1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
|
//---------------------------------------------------------------------
// <copyright file="TransformationRules.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
using System.Globalization;
using System.Linq;
using System.Data.Metadata.Edm;
using System.Data.Query.InternalTrees;
namespace System.Data.Query.PlanCompiler
{
internal class TransformationRulesContext : RuleProcessingContext
{
#region public methods and properties
/// <summary>
/// Whether any rule was applied that may have caused modifications such that projection pruning
/// may be useful
/// </summary>
internal bool ProjectionPruningRequired { get { return this.m_projectionPruningRequired; } }
/// <summary>
/// Whether any rule was applied that may have caused modifications such that reapplying
/// the nullability rules may be useful
/// </summary>
internal bool ReapplyNullabilityRules { get { return this.m_reapplyNullabilityRules; } }
/// <summary>
/// Remap the given subtree using the current remapper
/// </summary>
/// <param name="subTree"></param>
internal void RemapSubtree(Node subTree)
{
this.m_remapper.RemapSubtree(subTree);
}
/// <summary>
/// Adds a mapping from oldVar to newVar
/// </summary>
/// <param name="oldVar"></param>
/// <param name="newVar"></param>
internal void AddVarMapping(Var oldVar, Var newVar)
{
m_remapper.AddMapping(oldVar, newVar);
m_remappedVars.Set(oldVar);
}
/// <summary>
/// "Remap" an expression tree, replacing all references to vars in varMap with
/// copies of the corresponding expression
/// The subtree is modified *inplace* - it is the caller's responsibility to make
/// a copy of the subtree if necessary.
/// The "replacement" expression (the replacement for the VarRef) is copied and then
/// inserted into the appropriate location into the subtree.
///
/// Note: we only support replacements in simple ScalarOp trees. This must be
/// validated by the caller.
///
/// </summary>
/// <param name="node">Current subtree to process</param>
/// <param name="varMap"></param>
/// <returns>The updated subtree</returns>
internal Node ReMap(Node node, Dictionary<Var, Node> varMap)
{
PlanCompiler.Assert(node.Op.IsScalarOp, "Expected a scalarOp: Found " + Dump.AutoString.ToString(node.Op.OpType));
// Replace varRefOps by the corresponding expression in the map, if any
if (node.Op.OpType == OpType.VarRef)
{
VarRefOp varRefOp = node.Op as VarRefOp;
Node newNode = null;
if (varMap.TryGetValue(varRefOp.Var, out newNode))
{
newNode = this.Copy(newNode);
return newNode;
}
else
{
return node;
}
}
// Simply process the result of the children.
for (int i = 0; i < node.Children.Count; i++)
{
node.Children[i] = ReMap(node.Children[i], varMap);
}
// We may have changed something deep down
this.Command.RecomputeNodeInfo(node);
return node;
}
/// <summary>
/// Makes a copy of the appropriate subtree - with a simple accelerator for VarRefOp
/// since that's likely to be the most command case
/// </summary>
/// <param name="node">the subtree to copy</param>
/// <returns>the copy of the subtree</returns>
internal Node Copy(Node node)
{
if (node.Op.OpType == OpType.VarRef)
{
VarRefOp op = node.Op as VarRefOp;
return this.Command.CreateNode(this.Command.CreateVarRefOp(op.Var));
}
else
{
return OpCopier.Copy(this.Command, node);
}
}
/// <summary>
/// Checks to see if the current subtree only contains ScalarOps
/// </summary>
/// <param name="node">current subtree</param>
/// <returns>true, if the subtree contains only ScalarOps</returns>
internal bool IsScalarOpTree(Node node)
{
int nodeCount = 0;
return IsScalarOpTree(node, null, ref nodeCount);
}
/// <summary>
/// Is the given var guaranteed to be non-nullable with regards to the node
/// that is currently being processed.
/// True, if it is listed as such on any on the node infos on any of the
/// current relop ancestors.
/// </summary>
/// <param name="var"></param>
/// <returns></returns>
internal bool IsNonNullable(Var var)
{
foreach (Node relOpAncestor in m_relOpAncestors)
{
// Rules applied to the children of the relOpAncestor may have caused it change.
// Thus, if the node is used, it has to have its node info recomputed
Command.RecomputeNodeInfo(relOpAncestor);
ExtendedNodeInfo nodeInfo = Command.GetExtendedNodeInfo(relOpAncestor);
if (nodeInfo.NonNullableVisibleDefinitions.IsSet(var))
{
return true;
}
else if (nodeInfo.LocalDefinitions.IsSet(var))
{
//The var is defined on this ancestor but is not non-nullable,
// therefore there is no need to further check other ancestors
return false;
}
}
return false;
}
/// <summary>
/// Is it safe to use a null sentinel with any value?
/// It may not be safe if:
/// 1. The top most sort includes null sentinels. If the null sentinel is replaced with a different value
/// and is used as a sort key it may change the sorting results
/// 2. If any of the ancestors is Distinct, GroupBy, Intersect or Except,
/// because the null sentinel may be used as a key.
/// 3. If the null sentinel is defined in the left child of an apply it may be used at the right side,
/// thus in these cases we also verify that the right hand side does not have any Distinct, GroupBy,
/// Intersect or Except.
/// </summary>
internal bool CanChangeNullSentinelValue
{
get
{
//Is there a sort that includes null sentinels
if (this.m_compilerState.HasSortingOnNullSentinels)
{
return false;
}
//Is any of the ancestors Distinct, GroupBy, Intersect or Except
if (this.m_relOpAncestors.Any(a => IsOpNotSafeForNullSentinelValueChange(a.Op.OpType)))
{
return false;
}
// Is the null sentinel defined in the left child of an apply and if so,
// does the right hand side have any Distinct, GroupBy, Intersect or Except.
var applyAncestors = this.m_relOpAncestors.Where(a =>
a.Op.OpType == OpType.CrossApply ||
a.Op.OpType == OpType.OuterApply);
//If the sentinel comes from the right hand side it is ok.
foreach (Node applyAncestor in applyAncestors)
{
if (!this.m_relOpAncestors.Contains(applyAncestor.Child1) && HasOpNotSafeForNullSentinelValueChange(applyAncestor.Child1))
{
return false;
}
}
return true;
}
}
/// <summary>
/// Is the op not safe for null sentinel value change
/// </summary>
/// <param name="optype"></param>
/// <returns></returns>
internal static bool IsOpNotSafeForNullSentinelValueChange(OpType optype)
{
return optype == OpType.Distinct ||
optype == OpType.GroupBy ||
optype == OpType.Intersect ||
optype == OpType.Except;
}
/// <summary>
/// Does the given subtree contain a node with an op that
/// is not safer for null sentinel value change
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
internal static bool HasOpNotSafeForNullSentinelValueChange(Node n)
{
if (IsOpNotSafeForNullSentinelValueChange(n.Op.OpType))
{
return true;
}
foreach (Node child in n.Children)
{
if (HasOpNotSafeForNullSentinelValueChange(child))
{
return true;
}
}
return false;
}
/// <summary>
/// Is this is a scalar-op tree? Also return a dictionary of var refcounts (ie)
/// for each var encountered in the tree, determine the number of times it has
/// been seen
/// </summary>
/// <param name="node">current subtree</param>
/// <param name="varRefMap">dictionary of var refcounts to fill in</param>
/// <returns></returns>
internal bool IsScalarOpTree(Node node, Dictionary<Var, int> varRefMap)
{
PlanCompiler.Assert(varRefMap != null, "Null varRef map");
int nodeCount = 0;
return IsScalarOpTree(node, varRefMap, ref nodeCount);
}
/// <summary>
/// Get a mapping from Var->Expression for a VarDefListOp tree. This information
/// will be used by later stages to replace all references to the Vars by the
/// corresponding expressions
///
/// This function uses a few heuristics along the way. It uses the varRefMap
/// parameter to determine if a computed Var (defined by this VarDefListOp)
/// has been referenced multiple times, and if it has, it checks to see if
/// the defining expression is too big (> 100 nodes). This is to avoid
/// bloating up the entire query tree with too many copies.
///
/// </summary>
/// <param name="varDefListNode">The varDefListOp subtree</param>
/// <param name="varRefMap">ref counts for each referenced var</param>
/// <returns>mapping from Var->replacement expressions</returns>
internal Dictionary<Var, Node> GetVarMap(Node varDefListNode, Dictionary<Var, int> varRefMap)
{
VarDefListOp varDefListOp = (VarDefListOp)varDefListNode.Op;
Dictionary<Var, Node> varMap = new Dictionary<Var, Node>();
foreach (Node chi in varDefListNode.Children)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
int nonLeafNodeCount = 0;
int refCount = 0;
if (!IsScalarOpTree(chi.Child0, null, ref nonLeafNodeCount))
{
return null;
}
//
// More heuristics. If there are multiple references to this Var *and*
// the defining expression for the Var is "expensive" (ie) has larger than
// 100 nodes, then simply pretend that this is too hard to do
// Note: we check for more than 2 references, (rather than just more than 1) - this
// is simply to let some additional cases through
//
if ((nonLeafNodeCount > 100) &&
(varRefMap != null) &&
varRefMap.TryGetValue(varDefOp.Var, out refCount) &&
(refCount > 2))
{
return null;
}
Node n;
if (varMap.TryGetValue(varDefOp.Var, out n))
{
PlanCompiler.Assert(n == chi.Child0, "reusing varDef for different Node?");
}
else
{
varMap.Add(varDefOp.Var, chi.Child0);
}
}
return varMap;
}
/// <summary>
/// Builds a NULLIF expression (ie) a Case expression that looks like
/// CASE WHEN v is null THEN null ELSE expr END
/// where v is the conditionVar parameter, and expr is the value of the expression
/// when v is non-null
/// </summary>
/// <param name="conditionVar">null discriminator var</param>
/// <param name="expr">expression</param>
/// <returns></returns>
internal Node BuildNullIfExpression(Var conditionVar, Node expr)
{
VarRefOp varRefOp = this.Command.CreateVarRefOp(conditionVar);
Node varRefNode = this.Command.CreateNode(varRefOp);
Node whenNode = this.Command.CreateNode(this.Command.CreateConditionalOp(OpType.IsNull), varRefNode);
Node elseNode = expr;
Node thenNode = this.Command.CreateNode(this.Command.CreateNullOp(elseNode.Op.Type));
Node caseNode = this.Command.CreateNode(this.Command.CreateCaseOp(elseNode.Op.Type), whenNode, thenNode, elseNode);
return caseNode;
}
#region Rule Interactions
/// <summary>
/// Shut off filter pushdown for this subtree
/// </summary>
/// <param name="n"></param>
internal void SuppressFilterPushdown(Node n)
{
m_suppressions[n] = n;
}
/// <summary>
/// Is filter pushdown shut off for this subtree?
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
internal bool IsFilterPushdownSuppressed(Node n)
{
return m_suppressions.ContainsKey(n);
}
/// <summary>
/// Given a list of vars try to get one that is of type Int32
/// </summary>
/// <param name="varList"></param>
/// <param name="int32Var"></param>
/// <returns></returns>
internal static bool TryGetInt32Var(IEnumerable<Var> varList, out Var int32Var)
{
foreach (Var v in varList)
{
// Any Int32 var regardless of the fasets will do
System.Data.Metadata.Edm.PrimitiveTypeKind typeKind;
if (System.Data.Common.TypeHelpers.TryGetPrimitiveTypeKind(v.Type, out typeKind) && typeKind == System.Data.Metadata.Edm.PrimitiveTypeKind.Int32)
{
int32Var = v;
return true;
}
}
int32Var = null;
return false;
}
#endregion
#endregion
#region constructors
internal TransformationRulesContext(PlanCompiler compilerState)
: base(compilerState.Command)
{
m_compilerState = compilerState;
m_remapper = new VarRemapper(compilerState.Command);
m_suppressions = new Dictionary<Node, Node>();
m_remappedVars = compilerState.Command.CreateVarVec();
}
#endregion
#region private state
private readonly PlanCompiler m_compilerState;
private readonly VarRemapper m_remapper;
private readonly Dictionary<Node, Node> m_suppressions;
private readonly VarVec m_remappedVars;
private bool m_projectionPruningRequired = false;
private bool m_reapplyNullabilityRules = false;
private Stack<Node> m_relOpAncestors = new Stack<Node>();
#if DEBUG
/// <summary>
/// Used to see all the applied rules.
