1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
|
//---------------------------------------------------------------------
// <copyright file="Predicate.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
using System.Globalization;
using System.Data.Query.InternalTrees;
namespace System.Data.Query.PlanCompiler
{
/// <summary>
/// The Predicate class represents a condition (predicate) in CNF.
/// A predicate consists of a number of "simple" parts, and the parts are considered to be
/// ANDed together
///
/// This class provides a number of useful functions related to
/// - Single Table predicates
/// - Join predicates
/// - Key preservation
/// - Null preservation
/// etc.
///
/// Note: This class doesn't really convert node trees into CNF form. It looks for
/// basic CNF patterns, and reasons about them. For example,
/// (a AND b) OR c
/// can technically be translated into (a OR c) AND (b OR c),
/// but we don't bother.
/// At some future point of time, it might be appropriate to consider this
///
/// </summary>
internal class Predicate
{
#region private state
private Command m_command;
private List<Node> m_parts;
#endregion
#region constructors
/// <summary>
/// Create an empty predicate
/// </summary>
/// <param name="command"></param>
internal Predicate(Command command)
{
m_command = command;
m_parts = new List<Node>();
}
/// <summary>
/// Create a predicate from a node tree
/// </summary>
/// <param name="command">current iqt command</param>
/// <param name="andTree">the node tree</param>
internal Predicate(Command command, Node andTree)
: this(command)
{
PlanCompiler.Assert(andTree != null, "null node passed to Predicate() constructor");
InitFromAndTree(andTree);
}
#endregion
#region public surface
#region construction APIs
/// <summary>
/// Add a new "part" (simple predicate) to the current list of predicate parts
/// </summary>
/// <param name="n">simple predicate</param>
internal void AddPart(Node n)
{
m_parts.Add(n);
}
#endregion
#region Reconstruction (of node tree)
/// <summary>
/// Build up an AND tree based on the current parts.
/// Specifically, if I have parts (p1, p2, ..., pn), we build up a tree that looks like
/// p1 AND p2 AND ... AND pn
///
/// If we have no parts, we return a null reference
/// If we have only one part, then we return just that part
/// </summary>
/// <returns>the and subtree</returns>
internal Node BuildAndTree()
{
Node andNode = null;
foreach (Node n in m_parts)
{
if (andNode == null)
{
andNode = n;
}
else
{
andNode = m_command.CreateNode(m_command.CreateConditionalOp(OpType.And),
andNode, n);
}
}
return andNode;
}
#endregion
#region SingleTable (Filter) Predicates
/// <summary>
/// Partition the current predicate into predicates that only apply
/// to the specified table (single-table-predicates), and others
/// </summary>
/// <param name="tableDefinitions">current columns defined by the table</param>
/// <param name="otherPredicates">non-single-table predicates</param>
/// <returns>single-table-predicates</returns>
internal Predicate GetSingleTablePredicates(VarVec tableDefinitions,
out Predicate otherPredicates)
{
List<VarVec> tableDefinitionList = new List<VarVec>();
tableDefinitionList.Add(tableDefinitions);
List<Predicate> singleTablePredicateList;
GetSingleTablePredicates(tableDefinitionList, out singleTablePredicateList, out otherPredicates);
return singleTablePredicateList[0];
}
#endregion
#region EquiJoins
/// <summary>
/// Get the set of equi-join columns from this predicate
/// </summary>
/// <param name="leftTableDefinitions"></param>
/// <param name="rightTableDefinitions"></param>
/// <param name="leftTableEquiJoinColumns"></param>
/// <param name="rightTableEquiJoinColumns"></param>
/// <param name="otherPredicates"></param>
internal void GetEquiJoinPredicates(VarVec leftTableDefinitions, VarVec rightTableDefinitions,
out List<Var> leftTableEquiJoinColumns, out List<Var> rightTableEquiJoinColumns,
out Predicate otherPredicates)
{
otherPredicates = new Predicate(m_command);
leftTableEquiJoinColumns = new List<Var>();
rightTableEquiJoinColumns = new List<Var>();
foreach (Node part in m_parts)
{
Var leftTableVar;
Var rightTableVar;
if (IsEquiJoinPredicate(part, leftTableDefinitions, rightTableDefinitions, out leftTableVar, out rightTableVar))
{
leftTableEquiJoinColumns.Add(leftTableVar);
rightTableEquiJoinColumns.Add(rightTableVar);
}
else
{
otherPredicates.AddPart(part);
}
}
}
internal Predicate GetJoinPredicates(VarVec leftTableDefinitions, VarVec rightTableDefinitions,
out Predicate otherPredicates)
{
Predicate joinPredicate = new Predicate(m_command);
otherPredicates = new Predicate(m_command);
foreach (Node part in m_parts)
{
Var leftTableVar;
Var rightTableVar;
if (Predicate.IsEquiJoinPredicate(part, leftTableDefinitions, rightTableDefinitions, out leftTableVar, out rightTableVar))
{
joinPredicate.AddPart(part);
}
else
{
otherPredicates.AddPart(part);
}
}
return joinPredicate;
}
#endregion
#region Keys
/// <summary>
/// Is the current predicate a "key-satisfying" predicate?
