionInfoList.Add(newCollectionInfo);
// For a collection Var, we add the flattened elementVars for the
// collection in place of the collection Var itself, and we create
// a new column map to represent all the stuff we've done.
foreach (Var v in newFlattenedElementVars)
{
if (!flattenedOutputVarVec.IsSet(v))
{
flattenedOutputVarList.Add(v);
flattenedOutputVarVec.Set(v);
}
}
nestOpOutputs.Set(ci.CollectionVar);
int keyColumnMapIndex = 0;
SimpleColumnMap[] keyColumnMaps = new SimpleColumnMap[newCollectionInfo.Keys.Count];
foreach (Var keyVar in newCollectionInfo.Keys)
{
keyColumnMaps[keyColumnMapIndex] = new VarRefColumnMap(keyVar);
keyColumnMapIndex++;
}
DiscriminatedCollectionColumnMap collectionColumnMap = new DiscriminatedCollectionColumnMap(
TypeUtils.CreateCollectionType(newCollectionInfo.ColumnMap.Type),
newCollectionInfo.ColumnMap.Name,
newCollectionInfo.ColumnMap,
keyColumnMaps,
parentKeyColumnMaps,
discriminatorColumnMap,
newCollectionInfo.DiscriminatorValue
);
varRefReplacementMap[ci.CollectionVar] = collectionColumnMap;
}
// Finally, build up the SingleStreamNest Node
SingleStreamNestOp newSsnOp = Command.CreateSingleStreamNestOp(
parentKeys,
nestOp.PrefixSortKeys,
newPostfixSortKeys,
nestOpOutputs,
newCollectionInfoList,
outputDiscriminatorVar);
Node newNestNode = Command.CreateNode(newSsnOp, unionAllNode);
#if DEBUG
int size = input.Length;// GC.KeepAlive makes FxCop Grumpy.
string output = Dump.ToXml(Command, newNestNode);
#endif //DEBUG
return newNestNode;
}
/// <summary>
/// "Normalize" each input to the NestOp.
/// We're now in the context of a MultiStreamNestOp, and we're trying to convert this
/// into a SingleStreamNestOp.
///
/// Normalization specifically refers to
/// - augmenting each input with a discriminator value (that describes the collection)
/// - removing the sort node at the root (and capturing this information as part of the sortkeys)
/// </summary>
/// <param name="nestOp">the nestOp</param>
/// <param name="nestNode">the nestOp subtree</param>
/// <param name="discriminatorVarList">Discriminator Vars for each Collection input</param>
/// <param name="sortKeys">SortKeys (postfix) for each Collection input</param>
///
///
private void NormalizeNestOpInputs(NestBaseOp nestOp, Node nestNode, out VarList discriminatorVarList, out List<List<InternalTrees.SortKey>> sortKeys)
{
discriminatorVarList = Command.CreateVarList();
// We insert a dummy var and value at poistion 0 for the deriving node, which
// we should never reference;
discriminatorVarList.Add(null);
sortKeys = new List<List<InternalTrees.SortKey>>();
sortKeys.Add(nestOp.PrefixSortKeys);
for (int i = 1; i < nestNode.Children.Count; i++)
{
Node inputNode = nestNode.Children[i];
// Since we're called from ConvertToSingleStreamNest, it is possible that we have a
// SingleStreamNest here, because the input to the MultiStreamNest we're converting
// may have been a MultiStreamNest that was converted to a SingleStreamNest.
SingleStreamNestOp ssnOp = inputNode.Op as SingleStreamNestOp;
// If this collection is a SingleStreamNest, we pull up the key information
// in it, and pullup the input;
if (null != ssnOp)
{
// Note that the sortKeys argument is 1:1 with the nestOp inputs, that is
// each input may have exactly one entry in the list, so we have to combine
// all of the sort key components (Prefix+Keys+Discriminator+PostFix) into
// one list.
List<InternalTrees.SortKey> mySortKeys = BuildSortKeyList(ssnOp);
sortKeys.Add(mySortKeys);
inputNode = inputNode.Child0;
}
else
{
// If the current collection has a SortNode specified, then pull that
// out, and add the information to the list of postfix SortColumns
SortOp sortOp = inputNode.Op as SortOp;
if (null != sortOp)
{
inputNode = inputNode.Child0; // bypass the sort node
// Add the sort keys to the list of postfix sort keys
sortKeys.Add(sortOp.Keys);
}
else
{
// No postfix sort keys for this case
sortKeys.Add(new List<InternalTrees.SortKey>());
}
}
// #447304: Ensure that any SortKey Vars will be projected from the input in addition to showing up in the postfix sort keys
// by adding them to the FlattenedElementVars for this NestOp input's CollectionInfo.