/// One way to use it is to put a conditional breakpoint at the end of
/// PostProcessSubTree with the condition m_relOpAncestors.Count == 0
/// </summary>
internal readonly System.Text.StringBuilder appliedRules = new System.Text.StringBuilder();
#endif
#endregion
#region RuleProcessingContext Overrides
/// <summary>
/// Callback function to invoke *before* rules are applied.
/// Calls the VarRemapper to update any Vars in this node, and recomputes
/// the nodeinfo
/// </summary>
/// <param name="n"></param>
internal override void PreProcess(Node n)
{
m_remapper.RemapNode(n);
Command.RecomputeNodeInfo(n);
}
/// <summary>
/// Callback function to invoke *before* rules are applied.
/// Calls the VarRemapper to update any Vars in the entire subtree
/// If the given node has a RelOp it is pushed on the relOp ancestors stack.
/// </summary>
/// <param name="subTree"></param>
internal override void PreProcessSubTree(Node subTree)
{
if (subTree.Op.IsRelOp)
{
m_relOpAncestors.Push(subTree);
}
if (m_remappedVars.IsEmpty)
{
return;
}
NodeInfo nodeInfo = this.Command.GetNodeInfo(subTree);
//We need to do remapping only if m_remappedVars overlaps with nodeInfo.ExternalReferences
foreach (Var v in nodeInfo.ExternalReferences)
{
if (m_remappedVars.IsSet(v))
{
m_remapper.RemapSubtree(subTree);
break;
}
}
}
/// <summary>
/// If the given node has a RelOp it is popped from the relOp ancestors stack.
/// </summary>
/// <param name="subtree"></param>
internal override void PostProcessSubTree(Node subtree)
{
if (subtree.Op.IsRelOp)
{
PlanCompiler.Assert(m_relOpAncestors.Count != 0, "The RelOp ancestors stack is empty when post processing a RelOp subtree");
Node poppedNode = m_relOpAncestors.Pop();
PlanCompiler.Assert(Object.ReferenceEquals(subtree, poppedNode), "The popped ancestor is not equal to the root of the subtree being post processed");
}
}
/// <summary>
/// Callback function to invoke *after* rules are applied
/// Recomputes the node info, if this node has changed
/// If the rule is among the rules after which projection pruning may be beneficial,
/// m_projectionPruningRequired is set to true.
/// If the rule is among the rules after which reapplying the nullability rules may be beneficial,
/// m_reapplyNullabilityRules is set to true.
/// </summary>
/// <param name="n"></param>
/// <param name="rule">the rule that was applied</param>
internal override void PostProcess(Node n, InternalTrees.Rule rule)
{
if (rule != null)
{
#if DEBUG
appliedRules.Append(rule.MethodName);
appliedRules.AppendLine();
#endif
if (!this.m_projectionPruningRequired && TransformationRules.RulesRequiringProjectionPruning.Contains(rule))
{
this.m_projectionPruningRequired = true;
}
if (!this.m_reapplyNullabilityRules && TransformationRules.RulesRequiringNullabilityRulesToBeReapplied.Contains(rule))
{
this.m_reapplyNullabilityRules = true;
}
Command.RecomputeNodeInfo(n);
}
}
/// <summary>
/// Get the hash value for this subtree
/// </summary>
/// <param name="node"></param>
/// <returns></returns>
internal override int GetHashCode(Node node)
{
NodeInfo nodeInfo = Command.GetNodeInfo(node);
return nodeInfo.HashValue;
}
#endregion
#region private methods
/// <summary>
/// Check to see if the current subtree is a scalar-op subtree (ie) does
/// the subtree only comprise of scalarOps?
/// Additionally, compute the number of non-leaf nodes (ie) nodes with at least one child
/// that are found in the subtree. Note that this count is approximate - it is only
/// intended to be used as a hint. It is the caller's responsibility to initialize
/// nodeCount to a sane value on entry into this function
/// And finally, if the varRefMap parameter is non-null, we keep track of
/// how often a Var is referenced within the subtree
///
/// The non-leaf-node count and the varRefMap are used by GetVarMap to determine
/// if expressions can be composed together
/// </summary>
/// <param name="node">root of the subtree</param>
/// <param name="varRefMap">Ref counts for each Var encountered in the subtree</param>
/// <param name="nonLeafNodeCount">count of non-leaf nodes encountered in the subtree</param>
/// <returns>true, if this node only contains scalarOps</returns>
private bool IsScalarOpTree(Node node, Dictionary<Var, int> varRefMap, ref int nonLeafNodeCount)
{
if (!node.Op.IsScalarOp)
{
return false;
}
if (node.HasChild0)
{
nonLeafNodeCount++;
}
if (varRefMap != null && node.Op.OpType == OpType.VarRef)
{
VarRefOp varRefOp = (VarRefOp)node.Op;
int refCount;
if (!varRefMap.TryGetValue(varRefOp.Var, out refCount))
{
refCount = 1;
}
else
{
refCount++;
}
varRefMap[varRefOp.Var] = refCount;
}
foreach (Node chi in node.Children)
{
if (!IsScalarOpTree(chi, varRefMap, ref nonLeafNodeCount))
{
return false;
}
}
return true;
}
#endregion
}
/// <summary>
/// The list of all transformation rules to apply
/// </summary>
internal static class TransformationRules
{
/// <summary>
/// A lookup table for built from all rules
/// The lookup table is an array indexed by OpType and each entry has a list of rules.
/// </summary>
internal static readonly ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> AllRulesTable = BuildLookupTableForRules(AllRules);
/// <summary>
/// A lookup table for built only from ProjectRules
/// The lookup table is an array indexed by OpType and each entry has a list of rules.
/// </summary>
internal static readonly ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> ProjectRulesTable = BuildLookupTableForRules(ProjectOpRules.Rules);
/// <summary>
/// A lookup table built only from rules that use key info
/// The lookup table is an array indexed by OpType and each entry has a list of rules.
/// </summary>
internal static readonly ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> PostJoinEliminationRulesTable = BuildLookupTableForRules(PostJoinEliminationRules);
/// <summary>
/// A lookup table built only from rules that rely on nullability of vars and other rules
/// that may be able to perform simplification if these have been applied.
/// The lookup table is an array indexed by OpType and each entry has a list of rules.
/// </summary>
internal static readonly ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> NullabilityRulesTable = BuildLookupTableForRules(NullabilityRules);
/// <summary>
/// A look-up table of rules that may cause modifications such that projection pruning may be useful
/// after they have been applied.
/// </summary>
internal static readonly HashSet<InternalTrees.Rule> RulesRequiringProjectionPruning = InitializeRulesRequiringProjectionPruning();
/// <summary>
/// A look-up table of rules that may cause modifications such that reapplying the nullability rules
/// may be useful after they have been applied.
/// </summary>
internal static readonly HashSet<InternalTrees.Rule> RulesRequiringNullabilityRulesToBeReapplied = InitializeRulesRequiringNullabilityRulesToBeReapplied();
#region private state maintenance
private static List<InternalTrees.Rule> allRules;
private static List<InternalTrees.Rule> AllRules
{
get
{
if (allRules == null)
{
allRules = new List<InternalTrees.Rule>();
allRules.AddRange(ScalarOpRules.Rules);
allRules.AddRange(FilterOpRules.Rules);
allRules.AddRange(ProjectOpRules.Rules);
allRules.AddRange(ApplyOpRules.Rules);
allRules.AddRange(JoinOpRules.Rules);
allRules.AddRange(SingleRowOpRules.Rules);
allRules.AddRange(SetOpRules.Rules);
allRules.AddRange(GroupByOpRules.Rules);
allRules.AddRange(SortOpRules.Rules);
allRules.AddRange(ConstrainedSortOpRules.Rules);
allRules.AddRange(DistinctOpRules.Rules);
}
return allRules;
}
}
private static List<InternalTrees.Rule> postJoinEliminationRules;
private static List<InternalTrees.Rule> PostJoinEliminationRules
{
get
{
if (postJoinEliminationRules == null)
{
postJoinEliminationRules = new List<InternalTrees.Rule>();
postJoinEliminationRules.AddRange(ProjectOpRules.Rules); //these don't use key info per-se, but can help after the distinct op rules.
postJoinEliminationRules.AddRange(DistinctOpRules.Rules);
postJoinEliminationRules.AddRange(FilterOpRules.Rules);
postJoinEliminationRules.AddRange(JoinOpRules.Rules);
postJoinEliminationRules.AddRange(NullabilityRules);
}
return postJoinEliminationRules;
}
}
private static List<InternalTrees.Rule> nullabilityRules;
private static List<InternalTrees.Rule> NullabilityRules
{
get
{
if (nullabilityRules == null)
{
nullabilityRules = new List<InternalTrees.Rule>();
nullabilityRules.Add(ScalarOpRules.Rule_IsNullOverVarRef);
nullabilityRules.Add(ScalarOpRules.Rule_AndOverConstantPred1);
nullabilityRules.Add(ScalarOpRules.Rule_AndOverConstantPred2);
nullabilityRules.Add(ScalarOpRules.Rule_SimplifyCase);
nullabilityRules.Add(ScalarOpRules.Rule_NotOverConstantPred);
}
return nullabilityRules;
}
}
private static ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> BuildLookupTableForRules(IEnumerable<InternalTrees.Rule> rules)
{
ReadOnlyCollection<InternalTrees.Rule> NoRules = new ReadOnlyCollection<InternalTrees.Rule>(new InternalTrees.Rule[0]);
List<InternalTrees.Rule>[] lookupTable = new List<InternalTrees.Rule>[(int)OpType.MaxMarker];
foreach (InternalTrees.Rule rule in rules)
{
List<InternalTrees.Rule> opRules = lookupTable[(int)rule.RuleOpType];
if (opRules == null)
{
opRules = new List<InternalTrees.Rule>();
lookupTable[(int)rule.RuleOpType] = opRules;
}
opRules.Add(rule);
}
ReadOnlyCollection<InternalTrees.Rule>[] rulesPerType = new ReadOnlyCollection<InternalTrees.Rule>[lookupTable.Length];
for (int i = 0; i < lookupTable.Length; ++i)
{
if (null != lookupTable[i])
{
rulesPerType[i] = new ReadOnlyCollection<InternalTrees.Rule>(lookupTable[i].ToArray());
}
else
{
rulesPerType[i] = NoRules;
}
}
return new ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>>(rulesPerType);
}
private static HashSet<InternalTrees.Rule> InitializeRulesRequiringProjectionPruning()
{
HashSet<InternalTrees.Rule> rulesRequiringProjectionPruning = new HashSet<InternalTrees.Rule>();
rulesRequiringProjectionPruning.Add(ApplyOpRules.Rule_OuterApplyOverProject);
rulesRequiringProjectionPruning.Add(JoinOpRules.Rule_CrossJoinOverProject1);
rulesRequiringProjectionPruning.Add(JoinOpRules.Rule_CrossJoinOverProject2);
rulesRequiringProjectionPruning.Add(JoinOpRules.Rule_InnerJoinOverProject1);
rulesRequiringProjectionPruning.Add(JoinOpRules.Rule_InnerJoinOverProject2);
rulesRequiringProjectionPruning.Add(JoinOpRules.Rule_OuterJoinOverProject2);
rulesRequiringProjectionPruning.Add(ProjectOpRules.Rule_ProjectWithNoLocalDefs);
rulesRequiringProjectionPruning.Add(FilterOpRules.Rule_FilterOverProject);
rulesRequiringProjectionPruning.Add(FilterOpRules.Rule_FilterWithConstantPredicate);
rulesRequiringProjectionPruning.Add(GroupByOpRules.Rule_GroupByOverProject);
rulesRequiringProjectionPruning.Add(GroupByOpRules.Rule_GroupByOpWithSimpleVarRedefinitions);
return rulesRequiringProjectionPruning;
}
private static HashSet<InternalTrees.Rule> InitializeRulesRequiringNullabilityRulesToBeReapplied()
{
HashSet<InternalTrees.Rule> rulesRequiringNullabilityRulesToBeReapplied = new HashSet<InternalTrees.Rule>();
rulesRequiringNullabilityRulesToBeReapplied.Add(FilterOpRules.Rule_FilterOverLeftOuterJoin);
return rulesRequiringNullabilityRulesToBeReapplied;
}
#endregion
/// <summary>
/// Apply the rules that belong to the specified group to the given query tree.