/// </summary>
/// <param name="keyVars">list of keyVars</param>
/// <param name="definitions">current table definitions</param>
/// <returns>true, if this predicate satisfies the keys</returns>
internal bool SatisfiesKey(VarVec keyVars, VarVec definitions)
{
if (keyVars.Count > 0)
{
VarVec missingKeys = keyVars.Clone();
foreach (Node part in m_parts)
{
if (part.Op.OpType != OpType.EQ)
{
continue;
}
Var keyVar;
if (IsKeyPredicate(part.Child0, part.Child1, keyVars, definitions, out keyVar))
{
missingKeys.Clear(keyVar);
}
else if (IsKeyPredicate(part.Child1, part.Child0, keyVars, definitions, out keyVar))
{
missingKeys.Clear(keyVar);
}
}
return missingKeys.IsEmpty;
}
return false;
}
#endregion
#region Nulls
/// <summary>
/// Does this predicate preserve nulls for the table columns?
///
/// If the ansiNullSemantics parameter is set, then we simply return true
/// always - this shuts off most optimizations
///
/// </summary>
/// <param name="tableColumns">list of columns to consider</param>
/// <param name="ansiNullSemantics">use ansi null semantics</param>
/// <returns>true, if the predicate preserves nulls</returns>
internal bool PreservesNulls(VarVec tableColumns, bool ansiNullSemantics)
{
// Don't mess with non-ansi semantics
if (!ansiNullSemantics)
{
return true;
}
// If at least one part does not preserve nulls, then we simply return false
foreach (Node part in m_parts)
{
if (!PreservesNulls(part, tableColumns))
{
return false;
}
}
return true;
}
#endregion
#endregion
#region private methods
#region construction
private void InitFromAndTree(Node andTree)
{
if (andTree.Op.OpType == OpType.And)
{
InitFromAndTree(andTree.Child0);
InitFromAndTree(andTree.Child1);
}
else
{
m_parts.Add(andTree);
}
}
#endregion
#region Single Table Predicates
private void GetSingleTablePredicates(List<VarVec> tableDefinitions,
out List<Predicate> singleTablePredicates, out Predicate otherPredicates)
{
singleTablePredicates = new List<Predicate>();
foreach (VarVec vec in tableDefinitions)
{
singleTablePredicates.Add(new Predicate(m_command));
}
otherPredicates = new Predicate(m_command);
VarVec externalRefs = m_command.CreateVarVec();
foreach (Node part in m_parts)
{
NodeInfo nodeInfo = m_command.GetNodeInfo(part);
bool singleTablePart = false;
for (int i = 0; i < tableDefinitions.Count; i++)
{
VarVec tableColumns = tableDefinitions[i];
if (tableColumns != null)
{
externalRefs.InitFrom(nodeInfo.ExternalReferences);
externalRefs.Minus(tableColumns);
if (externalRefs.IsEmpty)
{
singleTablePart = true;
singleTablePredicates[i].AddPart(part);
break;
}
}
}
if (!singleTablePart)
{
otherPredicates.AddPart(part);
}
}
}
#endregion
#region EquiJoins
/// <summary>
/// Is this "simple" predicate an equi-join predicate?
/// (ie) is it of the form "var1 = var2"
/// Return "var1" and "var2"
/// </summary>
/// <param name="simplePredicateNode">the simple predicate</param>
/// <param name="leftVar">var on the left-side</param>
/// <param name="rightVar">var on the right</param>
/// <returns>true, if this is an equijoin predicate</returns>
private static bool IsEquiJoinPredicate(Node simplePredicateNode, out Var leftVar, out Var rightVar)
{
leftVar = null;
rightVar = null;
if (simplePredicateNode.Op.OpType != OpType.EQ)
{
return false;
}
VarRefOp leftVarOp = simplePredicateNode.Child0.Op as VarRefOp;
if (leftVarOp == null)
{
return false;
}
VarRefOp rightVarOp = simplePredicateNode.Child1.Op as VarRefOp;
if (rightVarOp == null)
{
return false;
}
leftVar = leftVarOp.Var;
rightVar = rightVarOp.Var;
return true;
}
/// <summary>
/// Is this an equi-join predicate involving columns from the specified tables?