VarList flattenedElementVars = nestOp.CollectionInfo[i - 1].FlattenedElementVars;
foreach (InternalTrees.SortKey sortKey in sortKeys[i])
{
if (!flattenedElementVars.Contains(sortKey.Var))
{
flattenedElementVars.Add(sortKey.Var);
}
}
// Add a discriminator column to the collection-side - this must
// happen before the outer-apply is added on; we need to use the value of
// the discriminator to distinguish between null and empty collections
Var discriminatorVar;
Node augmentedInput = AugmentNodeWithInternalIntegerConstant(inputNode, i, out discriminatorVar);
nestNode.Children[i] = augmentedInput;
discriminatorVarList.Add(discriminatorVar);
}
}
/// <summary>
/// 'Extend' a given input node to also project out an internal integer constant with the given value
/// </summary>
/// <param name="input"></param>
/// <param name="value"></param>
/// <param name="internalConstantVar"></param>
/// <returns></returns>
private Node AugmentNodeWithInternalIntegerConstant(Node input, int value, out Var internalConstantVar)
{
return AugmentNodeWithConstant(input, () => Command.CreateInternalConstantOp(Command.IntegerType, value), out internalConstantVar);
}
/// <summary>
/// Add a constant to a node. Specifically:
///
/// N ==> Project(N,{definitions-from-N, constant})
/// </summary>
/// <param name="input">the input node to augment</param>
/// <param name="createOp">The fucntion to create the constant op </param>
/// <param name="constantVar">the computed Var for the internal constant</param>
/// <returns>the augmented node</returns>
private Node AugmentNodeWithConstant(Node input, Func<ConstantBaseOp> createOp, out Var constantVar)
{
// Construct the op for the constant value and
// a VarDef node that that defines it.
ConstantBaseOp constantOp = createOp();
Node constantNode = Command.CreateNode(constantOp);
Node varDefListNode = Command.CreateVarDefListNode(constantNode, out constantVar);
// Now identify the list of definitions from the input, and project out
// every one of them and include the constantVar
ExtendedNodeInfo inputNodeInfo = Command.GetExtendedNodeInfo(input);
VarVec projectOutputs = Command.CreateVarVec(inputNodeInfo.Definitions);
projectOutputs.Set(constantVar);
ProjectOp projectOp = Command.CreateProjectOp(projectOutputs);
Node projectNode = Command.CreateNode(projectOp, input, varDefListNode);
return projectNode;
}
/// <summary>
/// Convert a SingleStreamNestOp into a massive UnionAllOp
/// </summary>
/// <param name="nestOp"></param>
/// <param name="nestNode"></param>
/// <param name="drivingNodeVars"></param>
/// <param name="discriminatorVarList"></param>
/// <param name="discriminatorVar"></param>
/// <param name="varMapList"></param>
/// <returns></returns>
private Node BuildUnionAllSubqueryForNestOp(NestBaseOp nestOp, Node nestNode, VarList drivingNodeVars, VarList discriminatorVarList, out Var discriminatorVar, out List<Dictionary<Var, Var>> varMapList)
{
Node drivingNode = nestNode.Child0;
// For each of the NESTED collections...
Node unionAllNode = null;
VarList unionAllOutputs = null;
for (int i = 1; i < nestNode.Children.Count; i++)
{
// Ensure we only use the driving collection tree once, so other
// transformations do not unintentionally change more than one path.
// To prevent nodes in the tree from being used in multiple paths,
// we copy the driving input on successive nodes.
VarList newDrivingNodeVars;
Node newDrivingNode;
VarList newFlattenedElementVars;
Op op;
if (i > 1)
{
newDrivingNode = OpCopier.Copy(Command, drivingNode, drivingNodeVars, out newDrivingNodeVars);
//
// Bug 450245: If we copied the driver node, then references to driver node vars
// from the collection subquery must be patched up
//
VarRemapper varRemapper = new VarRemapper(this.Command);
for (int j = 0; j < drivingNodeVars.Count; j++)
{
varRemapper.AddMapping(drivingNodeVars[j], newDrivingNodeVars[j]);
}
// Remap all references in the current subquery
varRemapper.RemapSubtree(nestNode.Children[i]);
// Bug 479183: Remap the flattened element vars
newFlattenedElementVars = varRemapper.RemapVarList(nestOp.CollectionInfo[i - 1].FlattenedElementVars);
// Create a cross apply for all but the first collection
op = Command.CreateCrossApplyOp();
}
else
{
newDrivingNode = drivingNode;
newDrivingNodeVars = drivingNodeVars;
newFlattenedElementVars = nestOp.CollectionInfo[i - 1].FlattenedElementVars;
// Create an outer apply for the first collection,
// that way we ensure at least one row for each row in the driver node.
op = Command.CreateOuterApplyOp();
}
// Create an outer apply with the driver node and the nested collection.