/// </summary>
/// <param name="compilerState"></param>
/// <param name="rulesGroup"></param>
internal static bool Process(PlanCompiler compilerState, TransformationRulesGroup rulesGroup)
{
ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> rulesTable = null;
switch (rulesGroup)
{
case TransformationRulesGroup.All:
rulesTable = AllRulesTable;
break;
case TransformationRulesGroup.PostJoinElimination:
rulesTable = PostJoinEliminationRulesTable;
break;
case TransformationRulesGroup.Project:
rulesTable = ProjectRulesTable;
break;
}
// If any rule has been applied after which reapplying nullability rules may be useful,
// reapply nullability rules.
bool projectionPruningRequired;
if (Process(compilerState, rulesTable, out projectionPruningRequired))
{
bool projectionPruningRequired2;
Process(compilerState, NullabilityRulesTable, out projectionPruningRequired2);
projectionPruningRequired = projectionPruningRequired || projectionPruningRequired2;
}
return projectionPruningRequired;
}
/// <summary>
/// Apply the rules that belong to the specified rules table to the given query tree.
/// </summary>
/// <param name="compilerState"></param>
/// <param name="rulesTable"></param>
/// <param name="projectionPruningRequired">is projection pruning required after the rule application</param>
/// <returns>Whether any rule has been applied after which reapplying nullability rules may be useful</returns>
private static bool Process(PlanCompiler compilerState, ReadOnlyCollection<ReadOnlyCollection<InternalTrees.Rule>> rulesTable, out bool projectionPruningRequired)
{
RuleProcessor ruleProcessor = new RuleProcessor();
TransformationRulesContext context = new TransformationRulesContext(compilerState);
compilerState.Command.Root = ruleProcessor.ApplyRulesToSubtree(context, rulesTable, compilerState.Command.Root);
projectionPruningRequired = context.ProjectionPruningRequired;
return context.ReapplyNullabilityRules;
}
}
/// <summary>
/// Available groups of rules, not necessarily mutually exclusive
/// </summary>
internal enum TransformationRulesGroup
{
All,
Project,
PostJoinElimination
}
#region ScalarOpRules
/// <summary>
/// Transformation rules for ScalarOps
/// </summary>
internal static class ScalarOpRules
{
#region CaseOp Rules
internal static readonly SimpleRule Rule_SimplifyCase = new SimpleRule(OpType.Case, ProcessSimplifyCase);
internal static readonly SimpleRule Rule_FlattenCase = new SimpleRule(OpType.Case, ProcessFlattenCase);
/// <summary>
/// We perform the following simple transformation for CaseOps. If every single
/// then/else expression in the CaseOp is equivalent, then we can simply replace
/// the Op with the first then/expression. Specifically,
/// case when w1 then t1 when w2 then t2 ... when wn then tn else e end
/// => t1
/// assuming that t1 is equivalent to t2 is equivalent to ... to e
/// </summary>
/// <param name="context">Rule Processing context</param>
/// <param name="caseOpNode">The current subtree for the CaseOp</param>
/// <param name="newNode">the (possibly) modified subtree</param>
/// <returns>true, if we performed any transformations</returns>
static bool ProcessSimplifyCase(RuleProcessingContext context, Node caseOpNode, out Node newNode)
{
CaseOp caseOp = (CaseOp)caseOpNode.Op;
newNode = caseOpNode;
//
// Can I collapse the entire case-expression into a single expression - yes,
// if all the then/else clauses are the same expression
//
if (ProcessSimplifyCase_Collapse(caseOp, caseOpNode, out newNode))
{
return true;
}
//
// Can I remove any unnecessary when-then pairs ?
//
if (ProcessSimplifyCase_EliminateWhenClauses(context, caseOp, caseOpNode, out newNode))
{
return true;
}
// Nothing else I can think of
return false;
}
/// <summary>
/// Try and collapse the case expression into a single expression.
/// If every single then/else expression in the CaseOp is equivalent, then we can
/// simply replace the CaseOp with the first then/expression. Specifically,
/// case when w1 then t1 when w2 then t2 ... when wn then tn else e end
/// => t1
/// if t1 is equivalent to t2 is equivalent to ... to e
/// </summary>
/// <param name="caseOp">the current caseOp</param>
/// <param name="caseOpNode">current subtree</param>
/// <param name="newNode">new subtree</param>
/// <returns>true, if we performed a transformation</returns>
private static bool ProcessSimplifyCase_Collapse(CaseOp caseOp, Node caseOpNode, out Node newNode)
{
newNode = caseOpNode;
Node firstThenNode = caseOpNode.Child1;
Node elseNode = caseOpNode.Children[caseOpNode.Children.Count - 1];
if (!firstThenNode.IsEquivalent(elseNode))
{
return false;
}
for (int i = 3; i < caseOpNode.Children.Count - 1; i += 2)
{
if (!caseOpNode.Children[i].IsEquivalent(firstThenNode))
{
return false;
}
}
// All nodes are equivalent - simply return the first then node
newNode = firstThenNode;
return true;
}
/// <summary>
/// Try and remove spurious branches from the case expression.
/// If any of the WHEN clauses is the 'FALSE' expression, simply remove that
/// branch (when-then pair) from the case expression.
/// If any of the WHEN clauses is the 'TRUE' expression, then all branches to the
/// right of it are irrelevant - eliminate them. Eliminate this branch as well,
/// and make the THEN expression of this branch the ELSE expression for the entire
/// Case expression. If the WHEN expression represents the first branch, then
/// replace the entire case expression by the corresponding THEN expression
/// </summary>
/// <param name="context">rule processing context</param>
/// <param name="caseOp">current caseOp</param>
/// <param name="caseOpNode">Current subtree</param>
/// <param name="newNode">the new subtree</param>
/// <returns>true, if there was a transformation</returns>
private static bool ProcessSimplifyCase_EliminateWhenClauses(RuleProcessingContext context, CaseOp caseOp, Node caseOpNode, out Node newNode)
{
List<Node> newNodeArgs = null;
newNode = caseOpNode;
for (int i = 0; i < caseOpNode.Children.Count; )
{
// Special handling for the else clause
if (i == caseOpNode.Children.Count - 1)
{
// If the else clause is a SoftCast then we do not attempt to simplify
// the case operation, since this may change the result type.
// This really belongs in more general SoftCastOp logic in the CTreeGenerator
// that converts SoftCasts that could affect the result type of the query into
// a real cast or a trivial case statement, to preserve the result type.
// This is tracked by SQL PT Work Item #300003327.
if (OpType.SoftCast == caseOpNode.Children[i].Op.OpType)
{
return false;
}
if (newNodeArgs != null)
{
newNodeArgs.Add(caseOpNode.Children[i]);
}
break;
}
// If the current then clause is a SoftCast then we do not attempt to simplify
// the case operation, since this may change the result type.
// Again, this really belongs in the CTreeGenerator as per SQL PT Work Item #300003327.
if (OpType.SoftCast == caseOpNode.Children[i + 1].Op.OpType)
{
return false;
}
// Check to see if the when clause is a ConstantPredicate
if (caseOpNode.Children[i].Op.OpType != OpType.ConstantPredicate)
{
if (newNodeArgs != null)
{
newNodeArgs.Add(caseOpNode.Children[i]);
newNodeArgs.Add(caseOpNode.Children[i + 1]);
}
i += 2;
continue;
}
// Found a when-clause which is a constant predicate
ConstantPredicateOp constPred = (ConstantPredicateOp)caseOpNode.Children[i].Op;
// Create the newArgs list, if we haven't done so already
if (newNodeArgs == null)
{
newNodeArgs = new List<Node>();
for (int j = 0; j < i; j++)
{
newNodeArgs.Add(caseOpNode.Children[j]);
}
}
// If the when-clause is the "true" predicate, then we simply ignore all
// the succeeding arguments. We make the "then" clause of this when-clause
// as the "else-clause" of the resulting caseOp
if (constPred.IsTrue)
{
newNodeArgs.Add(caseOpNode.Children[i + 1]);
break;
}
else
{
// Otherwise, we simply skip the when-then pair
PlanCompiler.Assert(constPred.IsFalse, "constant predicate must be either true or false");
i += 2;
continue;
}
}
// Did we see any changes? Simply return
if (newNodeArgs == null)
{
return false;
}
// Otherwise, we did do some processing
PlanCompiler.Assert(newNodeArgs.Count > 0, "new args list must not be empty");
// Is there only one expression in the args list - simply return that expression
if (newNodeArgs.Count == 1)
{
newNode = newNodeArgs[0];
}
else
{
newNode = context.Command.CreateNode(caseOp, newNodeArgs);
}
return true;
}
/// <summary>
/// If the else clause of the CaseOp is another CaseOp, when two can be collapsed into one.
/// In particular,
///
/// CASE
/// WHEN W1 THEN T1
/// WHEN W2 THEN T2 ...
/// ELSE (CASE
/// WHEN WN1 THEN TN1,
/// ELSE E)
///
/// Is transformed into
///
/// CASE
/// WHEN W1 THEN T1
/// WHEN W2 THEN T2 ...
/// WHEN WN1 THEN TN1 ...
/// ELSE E
/// </summary>
/// <param name="caseOp">the current caseOp</param>
/// <param name="caseOpNode">current subtree</param>
/// <param name="newNode">new subtree</param>
/// <returns>true, if we performed a transformation</returns>
static bool ProcessFlattenCase(RuleProcessingContext context, Node caseOpNode, out Node newNode)
{
newNode = caseOpNode;
Node elseChild = caseOpNode.Children[caseOpNode.Children.Count - 1];
if (elseChild.Op.OpType != OpType.Case)
{
return false;
}
//
// Flatten the case statements.
// The else child is removed from the outer CaseOp op
// and the else child's children are reparented to the outer CaseOp
// Node info recomputation does not need to happen, the outer CaseOp
// node still has the same descendants.