/// On output, if this was indeed an equijoin predicate, "leftVar" is the
/// column of the left table, while "rightVar" is the column of the right table
/// and the predicate itself is of the form "leftVar = rightVar"
/// </summary>
/// <param name="simplePredicateNode">the simple predicate node</param>
/// <param name="leftTableDefinitions">interesting columns of the left table</param>
/// <param name="rightTableDefinitions">interesting columns of the right table</param>
/// <param name="leftVar">join column of the left table</param>
/// <param name="rightVar">join column of the right table</param>
/// <returns>true, if this is an equijoin predicate involving columns from the 2 tables</returns>
private static bool IsEquiJoinPredicate(Node simplePredicateNode,
VarVec leftTableDefinitions, VarVec rightTableDefinitions,
out Var leftVar, out Var rightVar)
{
Var tempLeftVar;
Var tempRightVar;
leftVar = null;
rightVar = null;
if (!Predicate.IsEquiJoinPredicate(simplePredicateNode, out tempLeftVar, out tempRightVar))
{
return false;
}
if (leftTableDefinitions.IsSet(tempLeftVar) &&
rightTableDefinitions.IsSet(tempRightVar))
{
leftVar = tempLeftVar;
rightVar = tempRightVar;
}
else if (leftTableDefinitions.IsSet(tempRightVar) &&
rightTableDefinitions.IsSet(tempLeftVar))
{
leftVar = tempRightVar;
rightVar = tempLeftVar;
}
else
{
return false;
}
return true;
}
#endregion
#region Nulls
/// <summary>
/// Does this predicate preserve nulls on the specified columns of the table?
/// If any of the columns participates in a comparison predicate, or in a
/// not-null predicate, then, nulls are not preserved
/// </summary>
/// <param name="simplePredNode">the "simple" predicate node</param>
/// <param name="tableColumns">list of table columns</param>
/// <returns>true, if nulls are preserved</returns>
private static bool PreservesNulls(Node simplePredNode, VarVec tableColumns)
{
VarRefOp varRefOp;
switch (simplePredNode.Op.OpType)
{
case OpType.EQ:
case OpType.NE:
case OpType.GT:
case OpType.GE:
case OpType.LT:
case OpType.LE:
varRefOp = simplePredNode.Child0.Op as VarRefOp;
if (varRefOp != null && tableColumns.IsSet(varRefOp.Var))
{
return false;
}
varRefOp = simplePredNode.Child1.Op as VarRefOp;
if (varRefOp != null && tableColumns.IsSet(varRefOp.Var))
{
return false;
}
return true;
case OpType.Not:
if (simplePredNode.Child0.Op.OpType != OpType.IsNull)
{
return true;
}
varRefOp = simplePredNode.Child0.Child0.Op as VarRefOp;
return (varRefOp == null || !tableColumns.IsSet(varRefOp.Var));
case OpType.Like:
// If the predicate is "column LIKE constant ...", then the
// predicate does not preserve nulls
ConstantBaseOp constantOp = simplePredNode.Child1.Op as ConstantBaseOp;
if (constantOp == null || (constantOp.OpType == OpType.Null))
{
return true;
}
varRefOp = simplePredNode.Child0.Op as VarRefOp;
if (varRefOp != null && tableColumns.IsSet(varRefOp.Var))
{
return false;
}
return true;
default:
return true;
}
}
#endregion
#region Keys
private bool IsKeyPredicate(Node left, Node right, VarVec keyVars, VarVec definitions, out Var keyVar)
{
keyVar = null;
// If the left-side is not a Var, then return false
if (left.Op.OpType != OpType.VarRef)
{
return false;
}
VarRefOp varRefOp = (VarRefOp)left.Op;
keyVar = varRefOp.Var;
// Not a key of this table?
if (!keyVars.IsSet(keyVar))
{
return false;
}
// Make sure that the other side is either a constant, or has no
// references at all to us
NodeInfo otherNodeInfo = m_command.GetNodeInfo(right);
VarVec otherVarExternalReferences = otherNodeInfo.ExternalReferences.Clone();
otherVarExternalReferences.And(definitions);
return otherVarExternalReferences.IsEmpty;
}
#endregion
#endregion
}
}
|