Node applyNode = Command.CreateNode(op, newDrivingNode, nestNode.Children[i]);
// Now create a ProjectOp that augments the output from the OuterApplyOp
// with nulls for each column from other collections
// Build the VarDefList (the list of vars) for the Project, starting
// with the collection discriminator var
List<Node> varDefListChildren = new List<Node>();
VarList projectOutputs = Command.CreateVarList();
// Add the collection discriminator var to the output.
projectOutputs.Add(discriminatorVarList[i]);
// Add all columns from the driving node
projectOutputs.AddRange(newDrivingNodeVars);
// Add all the vars from all the nested collections;
for (int j = 1; j < nestNode.Children.Count; j++)
{
CollectionInfo otherCollectionInfo = nestOp.CollectionInfo[j - 1];
// For the current nested collection, we just pick the var that's
// coming from there and don't need have a new var defined, but for
// the rest we construct null values.
if (i == j)
{
projectOutputs.AddRange(newFlattenedElementVars);
}
else
{
foreach (Var v in otherCollectionInfo.FlattenedElementVars)
{
NullOp nullOp = Command.CreateNullOp(v.Type);
Node nullOpNode = Command.CreateNode(nullOp);
Var nullOpVar;
Node nullOpVarDefNode = Command.CreateVarDefNode(nullOpNode, out nullOpVar);
varDefListChildren.Add(nullOpVarDefNode);
projectOutputs.Add(nullOpVar);
}
}
}
Node varDefListNode = Command.CreateNode(Command.CreateVarDefListOp(), varDefListChildren);
// Now, build up the projectOp
VarVec projectOutputsVarSet = Command.CreateVarVec(projectOutputs);
ProjectOp projectOp = Command.CreateProjectOp(projectOutputsVarSet);
Node projectNode = Command.CreateNode(projectOp, applyNode, varDefListNode);
// finally, build the union all
if (unionAllNode == null)
{
unionAllNode = projectNode;
unionAllOutputs = projectOutputs;
}
else
{
VarMap unionAllMap = new VarMap();
VarMap projectMap = new VarMap();
for (int idx = 0; idx < unionAllOutputs.Count; idx++)
{
Var outputVar = Command.CreateSetOpVar(unionAllOutputs[idx].Type);
unionAllMap.Add(outputVar, unionAllOutputs[idx]);
projectMap.Add(outputVar, projectOutputs[idx]);
}
UnionAllOp unionAllOp = Command.CreateUnionAllOp(unionAllMap, projectMap);
unionAllNode = Command.CreateNode(unionAllOp, unionAllNode, projectNode);
// Get the output vars from the union-op. This must be in the same order
// as the original list of Vars
unionAllOutputs = GetUnionOutputs(unionAllOp, unionAllOutputs);
}
}
// We're done building the node, but now we have to build a mapping from
// the before-Vars to the after-Vars
varMapList = new List<Dictionary<Var, Var>>();
IEnumerator<Var> outputVarsEnumerator = unionAllOutputs.GetEnumerator();
if (!outputVarsEnumerator.MoveNext())
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.ColumnCountMismatch, 4); // more columns from children than are on the unionAll?
}
// The discriminator var is always first
discriminatorVar = outputVarsEnumerator.Current;
// Build a map for each input
for (int i = 0; i < nestNode.Children.Count; i++)
{
Dictionary<Var, Var> varMap = new Dictionary<Var, Var>();
VarList varList = (i == 0) ? drivingNodeVars : nestOp.CollectionInfo[i - 1].FlattenedElementVars;
foreach (Var v in varList)
{
if (!outputVarsEnumerator.MoveNext())
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.ColumnCountMismatch, 5); // more columns from children than are on the unionAll?
}
varMap[v] = outputVarsEnumerator.Current;
}
varMapList.Add(varMap);
}
if (outputVarsEnumerator.MoveNext())
{
throw EntityUtil.InternalError(EntityUtil.InternalErrorCode.ColumnCountMismatch, 6); // at this point, we better be done with both lists...