//
caseOpNode.Children.RemoveAt(caseOpNode.Children.Count - 1);
caseOpNode.Children.AddRange(elseChild.Children);
return true;
}
#endregion
#region EqualsOverConstant Rules
internal static readonly PatternMatchRule Rule_EqualsOverConstant =
new PatternMatchRule(new Node(ComparisonOp.PatternEq,
new Node(InternalConstantOp.Pattern),
new Node(InternalConstantOp.Pattern)),
ProcessComparisonsOverConstant);
/// <summary>
/// Convert an Equals(X, Y) to a "true" predicate if X=Y, or a "false" predicate if X!=Y
/// Convert a NotEquals(X,Y) in the reverse fashion
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="node">current node</param>
/// <param name="newNode">possibly modified subtree</param>
/// <returns>true, if transformation was successful</returns>
static bool ProcessComparisonsOverConstant(RuleProcessingContext context, Node node, out Node newNode)
{
newNode = node;
PlanCompiler.Assert(node.Op.OpType == OpType.EQ || node.Op.OpType == OpType.NE, "unexpected comparison op type?");
bool? comparisonStatus = node.Child0.Op.IsEquivalent(node.Child1.Op);
// Don't mess with nulls or with non-internal constants
if (comparisonStatus == null)
{
return false;
}
bool result = (node.Op.OpType == OpType.EQ) ? (bool)comparisonStatus : !((bool)comparisonStatus);
ConstantPredicateOp newOp = context.Command.CreateConstantPredicateOp(result);
newNode = context.Command.CreateNode(newOp);
return true;
}
#endregion
#region LikeOp Rules
private static bool? MatchesPattern(string str, string pattern)
{
// What we're trying to see is if the pattern is something that ends with a '%'
// And if the "str" is something that matches everything before that
// Make sure that the terminal character of the pattern is a '%' character. Also
// ensure that this character does not occur anywhere else. And finally, ensure
// that the pattern is at most one character longer than the string itself
int wildCardIndex = pattern.IndexOf('%');
if ((wildCardIndex == -1) ||
(wildCardIndex != pattern.Length - 1) ||
(pattern.Length > str.Length + 1))
{
return null;
}
bool match = true;
int i = 0;
for (i = 0; i < str.Length && i < pattern.Length - 1; i++)
{
if (pattern[i] != str[i])
{
match = false;
break;
}
}
return match;
}
internal static readonly PatternMatchRule Rule_LikeOverConstants =
new PatternMatchRule(new Node(LikeOp.Pattern,
new Node(InternalConstantOp.Pattern),
new Node(InternalConstantOp.Pattern),
new Node(NullOp.Pattern)),
ProcessLikeOverConstant);
static bool ProcessLikeOverConstant(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
InternalConstantOp patternOp = (InternalConstantOp)n.Child1.Op;
InternalConstantOp strOp = (InternalConstantOp)n.Child0.Op;
string str = (string)strOp.Value;
string pattern = (string)patternOp.Value;
bool? match = MatchesPattern((string)strOp.Value, (string)patternOp.Value);
if (match == null)
{
return false;
}
ConstantPredicateOp constOp = context.Command.CreateConstantPredicateOp((bool)match);
newNode = context.Command.CreateNode(constOp);
return true;
}
#endregion
#region LogicalOp (and,or,not) Rules
internal static readonly PatternMatchRule Rule_AndOverConstantPred1 =
new PatternMatchRule(new Node(ConditionalOp.PatternAnd,
new Node(LeafOp.Pattern),
new Node(ConstantPredicateOp.Pattern)),
ProcessAndOverConstantPredicate1);
internal static readonly PatternMatchRule Rule_AndOverConstantPred2 =
new PatternMatchRule(new Node(ConditionalOp.PatternAnd,
new Node(ConstantPredicateOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessAndOverConstantPredicate2);
internal static readonly PatternMatchRule Rule_OrOverConstantPred1 =
new PatternMatchRule(new Node(ConditionalOp.PatternOr,
new Node(LeafOp.Pattern),
new Node(ConstantPredicateOp.Pattern)),
ProcessOrOverConstantPredicate1);
internal static readonly PatternMatchRule Rule_OrOverConstantPred2 =
new PatternMatchRule(new Node(ConditionalOp.PatternOr,
new Node(ConstantPredicateOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessOrOverConstantPredicate2);
internal static readonly PatternMatchRule Rule_NotOverConstantPred =
new PatternMatchRule(new Node(ConditionalOp.PatternNot,
new Node(ConstantPredicateOp.Pattern)),
ProcessNotOverConstantPredicate);
/// <summary>
/// Transform
/// AND(x, true) => x;
/// AND(true, x) => x
/// AND(x, false) => false
/// AND(false, x) => false
///
/// </summary>
/// <param name="context">Rule Processing context</param>
/// <param name="node">Current LogOp (And, Or, Not) node</param>
/// <param name="constantPredicateNode">constant predicate node</param>
/// <param name="otherNode">The other child of the LogOp (possibly null)</param>
/// <param name="newNode">new subtree</param>
/// <returns>transformation status</returns>
static bool ProcessLogOpOverConstant(RuleProcessingContext context, Node node,
Node constantPredicateNode, Node otherNode,
out Node newNode)
{
PlanCompiler.Assert(constantPredicateNode != null, "null constantPredicateOp?");
ConstantPredicateOp pred = (ConstantPredicateOp)constantPredicateNode.Op;
switch (node.Op.OpType)
{
case OpType.And:
newNode = pred.IsTrue ? otherNode : constantPredicateNode;
break;
case OpType.Or:
newNode = pred.IsTrue ? constantPredicateNode : otherNode;
break;
case OpType.Not:
PlanCompiler.Assert(otherNode == null, "Not Op with more than 1 child. Gasp!");
newNode = context.Command.CreateNode(context.Command.CreateConstantPredicateOp(!pred.Value));
break;
default:
PlanCompiler.Assert(false, "Unexpected OpType - " + node.Op.OpType);
newNode = null;
break;
}
return true;
}
static bool ProcessAndOverConstantPredicate1(RuleProcessingContext context, Node node, out Node newNode)
{
return ProcessLogOpOverConstant(context, node, node.Child1, node.Child0, out newNode);
}
static bool ProcessAndOverConstantPredicate2(RuleProcessingContext context, Node node, out Node newNode)
{
return ProcessLogOpOverConstant(context, node, node.Child0, node.Child1, out newNode);
}
static bool ProcessOrOverConstantPredicate1(RuleProcessingContext context, Node node, out Node newNode)
{
return ProcessLogOpOverConstant(context, node, node.Child1, node.Child0, out newNode);
}
static bool ProcessOrOverConstantPredicate2(RuleProcessingContext context, Node node, out Node newNode)
{
return ProcessLogOpOverConstant(context, node, node.Child0, node.Child1, out newNode);
}
static bool ProcessNotOverConstantPredicate(RuleProcessingContext context, Node node, out Node newNode)
{
return ProcessLogOpOverConstant(context, node, node.Child0, null, out newNode);
}
#endregion
#region IsNull Rules
internal static readonly PatternMatchRule Rule_IsNullOverConstant =
new PatternMatchRule(new Node(ConditionalOp.PatternIsNull,
new Node(InternalConstantOp.Pattern)),
ProcessIsNullOverConstant);
internal static readonly PatternMatchRule Rule_IsNullOverNullSentinel =
new PatternMatchRule(new Node(ConditionalOp.PatternIsNull,
new Node(NullSentinelOp.Pattern)),
ProcessIsNullOverConstant);
/// <summary>
/// Convert a
/// IsNull(constant)
/// to just the
/// False predicate
/// </summary>
/// <param name="context"></param>
/// <param name="isNullNode"></param>
/// <param name="newNode">new subtree</param>
/// <returns></returns>
static bool ProcessIsNullOverConstant(RuleProcessingContext context, Node isNullNode, out Node newNode)
{
newNode = context.Command.CreateNode(context.Command.CreateFalseOp());
return true;
}
internal static readonly PatternMatchRule Rule_IsNullOverNull =
new PatternMatchRule(new Node(ConditionalOp.PatternIsNull,
new Node(NullOp.Pattern)),
ProcessIsNullOverNull);
/// <summary>
/// Convert an IsNull(null) to just the 'true' predicate
/// </summary>
/// <param name="context"></param>
/// <param name="isNullNode"></param>
/// <param name="newNode">new subtree</param>
/// <returns></returns>
static bool ProcessIsNullOverNull(RuleProcessingContext context, Node isNullNode, out Node newNode)
{
newNode = context.Command.CreateNode(context.Command.CreateTrueOp());
return true;
}
#endregion
#region CastOp(NullOp) Rule
internal static readonly PatternMatchRule Rule_NullCast = new PatternMatchRule(
new Node(CastOp.Pattern,
new Node(NullOp.Pattern)),
ProcessNullCast);
/// <summary>
/// eliminates nested null casts into a single cast of the outermost cast type.
/// basically the transformation applied is: cast(null[x] as T) => null[t]
/// </summary>
/// <param name="context"></param>
/// <param name="castNullOp"></param>
/// <param name="newNode">modified subtree</param>
/// <returns></returns>
static bool ProcessNullCast(RuleProcessingContext context, Node castNullOp, out Node newNode)
{
newNode = context.Command.CreateNode(context.Command.CreateNullOp(castNullOp.Op.Type));
return true;
}
#endregion
#region IsNull over VarRef
internal static readonly PatternMatchRule Rule_IsNullOverVarRef =
new PatternMatchRule(new Node(ConditionalOp.PatternIsNull,
new Node(VarRefOp.Pattern)),
ProcessIsNullOverVarRef);
/// <summary>
/// Convert a
/// IsNull(VarRef(v))
/// to just the
/// False predicate
///
/// if v is guaranteed to be non nullable.
/// </summary>
/// <param name="context"></param>
/// <param name="isNullNode"></param>
/// <param name="newNode">new subtree</param>
/// <returns></returns>
static bool ProcessIsNullOverVarRef(RuleProcessingContext context, Node isNullNode, out Node newNode)
{
Command command = context.Command;
TransformationRulesContext trc = (TransformationRulesContext)context;
Var v = ((VarRefOp)isNullNode.Child0.Op).Var;
if (trc.IsNonNullable(v))
{
newNode = command.CreateNode(context.Command.CreateFalseOp());
return true;
}
else
{
newNode = isNullNode;
return false;
}
}
#endregion
#region All ScalarOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
Rule_SimplifyCase,
Rule_FlattenCase,
Rule_LikeOverConstants,
Rule_EqualsOverConstant,
Rule_AndOverConstantPred1,
Rule_AndOverConstantPred2,
Rule_OrOverConstantPred1,
Rule_OrOverConstantPred2,
Rule_NotOverConstantPred,
Rule_IsNullOverConstant,
Rule_IsNullOverNullSentinel,
Rule_IsNullOverNull,
Rule_NullCast,
Rule_IsNullOverVarRef,
};
#endregion
}
#endregion
#region Filter Rules
/// <summary>
/// Transformation rules for FilterOps
/// </summary>
internal static class FilterOpRules
{
#region Helpers
/// <summary>
/// Split up a predicate into 2 parts - the pushdown and the non-pushdown predicate.
///
/// If the filter node has no external references *and* the "columns" parameter is null,
/// then the entire predicate can be pushed down
///
/// We then compute the set of valid column references - if the "columns" parameter
/// is non-null, this set is used. Otherwise, we get the definitions of the
/// input relop node of the filterOp, and use that.
///
/// We use this list of valid column references to identify which parts of the filter
/// predicate can be pushed down - only those parts of the predicate that do not
/// reference anything beyond these columns are considered for pushdown. The rest are
/// stuffed into the nonPushdownPredicate output parameter
///
/// </summary>
/// <param name="command">Command object</param>
/// <param name="filterNode">the FilterOp subtree</param>
/// <param name="columns">(Optional) List of columns to consider for "pushdown"</param>
/// <param name="nonPushdownPredicateNode">(output) Part of the predicate that cannot be pushed down</param>
/// <returns>part of the predicate that can be pushed down</returns>
private static Node GetPushdownPredicate(Command command, Node filterNode, VarVec columns, out Node nonPushdownPredicateNode)
{
Node pushdownPredicateNode = filterNode.Child1;
nonPushdownPredicateNode = null;
ExtendedNodeInfo filterNodeInfo = command.GetExtendedNodeInfo(filterNode);
if (columns == null && filterNodeInfo.ExternalReferences.IsEmpty)
{
return pushdownPredicateNode;
}
if (columns == null)
{
ExtendedNodeInfo inputNodeInfo = command.GetExtendedNodeInfo(filterNode.Child0);
columns = inputNodeInfo.Definitions;
}
Predicate predicate = new Predicate(command, pushdownPredicateNode);
Predicate nonPushdownPredicate;
predicate = predicate.GetSingleTablePredicates(columns, out nonPushdownPredicate);
pushdownPredicateNode = predicate.BuildAndTree();
nonPushdownPredicateNode = nonPushdownPredicate.BuildAndTree();
return pushdownPredicateNode;
}
#endregion
#region FilterOverFilter
internal static readonly PatternMatchRule Rule_FilterOverFilter =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverFilter);
/// <summary>
/// Convert Filter(Filter(X, p1), p2) => Filter(X, (p1 and p2))
/// </summary>
/// <param name="context">rule processing context</param>
/// <param name="filterNode">FilterOp node</param>
/// <param name="newNode">modified subtree</param>
/// <returns>transformed subtree</returns>
static bool ProcessFilterOverFilter(RuleProcessingContext context, Node filterNode, out Node newNode)
{
Node newAndNode = context.Command.CreateNode(
context.Command.CreateConditionalOp(OpType.And),
filterNode.Child0.Child1, filterNode.Child1);
newNode = context.Command.CreateNode(context.Command.CreateFilterOp(), filterNode.Child0.Child0, newAndNode);
return true;
}
#endregion
#region FilterOverProject
internal static readonly PatternMatchRule Rule_FilterOverProject =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverProject);
/// <summary>
/// Convert Filter(Project(X, ...), p) => Project(Filter(X, p'), ...)
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="filterNode">FilterOp subtree</param>
/// <param name="newNode">modified subtree</param>
/// <returns>transformed subtree</returns>
static bool ProcessFilterOverProject(RuleProcessingContext context, Node filterNode, out Node newNode)
{
newNode = filterNode;
Node predicateNode = filterNode.Child1;
//
// If the filter is a constant predicate, then don't push the filter below the
// project
//
if (predicateNode.Op.OpType == OpType.ConstantPredicate)
{
// There's a different rule to process this case. Simply return
return false;
}
TransformationRulesContext trc = (TransformationRulesContext)context;
//
// check to see that this is a simple predicate
//
Dictionary<Var, int> varRefMap = new Dictionary<Var, int>();
if (!trc.IsScalarOpTree(predicateNode, varRefMap))
{
return false;
}
//
// check to see if all expressions in the project can be inlined
//
Node projectNode = filterNode.Child0;
Dictionary<Var, Node> varMap = trc.GetVarMap(projectNode.Child1, varRefMap);
if (varMap == null)
{
return false;
}
//
// Try to remap the predicate in terms of the definitions of the Vars
//
Node remappedPredicateNode = trc.ReMap(predicateNode, varMap);
//
// Now push the filter below the project
//
Node newFilterNode = trc.Command.CreateNode(trc.Command.CreateFilterOp(), projectNode.Child0, remappedPredicateNode);
Node newProjectNode = trc.Command.CreateNode(projectNode.Op, newFilterNode, projectNode.Child1);
newNode = newProjectNode;
return true;
}
#endregion
#region FilterOverSetOp
internal static readonly PatternMatchRule Rule_FilterOverUnionAll =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(UnionAllOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverSetOp);
internal static readonly PatternMatchRule Rule_FilterOverIntersect =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(IntersectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverSetOp);
internal static readonly PatternMatchRule Rule_FilterOverExcept =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(ExceptOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverSetOp);
/// <summary>
/// Transform Filter(UnionAll(X1, X2), p) => UnionAll(Filter(X1, p1), Filter(X, p2))
/// Filter(Intersect(X1, X2), p) => Intersect(Filter(X1, p1), Filter(X2, p2))
/// Filter(Except(X1, X2), p) => Except(Filter(X1, p1), X2)
/// where p1 and p2 are the "mapped" versions of the predicate "p" for each branch
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="filterNode">FilterOp subtree</param>
/// <param name="newNode">modified subtree</param>
/// <returns>true, if successful transformation</returns>
static bool ProcessFilterOverSetOp(RuleProcessingContext context, Node filterNode, out Node newNode)
{
newNode = filterNode;
TransformationRulesContext trc = (TransformationRulesContext)context;
//
// Identify parts of the filter predicate that can be pushed down, and parts that
// cannot be. If nothing can be pushed down, then return
//
Node nonPushdownPredicate;
Node pushdownPredicate = GetPushdownPredicate(trc.Command, filterNode, null, out nonPushdownPredicate);
if (pushdownPredicate == null)
{
return false;
}
// Handle only simple predicates
if (!trc.IsScalarOpTree(pushdownPredicate))
{
return false;
}
//
// Now push the predicate (the part that can be pushed down) into each of the
// branches (as appropriate)
//
Node setOpNode = filterNode.Child0;
SetOp setOp = (SetOp)setOpNode.Op;
List<Node> newSetOpChildren = new List<Node>();
int branchId = 0;
foreach (VarMap varMap in setOp.VarMap)
{
// For exceptOp, the filter should only be pushed below the zeroth child
if (setOp.OpType == OpType.Except && branchId == 1)
{
newSetOpChildren.Add(setOpNode.Child1);
break;
}
Dictionary<Var, Node> remapMap = new Dictionary<Var, Node>();
foreach (KeyValuePair<Var, Var> kv in varMap)
{
Node varRefNode = trc.Command.CreateNode(trc.Command.CreateVarRefOp(kv.Value));
remapMap.Add(kv.Key, varRefNode);
}
//
// Now fix up the predicate.
// Make a copy of the predicate first - except if we're dealing with the last
// branch, in which case, we can simply reuse the predicate
//
Node predicateNode = pushdownPredicate;
if (branchId == 0 && filterNode.Op.OpType != OpType.Except)
{
predicateNode = trc.Copy(predicateNode);
}
Node newPredicateNode = trc.ReMap(predicateNode, remapMap);
trc.Command.RecomputeNodeInfo(newPredicateNode);
// create a new filter node below the setOp child
Node newFilterNode = trc.Command.CreateNode(
trc.Command.CreateFilterOp(),
setOpNode.Children[branchId],
newPredicateNode);
newSetOpChildren.Add(newFilterNode);
branchId++;
}
Node newSetOpNode = trc.Command.CreateNode(setOpNode.Op, newSetOpChildren);
//
// We've now pushed down the relevant parts of the filter below the SetOps
// We may still however some predicates left over - create a new filter node
// to account for that
//
if (nonPushdownPredicate != null)
{
newNode = trc.Command.CreateNode(trc.Command.CreateFilterOp(), newSetOpNode, nonPushdownPredicate);
}
else
{
newNode = newSetOpNode;
}
return true;
}
#endregion
#region FilterOverDistinct
internal static readonly PatternMatchRule Rule_FilterOverDistinct =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(DistinctOp.Pattern,
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverDistinct);
/// <summary>
/// Transforms Filter(Distinct(x), p) => Filter(Distinct(Filter(X, p1), p2)
/// where p2 is the part of the filter that can be pushed down, while p1 represents
/// any external references
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="filterNode">FilterOp subtree</param>
/// <param name="newNode">modified subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessFilterOverDistinct(RuleProcessingContext context, Node filterNode, out Node newNode)
{
newNode = filterNode;
//
// Split up the filter predicate into two parts - the part that can be pushed down
// and the part that can't. If there is no part that can be pushed down, simply return
//
Node nonPushdownPredicate;
Node pushdownPredicate = GetPushdownPredicate(context.Command, filterNode, null, out nonPushdownPredicate);
if (pushdownPredicate == null)
{
return false;
}
//
// Create a new filter node below the current distinct node for the predicate
// that can be pushed down - create a new distinct node as well
//
Node distinctNode = filterNode.Child0;
Node pushdownFilterNode = context.Command.CreateNode(context.Command.CreateFilterOp(), distinctNode.Child0, pushdownPredicate);
Node newDistinctNode = context.Command.CreateNode(distinctNode.Op, pushdownFilterNode);
//
// If we have a predicate part that cannot be pushed down, build up a new
// filter node above the new Distinct op that we just created
//
if (nonPushdownPredicate != null)
{
newNode = context.Command.CreateNode(context.Command.CreateFilterOp(), newDistinctNode, nonPushdownPredicate);
}
else
{
newNode = newDistinctNode;
}
return true;
}
#endregion
#region FilterOverGroupBy
internal static readonly PatternMatchRule Rule_FilterOverGroupBy =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(GroupByOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverGroupBy);
/// <summary>
/// Transforms Filter(GroupBy(X, k1.., a1...), p) =>
/// Filter(GroupBy(Filter(X, p1'), k1..., a1...), p2)
/// p1 and p2 represent the parts of p that can and cannot be pushed down
/// respectively - specifically, p1 must only reference the key columns from
/// the GroupByOp.
/// "p1'" is the mapped version of "p1",
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="filterNode">Current FilterOp subtree</param>
/// <param name="newNode">modified subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessFilterOverGroupBy(RuleProcessingContext context, Node filterNode, out Node newNode)
{
newNode = filterNode;
Node groupByNode = filterNode.Child0;
GroupByOp groupByOp = (GroupByOp)groupByNode.Op;
TransformationRulesContext trc = (TransformationRulesContext)context;
// Check to see that we have a simple predicate
Dictionary<Var, int> varRefMap = new Dictionary<Var, int>();
if (!trc.IsScalarOpTree(filterNode.Child1, varRefMap))
{
return false;
}
//
// Split up the predicate into two parts - the part that can be pushed down below
// the groupByOp (specifically, the part that only refers to keys of the groupByOp),
// and the part that cannot be pushed below
// If nothing can be pushed below, quit now
//
Node nonPushdownPredicate;
Node pushdownPredicate = GetPushdownPredicate(context.Command, filterNode, groupByOp.Keys, out nonPushdownPredicate);
if (pushdownPredicate == null)
{
return false;
}
//
// We need to push the filter down; but we need to remap the predicate, so
// that any references to variables defined locally by the groupBy are fixed up
// Make sure that the predicate is not too complex to remap
//
Dictionary<Var, Node> varMap = trc.GetVarMap(groupByNode.Child1, varRefMap);
if (varMap == null)
{
return false; // complex expressions
}
Node remappedPushdownPredicate = trc.ReMap(pushdownPredicate, varMap);
//
// Push the filter below the groupBy now
//
Node subFilterNode = trc.Command.CreateNode(trc.Command.CreateFilterOp(), groupByNode.Child0, remappedPushdownPredicate);
Node newGroupByNode = trc.Command.CreateNode(groupByNode.Op, subFilterNode, groupByNode.Child1, groupByNode.Child2);
//
// If there was any part of the original predicate that could not be pushed down,
// create a new filterOp node above the new groupBy node to represent that
// predicate
//
if (nonPushdownPredicate == null)
{
newNode = newGroupByNode;
}
else
{
newNode = trc.Command.CreateNode(trc.Command.CreateFilterOp(), newGroupByNode, nonPushdownPredicate);
}
return true;
}
#endregion
#region FilterOverJoin
internal static readonly PatternMatchRule Rule_FilterOverCrossJoin =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(CrossJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverJoin);
internal static readonly PatternMatchRule Rule_FilterOverInnerJoin =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(InnerJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverJoin);
internal static readonly PatternMatchRule Rule_FilterOverLeftOuterJoin =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(LeftOuterJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverJoin);
/// <summary>
/// Transform Filter()
/// </summary>
/// <param name="context">Rule Processing context</param>
/// <param name="filterNode">Current FilterOp subtree</param>
/// <param name="newNode">Modified subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessFilterOverJoin(RuleProcessingContext context, Node filterNode, out Node newNode)
{
newNode = filterNode;
TransformationRulesContext trc = (TransformationRulesContext)context;
//
// Have we shut off filter pushdown for this node? Return
//
if (trc.IsFilterPushdownSuppressed(filterNode))
{
return false;
}
Node joinNode = filterNode.Child0;
Op joinOp = joinNode.Op;
Node leftInputNode = joinNode.Child0;
Node rightInputNode = joinNode.Child1;
Command command = trc.Command;
bool needsTransformation = false;
//
// If we're dealing with an outer-join, first check to see if the current
// predicate preserves nulls for the right table.
// If it doesn't then we can convert the outer join into an inner join,
// and then continue with the rest of our processing here
//
ExtendedNodeInfo rightTableNodeInfo = command.GetExtendedNodeInfo(rightInputNode);
Predicate predicate = new Predicate(command, filterNode.Child1);
if (joinOp.OpType == OpType.LeftOuterJoin)
{
if (!predicate.PreservesNulls(rightTableNodeInfo.Definitions, true))
{
joinOp = command.CreateInnerJoinOp();
needsTransformation = true;
}
}
ExtendedNodeInfo leftTableInfo = command.GetExtendedNodeInfo(leftInputNode);
//
// Check to see if the predicate contains any "single-table-filters". In those
// cases, we could simply push that filter down to the child.
// We can do this for inner joins and cross joins - for both inputs.
// For left-outer joins, however, we can only do this for the left-side input
// Further note that we only want to do the pushdown if it will help us - if
// the join input is a ScanTable (or some other cases), then it doesn't help us.
//
Node leftSingleTablePredicateNode = null;
if (leftInputNode.Op.OpType != OpType.ScanTable)
{
Predicate leftSingleTablePredicates = predicate.GetSingleTablePredicates(leftTableInfo.Definitions, out predicate);
leftSingleTablePredicateNode = leftSingleTablePredicates.BuildAndTree();
}
Node rightSingleTablePredicateNode = null;
if ((rightInputNode.Op.OpType != OpType.ScanTable) &&
(joinOp.OpType != OpType.LeftOuterJoin))
{
Predicate rightSingleTablePredicates = predicate.GetSingleTablePredicates(rightTableNodeInfo.Definitions, out predicate);
rightSingleTablePredicateNode = rightSingleTablePredicates.BuildAndTree();
}
//
// Now check to see if the predicate contains some "join predicates". We can
// add these to the existing join predicate (if any).
// We can only do this for inner joins and cross joins - not for LOJs
//
Node newJoinPredicateNode = null;
if (joinOp.OpType == OpType.CrossJoin || joinOp.OpType == OpType.InnerJoin)
{
Predicate joinPredicate = predicate.GetJoinPredicates(leftTableInfo.Definitions, rightTableNodeInfo.Definitions, out predicate);
newJoinPredicateNode = joinPredicate.BuildAndTree();
}
//
// Now for the dirty work. We've identified some predicates that could be pushed
// into the left table, some predicates that could be pushed into the right table
// and some that could become join predicates.