}
return unionAllNode;
}
/// <summary>
/// Get back an ordered list of outputs from a union-all op. The ordering should
/// be identical to the ordered list "leftVars" which describes the left input of
/// the unionAllOp
/// </summary>
/// <param name="unionOp">the unionall Op</param>
/// <param name="leftVars">vars of the left input</param>
/// <returns>output vars ordered in the same way as the left input</returns>
private static VarList GetUnionOutputs(UnionAllOp unionOp, VarList leftVars)
{
VarMap varMap = unionOp.VarMap[0];
Dictionary<Var, Var> reverseVarMap = varMap.GetReverseMap();
VarList unionAllVars = Command.CreateVarList();
foreach (Var v in leftVars)
{
Var newVar = reverseVarMap[v];
unionAllVars.Add(newVar);
}
return unionAllVars;
}
#endregion
#endregion
}
#region Class OpCopierTrackingCollectionVars
/// <summary>
/// Wrapper around OpCopier to keep track of the defining subtrees
/// of collection vars defined in the subtree being returned as a copy.
/// </summary>
internal class OpCopierTrackingCollectionVars : OpCopier
{
#region Private State
private Dictionary<Var, Node> m_newCollectionVarDefinitions = new Dictionary<Var, Node>();
#endregion
#region Private Constructor
private OpCopierTrackingCollectionVars(Command cmd)
: base(cmd)
{
}
#endregion
#region Public Surface
/// <summary>
/// Equivalent to OpCopier.Copy, only in addition it keeps track of the defining subtrees
/// of collection vars defined in the subtree rooted at the copy of the input node n.
/// </summary>
/// <param name="cmd"></param>
/// <param name="n"></param>
/// <param name="varMap"></param>
/// <param name="newCollectionVarDefinitions"></param>
/// <returns></returns>
internal static Node Copy(Command cmd, Node n, out VarMap varMap, out Dictionary<Var, Node> newCollectionVarDefinitions)
{
OpCopierTrackingCollectionVars oc = new OpCopierTrackingCollectionVars(cmd);
Node newNode = oc.CopyNode(n);
varMap = oc.m_varMap;
newCollectionVarDefinitions = oc.m_newCollectionVarDefinitions;
return newNode;
}
#endregion
#region Visitor Members
/// <summary>
/// Tracks the collection vars after calling the base implementation
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(MultiStreamNestOp op, Node n)
{
Node result = base.Visit(op, n);
MultiStreamNestOp newOp = (MultiStreamNestOp)result.Op;
for (int i = 0; i < newOp.CollectionInfo.Count; i++)
{
m_newCollectionVarDefinitions.Add(newOp.CollectionInfo[i].CollectionVar, result.Children[i + 1]);
}
return result;
}
#endregion
}
#endregion
#region Class SortRemover
/// <summary>
/// Removes all sort nodes from the given command except for the top most one
/// (the child of the root PhysicalProjectOp node) if any
/// </summary>
internal class SortRemover : BasicOpVisitorOfNode
{
#region Private members
private Command m_command;
/// <summary>
/// The only sort node that should not be removed, if any
/// </summary>
private Node m_topMostSort = null;
/// <summary>
/// Keeps track of changed nodes to allow to only recompute node info when needed.
/// </summary>
private HashSet<Node> changedNodes = new HashSet<Node>();
#endregion
#region Constructor
private SortRemover(Command command, Node topMostSort)
{
this.m_command = command;
this.m_topMostSort = topMostSort;
}
#endregion
#region Entry point
internal static void Process(Command command)
{
Node topMostSort;
if (command.Root.Child0 != null && command.Root.Child0.Op.OpType == OpType.Sort)
{
topMostSort = command.Root.Child0;
}
else
{
topMostSort = null;
}
SortRemover sortRemover = new SortRemover(command, topMostSort);
command.Root = sortRemover.VisitNode(command.Root);
}
#endregion
#region Visitor Helpers
/// <summary>
/// Iterates over all children.
/// If any of the children changes, update the node info.
/// This is safe to do because the only way a child can change is
/// if it is a sort node that needs to be removed. The nodes whose children have
/// chagnged also get tracked.
/// </summary>
/// <param name="n">The current node</param>
protected override void VisitChildren(Node n)
{
bool anyChanged = false;
for (int i = 0; i < n.Children.Count; i++)
{
Node originalChild = n.Children[i];
n.Children[i] = VisitNode(n.Children[i]);
if (!Object.ReferenceEquals(originalChild, n.Children[i]) || changedNodes.Contains(originalChild))
{
anyChanged = true;
}
}
if (anyChanged)
{
m_command.RecomputeNodeInfo(n);
changedNodes.Add(n);
}
}
#endregion
#region Visitors
/// <summary>
/// If the given node is not the top most SortOp node remove it.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(SortOp op, Node n)
{
VisitChildren(n);
Node result;
if (Object.ReferenceEquals(n, m_topMostSort))
{
result = n;
}
else
{
result = n.Child0;
}
return result;
}
#endregion
#region
#endregion
}
#endregion
}
|