//
if (leftSingleTablePredicateNode != null)
{
leftInputNode = command.CreateNode(command.CreateFilterOp(), leftInputNode, leftSingleTablePredicateNode);
needsTransformation = true;
}
if (rightSingleTablePredicateNode != null)
{
rightInputNode = command.CreateNode(command.CreateFilterOp(), rightInputNode, rightSingleTablePredicateNode);
needsTransformation = true;
}
// Identify the new join predicate
if (newJoinPredicateNode != null)
{
needsTransformation = true;
if (joinOp.OpType == OpType.CrossJoin)
{
joinOp = command.CreateInnerJoinOp();
}
else
{
PlanCompiler.Assert(joinOp.OpType == OpType.InnerJoin, "unexpected non-InnerJoin?");
newJoinPredicateNode = PlanCompilerUtil.CombinePredicates(joinNode.Child2, newJoinPredicateNode, command);
}
}
else
{
newJoinPredicateNode = (joinOp.OpType == OpType.CrossJoin) ? null : joinNode.Child2;
}
//
// If nothing has changed, then just return the current node. Otherwise,
// we will loop forever
//
if (!needsTransformation)
{
return false;
}
Node newJoinNode;
//
// Finally build up a new join node
//
if (joinOp.OpType == OpType.CrossJoin)
{
newJoinNode = command.CreateNode(joinOp, leftInputNode, rightInputNode);
}
else
{
newJoinNode = command.CreateNode(joinOp, leftInputNode, rightInputNode, newJoinPredicateNode);
}
//
// Build up a new filterNode above this join node. But only if we have a filter left
//
Node newFilterPredicateNode = predicate.BuildAndTree();
if (newFilterPredicateNode == null)
{
newNode = newJoinNode;
}
else
{
newNode = command.CreateNode(command.CreateFilterOp(), newJoinNode, newFilterPredicateNode);
}
return true;
}
#endregion
#region Filter over OuterApply
internal static readonly PatternMatchRule Rule_FilterOverOuterApply =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessFilterOverOuterApply);
/// <summary>
/// Convert Filter(OuterApply(X,Y), p) into
/// Filter(CrossApply(X,Y), p)
/// if "p" is not null-preserving for Y (ie) "p" does not preserve null values from Y
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="filterNode">Filter node</param>
/// <param name="newNode">modified subtree</param>
/// <returns>transformation status</returns>
static bool ProcessFilterOverOuterApply(RuleProcessingContext context, Node filterNode, out Node newNode)
{
newNode = filterNode;
Node applyNode = filterNode.Child0;
Op applyOp = applyNode.Op;
Node applyRightInputNode = applyNode.Child1;
TransformationRulesContext trc = (TransformationRulesContext)context;
Command command = trc.Command;
//
// Check to see if the current predicate preserves nulls for the right table.
// If it doesn't then we can convert the outer apply into a cross-apply,
//
ExtendedNodeInfo rightTableNodeInfo = command.GetExtendedNodeInfo(applyRightInputNode);
Predicate predicate = new Predicate(command, filterNode.Child1);
if (!predicate.PreservesNulls(rightTableNodeInfo.Definitions, true))
{
Node newApplyNode = command.CreateNode(command.CreateCrossApplyOp(), applyNode.Child0, applyRightInputNode);
Node newFilterNode = command.CreateNode(command.CreateFilterOp(), newApplyNode, filterNode.Child1);
newNode = newFilterNode;
return true;
}
return false;
}
#endregion
#region FilterWithConstantPredicate
internal static readonly PatternMatchRule Rule_FilterWithConstantPredicate =
new PatternMatchRule(new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ConstantPredicateOp.Pattern)),
ProcessFilterWithConstantPredicate);
/// <summary>
/// Convert
/// Filter(X, true) => X
/// Filter(X, false) => Project(Filter(SingleRowTableOp, ...), false)
/// where ... represent variables that are equivalent to the table columns
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">Current subtree</param>
/// <param name="newNode">modified subtree</param>
/// <returns>transformation status</returns>
static bool ProcessFilterWithConstantPredicate(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
ConstantPredicateOp predOp = (ConstantPredicateOp)n.Child1.Op;
// If we're dealing with a "true" predicate, then simply return the RelOp
// input to the filter
if (predOp.IsTrue)
{
newNode = n.Child0;
return true;
}
PlanCompiler.Assert(predOp.IsFalse, "unexpected non-false predicate?");
// We're dealing with a "false" predicate, then we can get rid of the
// input, and replace it with a dummy project
//
// If the input is already a singlerowtableOp, then there's nothing
// further to do
//
if (n.Child0.Op.OpType == OpType.SingleRowTable ||
(n.Child0.Op.OpType == OpType.Project &&
n.Child0.Child0.Op.OpType == OpType.SingleRowTable))
{
return false;
}
TransformationRulesContext trc = (TransformationRulesContext)context;
ExtendedNodeInfo childNodeInfo = trc.Command.GetExtendedNodeInfo(n.Child0);
List<Node> varDefNodeList = new List<Node>();
VarVec newVars = trc.Command.CreateVarVec();
foreach (Var v in childNodeInfo.Definitions)
{
NullOp nullConst = trc.Command.CreateNullOp(v.Type);
Node constNode = trc.Command.CreateNode(nullConst);
Var computedVar;
Node varDefNode = trc.Command.CreateVarDefNode(constNode, out computedVar);
trc.AddVarMapping(v, computedVar);
newVars.Set(computedVar);
varDefNodeList.Add(varDefNode);
}
// If no vars have been selected out, add a dummy var
if (newVars.IsEmpty)
{
NullOp nullConst = trc.Command.CreateNullOp(trc.Command.BooleanType);
Node constNode = trc.Command.CreateNode(nullConst);
Var computedVar;
Node varDefNode = trc.Command.CreateVarDefNode(constNode, out computedVar);
newVars.Set(computedVar);
varDefNodeList.Add(varDefNode);
}
Node singleRowTableNode = trc.Command.CreateNode(trc.Command.CreateSingleRowTableOp());
n.Child0 = singleRowTableNode;
Node varDefListNode = trc.Command.CreateNode(trc.Command.CreateVarDefListOp(), varDefNodeList);
ProjectOp projectOp = trc.Command.CreateProjectOp(newVars);
Node projectNode = trc.Command.CreateNode(projectOp, n, varDefListNode);
projectNode.Child0 = n;
newNode = projectNode;
return true;
}
#endregion
#region All FilterOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
FilterOpRules.Rule_FilterWithConstantPredicate,
FilterOpRules.Rule_FilterOverCrossJoin,
FilterOpRules.Rule_FilterOverDistinct,
FilterOpRules.Rule_FilterOverExcept,
FilterOpRules.Rule_FilterOverFilter,
FilterOpRules.Rule_FilterOverGroupBy,
FilterOpRules.Rule_FilterOverInnerJoin,
FilterOpRules.Rule_FilterOverIntersect,
FilterOpRules.Rule_FilterOverLeftOuterJoin,
FilterOpRules.Rule_FilterOverProject,
FilterOpRules.Rule_FilterOverUnionAll,
FilterOpRules.Rule_FilterOverOuterApply,
};
#endregion
}
#endregion
#region Project Rules
/// <summary>
/// Transformation rules for ProjectOp
/// </summary>
internal static class ProjectOpRules
{
#region ProjectOverProject
internal static readonly PatternMatchRule Rule_ProjectOverProject =
new PatternMatchRule(new Node(ProjectOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessProjectOverProject);
/// <summary>
/// Converts a Project(Project(X, c1,...), d1,...) =>
/// Project(X, d1', d2'...)
/// where d1', d2' etc. are the "mapped" versions of d1, d2 etc.
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="projectNode">Current ProjectOp node</param>
/// <param name="newNode">modified subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessProjectOverProject(RuleProcessingContext context, Node projectNode, out Node newNode)
{
newNode = projectNode;
ProjectOp projectOp = (ProjectOp)projectNode.Op;
Node varDefListNode = projectNode.Child1;
Node subProjectNode = projectNode.Child0;
ProjectOp subProjectOp = (ProjectOp)subProjectNode.Op;
TransformationRulesContext trc = (TransformationRulesContext)context;
// If any of the defining expressions is not a scalar op tree, then simply
// quit
Dictionary<Var, int> varRefMap = new Dictionary<Var, int>();
foreach (Node varDefNode in varDefListNode.Children)
{
if (!trc.IsScalarOpTree(varDefNode.Child0, varRefMap))
{
return false;
}
}
Dictionary<Var, Node> varMap = trc.GetVarMap(subProjectNode.Child1, varRefMap);
if (varMap == null)
{
return false;
}
// create a new varDefList node...
Node newVarDefListNode = trc.Command.CreateNode(trc.Command.CreateVarDefListOp());
// Remap any local definitions, I have
foreach (Node varDefNode in varDefListNode.Children)
{
// update the defining expression
varDefNode.Child0 = trc.ReMap(varDefNode.Child0, varMap);
trc.Command.RecomputeNodeInfo(varDefNode);
newVarDefListNode.Children.Add(varDefNode);
}
// Now, pull up any definitions of the subProject that I publish myself
ExtendedNodeInfo projectNodeInfo = trc.Command.GetExtendedNodeInfo(projectNode);
foreach (Node chi in subProjectNode.Child1.Children)
{
VarDefOp varDefOp = (VarDefOp)chi.Op;
if (projectNodeInfo.Definitions.IsSet(varDefOp.Var))
{
newVarDefListNode.Children.Add(chi);
}
}
//
// now that we have remapped all our computed vars, simply bypass the subproject
// node
//
projectNode.Child0 = subProjectNode.Child0;
projectNode.Child1 = newVarDefListNode;
return true;
}
#endregion
#region ProjectWithNoLocalDefinitions
internal static readonly PatternMatchRule Rule_ProjectWithNoLocalDefs =
new PatternMatchRule(new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(VarDefListOp.Pattern)),
ProcessProjectWithNoLocalDefinitions);
/// <summary>
/// Eliminate a ProjectOp that has no local definitions at all and
/// no external references, (ie) if Child1
/// of the ProjectOp (the VarDefListOp child) has no children, then the ProjectOp
/// is serving no useful purpose. Get rid of the ProjectOp, and replace it with its
/// child
/// </summary>
/// <param name="context">rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessProjectWithNoLocalDefinitions(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
NodeInfo nodeInfo = context.Command.GetNodeInfo(n);
// We cannot eliminate this node because it can break other rules,
// e.g. ProcessApplyOverAnything which relies on existence of external refs to substitute
// CrossApply(x, y) => CrossJoin(x, y). See SQLBU #481719.
if (!nodeInfo.ExternalReferences.IsEmpty)
{
return false;
}
newNode = n.Child0;
return true;
}
#endregion
#region ProjectOpWithSimpleVarRedefinitions
internal static readonly SimpleRule Rule_ProjectOpWithSimpleVarRedefinitions = new SimpleRule(OpType.Project, ProcessProjectWithSimpleVarRedefinitions);
/// <summary>
/// If the ProjectOp defines some computedVars, but those computedVars are simply
/// redefinitions of other Vars, then eliminate the computedVars.
///
/// Project(X, VarDefList(VarDef(cv1, VarRef(v1)), ...))
/// can be transformed into
/// Project(X, VarDefList(...))
/// where cv1 has now been replaced by v1
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessProjectWithSimpleVarRedefinitions(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
ProjectOp projectOp = (ProjectOp)n.Op;
if (n.Child1.Children.Count == 0)
{
return false;
}
TransformationRulesContext trc = (TransformationRulesContext)context;
Command command = trc.Command;
ExtendedNodeInfo nodeInfo = command.GetExtendedNodeInfo(n);
//
// Check to see if any of the computed Vars defined by this ProjectOp
// are simple redefinitions of other VarRefOps. Consider only those
// VarRefOps that are not "external" references
bool canEliminateSomeVars = false;
foreach (Node varDefNode in n.Child1.Children)
{
Node definingExprNode = varDefNode.Child0;
if (definingExprNode.Op.OpType == OpType.VarRef)
{
VarRefOp varRefOp = (VarRefOp)definingExprNode.Op;
if (!nodeInfo.ExternalReferences.IsSet(varRefOp.Var))
{
// this is a Var that we should remove
canEliminateSomeVars = true;
break;
}
}
}
// Did we have any redefinitions
if (!canEliminateSomeVars)
{
return false;
}
//
// OK. We've now identified a set of vars that are simple redefinitions.
// Try and replace the computed Vars with the Vars that they're redefining
//
// Lets now build up a new VarDefListNode
List<Node> newVarDefNodes = new List<Node>();
foreach (Node varDefNode in n.Child1.Children)
{
VarDefOp varDefOp = (VarDefOp)varDefNode.Op;
VarRefOp varRefOp = varDefNode.Child0.Op as VarRefOp;
if (varRefOp != null && !nodeInfo.ExternalReferences.IsSet(varRefOp.Var))
{
projectOp.Outputs.Clear(varDefOp.Var);
projectOp.Outputs.Set(varRefOp.Var);
trc.AddVarMapping(varDefOp.Var, varRefOp.Var);
}
else
{
newVarDefNodes.Add(varDefNode);
}
}
// Note: Even if we don't have any local var definitions left, we should not remove
// this project yet because:
// (1) this project node may be pruning out some outputs;
// (2) the rule Rule_ProjectWithNoLocalDefs, would do that later anyway.
// Create a new vardeflist node, and set that as Child1 for the projectOp
Node newVarDefListNode = command.CreateNode(command.CreateVarDefListOp(), newVarDefNodes);
n.Child1 = newVarDefListNode;
return true; // some part of the subtree was modified
}
#endregion
#region ProjectOpWithNullSentinel
internal static readonly SimpleRule Rule_ProjectOpWithNullSentinel = new SimpleRule(OpType.Project, ProcessProjectOpWithNullSentinel);
/// <summary>
/// Tries to remove null sentinel definitions by replacing them to vars that are guaranteed
/// to be non-nullable and of integer type, or with reference to other constants defined in the
/// same project. In particular,
///
/// - If based on the ancestors, the value of the null sentinel can be changed and the
/// input of the project has a var that is guaranteed to be non-nullable and
/// is of integer type, then the definitions of the vars defined as NullSentinels in the ProjectOp
/// are replaced with a reference to that var. I.eg:
///
/// Project(X, VarDefList(VarDef(ns_var, NullSentinel), ...))
/// can be transformed into
/// Project(X, VarDefList(VarDef(ns_var, VarRef(v))...))
/// where v is known to be non-nullable
///
/// - Else, if based on the ancestors, the value of the null sentinel can be changed and
/// the project already has definitions of other int constants, the definitions of the null sentinels
/// are removed and the respective vars are remapped to the var representing the constant.
///
/// - Else, the definitions of the all null sentinels except for one are removed, and the
/// the respective vars are remapped to the remaining null sentinel.
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessProjectOpWithNullSentinel(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
ProjectOp projectOp = (ProjectOp)n.Op;
Node varDefListNode = n.Child1;
if (varDefListNode.Children.Where(c => c.Child0.Op.OpType == OpType.NullSentinel).Count() == 0)
{
return false;
}
TransformationRulesContext trc = (TransformationRulesContext)context;
Command command = trc.Command;
ExtendedNodeInfo relOpInputNodeInfo = command.GetExtendedNodeInfo(n.Child0);
Var inputSentinel;
bool reusingConstantFromSameProjectAsSentinel = false;
bool canChangeNullSentinelValue = trc.CanChangeNullSentinelValue;
if (!canChangeNullSentinelValue || !TransformationRulesContext.TryGetInt32Var(relOpInputNodeInfo.NonNullableDefinitions, out inputSentinel))
{
reusingConstantFromSameProjectAsSentinel = true;
if (!canChangeNullSentinelValue || !TransformationRulesContext.TryGetInt32Var(n.Child1.Children.Where(child => child.Child0.Op.OpType == OpType.Constant || child.Child0.Op.OpType == OpType.InternalConstant).Select(child => ((VarDefOp)(child.Op)).Var), out inputSentinel))
{
inputSentinel = n.Child1.Children.Where(child => child.Child0.Op.OpType == OpType.NullSentinel).Select(child => ((VarDefOp)(child.Op)).Var).FirstOrDefault();
if (inputSentinel == null)
{
return false;
}
}
}
bool modified = false;
for (int i = n.Child1.Children.Count-1; i >= 0; i--)
{
Node varDefNode = n.Child1.Children[i];
Node definingExprNode = varDefNode.Child0;
if (definingExprNode.Op.OpType == OpType.NullSentinel)
{
if (!reusingConstantFromSameProjectAsSentinel)
{
VarRefOp varRefOp = command.CreateVarRefOp(inputSentinel);
varDefNode.Child0 = command.CreateNode(varRefOp);
command.RecomputeNodeInfo(varDefNode);
modified = true;
}
else if (!inputSentinel.Equals(((VarDefOp)varDefNode.Op).Var))
{
projectOp.Outputs.Clear(((VarDefOp)varDefNode.Op).Var);
n.Child1.Children.RemoveAt(i);
trc.AddVarMapping(((VarDefOp)varDefNode.Op).Var, inputSentinel);
modified = true;
}
}
}
if (modified)
{
command.RecomputeNodeInfo(n.Child1);
}
return modified;
}
#endregion
#region All ProjectOp Rules
//The order of the rules is important
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
ProjectOpRules.Rule_ProjectOpWithNullSentinel,
ProjectOpRules.Rule_ProjectOpWithSimpleVarRedefinitions,
ProjectOpRules.Rule_ProjectOverProject,
ProjectOpRules.Rule_ProjectWithNoLocalDefs,
};
#endregion
}
#endregion
#region Apply Rules
/// <summary>
/// Transformation rules for ApplyOps - CrossApply, OuterApply
/// </summary>
internal static class ApplyOpRules
{
#region ApplyOverFilter
internal static readonly PatternMatchRule Rule_CrossApplyOverFilter =
new PatternMatchRule(new Node(CrossApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern))),
ProcessApplyOverFilter);
internal static readonly PatternMatchRule Rule_OuterApplyOverFilter =
new PatternMatchRule(new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern))),
ProcessApplyOverFilter);
/// <summary>
/// Convert CrossApply(X, Filter(Y, p)) => InnerJoin(X, Y, p)
/// OuterApply(X, Filter(Y, p)) => LeftOuterJoin(X, Y, p)
/// if "Y" has no external references to X
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="applyNode">Current ApplyOp</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessApplyOverFilter(RuleProcessingContext context, Node applyNode, out Node newNode)
{
newNode = applyNode;
Node filterNode = applyNode.Child1;
Command command = context.Command;
NodeInfo filterInputNodeInfo = command.GetNodeInfo(filterNode.Child0);
ExtendedNodeInfo applyLeftChildNodeInfo = command.GetExtendedNodeInfo(applyNode.Child0);
//
// check to see if the inputNode to the FilterOp has any external references
// to the left child of the ApplyOp. If it does, we simply return, we
// can't do much more here
//
if (filterInputNodeInfo.ExternalReferences.Overlaps(applyLeftChildNodeInfo.Definitions))
{
return false;
}
//
// We've now gotten to the stage where the only external references (if any)
// are from the filter predicate.
// We can now simply convert the apply into an inner/leftouter join with the
// filter predicate acting as the join condition
//
JoinBaseOp joinOp = null;
if (applyNode.Op.OpType == OpType.CrossApply)
{
joinOp = command.CreateInnerJoinOp();
}
else
{
joinOp = command.CreateLeftOuterJoinOp();
}
newNode = command.CreateNode(joinOp, applyNode.Child0, filterNode.Child0, filterNode.Child1);
return true;
}
internal static readonly PatternMatchRule Rule_OuterApplyOverProjectInternalConstantOverFilter =
new PatternMatchRule(new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ProjectOp.Pattern,
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(VarDefListOp.Pattern,
new Node(VarDefOp.Pattern,
new Node(InternalConstantOp.Pattern))))),
ProcessOuterApplyOverDummyProjectOverFilter);
internal static readonly PatternMatchRule Rule_OuterApplyOverProjectNullSentinelOverFilter =
new PatternMatchRule(new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ProjectOp.Pattern,
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(VarDefListOp.Pattern,
new Node(VarDefOp.Pattern,
new Node(NullSentinelOp.Pattern))))),
ProcessOuterApplyOverDummyProjectOverFilter);
/// <summary>
/// Convert OuterApply(X, Project(Filter(Y, p), constant)) =>
/// LeftOuterJoin(X, Project(Y, constant), p)
/// if "Y" has no external references to X
///
/// In an ideal world, we would be able to push the Project below the Filter,
/// and then have the normal ApplyOverFilter rule handle this - but that causes us
/// problems because we always try to pull up ProjectOp's as high as possible. Hence,
/// the special case for this rule
///
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="applyNode">Current ApplyOp</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessOuterApplyOverDummyProjectOverFilter(RuleProcessingContext context, Node applyNode, out Node newNode)
{
newNode = applyNode;
Node projectNode = applyNode.Child1;
ProjectOp projectOp = (ProjectOp)projectNode.Op;
Node filterNode = projectNode.Child0;
Node filterInputNode = filterNode.Child0;
Command command = context.Command;
ExtendedNodeInfo filterInputNodeInfo = command.GetExtendedNodeInfo(filterInputNode);
ExtendedNodeInfo applyLeftChildNodeInfo = command.GetExtendedNodeInfo(applyNode.Child0);
//
// Check if the outputs of the ProjectOp or the inputNode to the FilterOp
// have any external references to the left child of the ApplyOp.
// If they do, we simply return, we can't do much more here
//
if (projectOp.Outputs.Overlaps(applyLeftChildNodeInfo.Definitions) || filterInputNodeInfo.ExternalReferences.Overlaps(applyLeftChildNodeInfo.Definitions))
{
return false;
}
//
// We've now gotten to the stage where the only external references (if any)
// are from the filter predicate.
// First, push the Project node down below the filter - but make sure that
// all the Vars needed by the Filter are projected out
//
bool capWithProject = false;
Node joinNodeRightInput = null;
//
// Check to see whether there is a sentinel var available - if there is, then
// we can simply move the ProjectOp above the join we're going to construct
// and of course, build a NullIf expression for the constant.
// Otherwise, the ProjectOp will need to be the child of the joinOp that we're
// building - and we'll need to make sure that the ProjectOp projects out
// any vars that are required for the Filter in the first place
//
TransformationRulesContext trc = (TransformationRulesContext)context;
Var sentinelVar;
bool sentinelIsInt32;
if (TransformationRulesContext.TryGetInt32Var(filterInputNodeInfo.NonNullableDefinitions, out sentinelVar))
{
sentinelIsInt32 = true;
}
else
{
sentinelVar = filterInputNodeInfo.NonNullableDefinitions.First;
sentinelIsInt32 = false;
}
if (sentinelVar != null)
{
capWithProject = true;
Node varDefNode = projectNode.Child1.Child0;
if (varDefNode.Child0.Op.OpType == OpType.NullSentinel && sentinelIsInt32 && trc.CanChangeNullSentinelValue)
{
varDefNode.Child0 = context.Command.CreateNode(context.Command.CreateVarRefOp(sentinelVar));
}
else
{
varDefNode.Child0 = trc.BuildNullIfExpression(sentinelVar, varDefNode.Child0);
}
command.RecomputeNodeInfo(varDefNode);
command.RecomputeNodeInfo(projectNode.Child1);
joinNodeRightInput = filterInputNode;
}
else
{
// We need to keep the projectNode - unfortunately
joinNodeRightInput = projectNode;
//
// Make sure that every Var that is needed for the filter predicate
// is captured in the projectOp outputs list
//
NodeInfo filterPredicateNodeInfo = command.GetNodeInfo(filterNode.Child1);
foreach (Var v in filterPredicateNodeInfo.ExternalReferences)
{
if (filterInputNodeInfo.Definitions.IsSet(v))
{
projectOp.Outputs.Set(v);
}
}
projectNode.Child0 = filterInputNode;
}
context.Command.RecomputeNodeInfo(projectNode);
//
// We can now simply convert the apply into an inner/leftouter join with the
// filter predicate acting as the join condition
//
Node joinNode = command.CreateNode(command.CreateLeftOuterJoinOp(), applyNode.Child0, joinNodeRightInput, filterNode.Child1);
if (capWithProject)
{
ExtendedNodeInfo joinNodeInfo = command.GetExtendedNodeInfo(joinNode);
projectNode.Child0 = joinNode;
projectOp.Outputs.Or(joinNodeInfo.Definitions);
newNode = projectNode;
}
else
{
newNode = joinNode;
}
return true;
}
#endregion
#region ApplyOverProject
internal static readonly PatternMatchRule Rule_CrossApplyOverProject =
new PatternMatchRule(new Node(CrossApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern))),
ProcessCrossApplyOverProject);
/// <summary>
/// Converts a CrossApply(X, Project(Y, ...)) => Project(CrossApply(X, Y), ...)
/// where the projectVars are simply pulled up
/// </summary>
/// <param name="context">RuleProcessing context</param>
/// <param name="applyNode">The ApplyOp subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessCrossApplyOverProject(RuleProcessingContext context, Node applyNode, out Node newNode)
{
newNode = applyNode;
Node projectNode = applyNode.Child1;
ProjectOp projectOp = (ProjectOp)projectNode.Op as ProjectOp;
Command command = context.Command;
// We can simply pull up the project over the apply; provided we make sure
// that all the definitions of the apply are represented in the projectOp
ExtendedNodeInfo applyNodeInfo = command.GetExtendedNodeInfo(applyNode);
VarVec vec = command.CreateVarVec(projectOp.Outputs);
vec.Or(applyNodeInfo.Definitions);
projectOp.Outputs.InitFrom(vec);
// pull up the project over the apply node
applyNode.Child1 = projectNode.Child0;
context.Command.RecomputeNodeInfo(applyNode);
projectNode.Child0 = applyNode;
newNode = projectNode;
return true;
}
internal static readonly PatternMatchRule Rule_OuterApplyOverProject =
new PatternMatchRule(new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern))),
ProcessOuterApplyOverProject);
/// <summary>
/// Converts a
/// OuterApply(X, Project(Y, ...))
/// =>
/// Project(OuterApply(X, Project(Y, ...)), ...) or
/// Project(OuterApply(X, Y), ...)
///
/// The second (simpler) form is used if a "sentinel" var can be located (ie)
/// some Var of Y that is guaranteed to be non-null. Otherwise, we create a
/// dummy ProjectNode as the right child of the Apply - which
/// simply projects out all the vars of the Y, and adds on a constant (say "1"). This
/// constant is now treated as the sentinel var
///
/// Then the existing ProjectOp is pulled up above the the outer-apply, but all the locally defined
/// Vars have their defining expressions now expressed as
/// case when sentinelVar is null then null else oldDefiningExpr end
/// where oldDefiningExpr represents the original defining expression
/// This allows us to get nulls for the appropriate columns when necessary.
///
/// Special cases.
/// * If the oldDefiningExpr is itself an internal constant equivalent to the null sentinel ("1"),
/// we simply project a ref to the null sentinel, no need for cast
/// * If the ProjectOp contained exactly one locally defined Var, and it was a constant, then
/// we simply return - we will be looping endlessly otherwise
/// * If the ProjectOp contained no local definitions, then we don't need to create the
/// dummy projectOp - we can simply pull up the Project
/// * If any of the defining expressions of the local definitions was simply a VarRefOp
/// referencing a Var that was defined by Y, then there is no need to add the case
/// expression for that.
///
/// </summary>
/// <param name="context">RuleProcessing context</param>
/// <param name="applyNode">The ApplyOp subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessOuterApplyOverProject(RuleProcessingContext context, Node applyNode, out Node newNode)
{
newNode = applyNode;
Node projectNode = applyNode.Child1;
Node varDefListNode = projectNode.Child1;
TransformationRulesContext trc = (TransformationRulesContext)context;
ExtendedNodeInfo inputNodeInfo = context.Command.GetExtendedNodeInfo(projectNode.Child0);
Var sentinelVar = inputNodeInfo.NonNullableDefinitions.First;
//
// special case handling first - we'll end up in an infinite loop otherwise.
// If the ProjectOp is the dummy ProjectOp that we would be building (ie)
// it defines only 1 var - and the defining expression is simply a constant
//
if (sentinelVar == null &&
varDefListNode.Children.Count == 1 &&
(varDefListNode.Child0.Child0.Op.OpType == OpType.InternalConstant || varDefListNode.Child0.Child0.Op.OpType == OpType.NullSentinel))
{
return false;
}
Command command = context.Command;
Node dummyProjectNode = null;
InternalConstantOp nullSentinelDefinitionOp = null;
// get node information for the project's child
ExtendedNodeInfo projectInputNodeInfo = command.GetExtendedNodeInfo(projectNode.Child0);
//
// Build up a dummy project node.
// Walk through each local definition of the current project Node, and convert
// all expressions into case expressions whose value depends on the var
// produced by the dummy project node
//
// Dev10 #480443: If any of the definitions changes we need to recompute the node info.
bool anyVarDefChanged = false;
foreach (Node varDefNode in varDefListNode.Children)
{
PlanCompiler.Assert(varDefNode.Op.OpType == OpType.VarDef, "Expected VarDefOp. Found " + varDefNode.Op.OpType + " instead");
VarRefOp varRefOp = varDefNode.Child0.Op as VarRefOp;
if (varRefOp == null || !projectInputNodeInfo.Definitions.IsSet(varRefOp.Var))
{
// do we need to build a dummy project node
if (sentinelVar == null)
{
nullSentinelDefinitionOp = command.CreateInternalConstantOp(command.IntegerType, 1);
Node dummyConstantExpr = command.CreateNode(nullSentinelDefinitionOp);
Node dummyProjectVarDefListNode = command.CreateVarDefListNode(dummyConstantExpr, out sentinelVar);
ProjectOp dummyProjectOp = command.CreateProjectOp(sentinelVar);
dummyProjectOp.Outputs.Or(projectInputNodeInfo.Definitions);
dummyProjectNode = command.CreateNode(dummyProjectOp, projectNode.Child0, dummyProjectVarDefListNode);
}
Node currentDefinition;
// If the null sentinel was just created, and the local definition of the current project Node
// is an internal constant equivalent to the null sentinel, it can be rewritten as a reference
// to the null sentinel.
if (nullSentinelDefinitionOp != null && ((true == nullSentinelDefinitionOp.IsEquivalent(varDefNode.Child0.Op)) ||
//The null sentinel has the same value of 1, thus it is safe.
varDefNode.Child0.Op.OpType == OpType.NullSentinel))
{
currentDefinition = command.CreateNode(command.CreateVarRefOp(sentinelVar));
}
else
{
currentDefinition = trc.BuildNullIfExpression(sentinelVar, varDefNode.Child0);
}
varDefNode.Child0 = currentDefinition;
command.RecomputeNodeInfo(varDefNode);
anyVarDefChanged = true;
}
}
// Recompute node info if needed
if (anyVarDefChanged)
{
command.RecomputeNodeInfo(varDefListNode);
}
//
// If we've created a dummy project node, make that the new child of the applyOp
//
applyNode.Child1 = dummyProjectNode != null ? dummyProjectNode : projectNode.Child0;
command.RecomputeNodeInfo(applyNode);
//
// Pull up the project node above the apply node now. Also, make sure that every Var of
// the applyNode's definitions actually shows up in the new Project
//
projectNode.Child0 = applyNode;
ExtendedNodeInfo applyLeftChildNodeInfo = command.GetExtendedNodeInfo(applyNode.Child0);
ProjectOp projectOp = (ProjectOp)projectNode.Op;
projectOp.Outputs.Or(applyLeftChildNodeInfo.Definitions);
newNode = projectNode;
return true;
}
#endregion
#region ApplyOverAnything
internal static readonly PatternMatchRule Rule_CrossApplyOverAnything =
new PatternMatchRule(new Node(CrossApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessApplyOverAnything);
internal static readonly PatternMatchRule Rule_OuterApplyOverAnything =
new PatternMatchRule(new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessApplyOverAnything);
/// <summary>
/// Converts a CrossApply(X,Y) => CrossJoin(X,Y)
/// OuterApply(X,Y) => LeftOuterJoin(X, Y, true)
/// only if Y has no external references to X
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="applyNode">The ApplyOp subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>the transformation status</returns>
static bool ProcessApplyOverAnything(RuleProcessingContext context, Node applyNode, out Node newNode)
{
newNode = applyNode;
Node applyLeftChild = applyNode.Child0;
Node applyRightChild = applyNode.Child1;
ApplyBaseOp applyOp = (ApplyBaseOp)applyNode.Op;
Command command = context.Command;
ExtendedNodeInfo applyRightChildNodeInfo = command.GetExtendedNodeInfo(applyRightChild);
ExtendedNodeInfo applyLeftChildNodeInfo = command.GetExtendedNodeInfo(applyLeftChild);
//
// If we're currently dealing with an OuterApply, and the right child is guaranteed
// to produce at least one row, then we can convert the outer-apply into a cross apply
//
bool convertedToCrossApply = false;
if (applyOp.OpType == OpType.OuterApply &&
applyRightChildNodeInfo.MinRows >= RowCount.One)
{
applyOp = command.CreateCrossApplyOp();
convertedToCrossApply = true;
}
//
// Does the right child reference any of the definitions of the left child? If it
// does, then simply return from this function
//
if (applyRightChildNodeInfo.ExternalReferences.Overlaps(applyLeftChildNodeInfo.Definitions))
{
if (convertedToCrossApply)
{
newNode = command.CreateNode(applyOp, applyLeftChild, applyRightChild);
return true;
}
else
{
return false;
}
}
//
// So, we now know that the right child does not reference any definitions
// from the left.
// So, we simply convert the apply into an appropriate join Op
//
if (applyOp.OpType == OpType.CrossApply)
{
//
// Convert "x CrossApply y" into "x CrossJoin y"
//
newNode = command.CreateNode(command.CreateCrossJoinOp(),
applyLeftChild, applyRightChild);
}
else // outer apply
{
//
// Convert "x OA y" into "x LOJ y on (true)"
//
LeftOuterJoinOp joinOp = command.CreateLeftOuterJoinOp();
ConstantPredicateOp trueOp = command.CreateTrueOp();
Node trueNode = command.CreateNode(trueOp);
newNode = command.CreateNode(joinOp, applyLeftChild, applyRightChild, trueNode);
}
return true;
}
#endregion
#region ApplyIntoScalarSubquery
internal static readonly PatternMatchRule Rule_CrossApplyIntoScalarSubquery =
new PatternMatchRule(new Node(CrossApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessApplyIntoScalarSubquery);
internal static readonly PatternMatchRule Rule_OuterApplyIntoScalarSubquery =
new PatternMatchRule(new Node(OuterApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessApplyIntoScalarSubquery);
/// <summary>
/// Converts a Apply(X,Y) => Project(X, Y1), where Y1 is a scalar subquery version of Y
/// The transformation is valid only if all of the following conditions hold:
/// 1. Y produces only one output
/// 2. Y produces at most one row
/// 3. Y produces at least one row, or the Apply operator in question is an OuterApply
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="applyNode">The ApplyOp subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>the transformation status</returns>
static bool ProcessApplyIntoScalarSubquery(RuleProcessingContext context, Node applyNode, out Node newNode)
{
Command command = context.Command;
ExtendedNodeInfo applyRightChildNodeInfo = command.GetExtendedNodeInfo(applyNode.Child1);
OpType applyKind = applyNode.Op.OpType;
if (!CanRewriteApply(applyNode.Child1, applyRightChildNodeInfo, applyKind))
{
newNode = applyNode;
return false;
}
// Create the project node over the original input with element over the apply as new projected var
ExtendedNodeInfo applyLeftChildNodeInfo = command.GetExtendedNodeInfo(applyNode.Child0);
Var oldVar = applyRightChildNodeInfo.Definitions.First;
// Project all the outputs from the left child
VarVec projectOpOutputs = command.CreateVarVec(applyLeftChildNodeInfo.Definitions);
//
// Remap the var defining tree to get it into a consistent state
// and then remove all references to oldVar from it to avoid them being wrongly remapped to newVar
// in subsequent remappings.
//
TransformationRulesContext trc = (TransformationRulesContext)context;
trc.RemapSubtree(applyNode.Child1);
VarDefinitionRemapper.RemapSubtree(applyNode.Child1, command, oldVar);
Node elementNode = command.CreateNode(command.CreateElementOp(oldVar.Type), applyNode.Child1);
Var newVar;
Node varDefListNode = command.CreateVarDefListNode(elementNode, out newVar);
projectOpOutputs.Set(newVar);
newNode = command.CreateNode(
command.CreateProjectOp(projectOpOutputs),
applyNode.Child0,
varDefListNode);
// Add the var mapping from oldVar to newVar
trc.AddVarMapping(oldVar, newVar);
return true;
}
/// <summary>
/// Determines whether an applyNode can be rewritten into a projection with a scalar subquery.
/// It can be done if all of the following conditions hold:
/// 1. The right child or the apply has only one output
/// 2. The right child of the apply produces at most one row
/// 3. The right child of the apply produces at least one row, or the Apply operator in question is an OuterApply
/// </summary>
/// <param name="rightChild"></param>
/// <param name="applyRightChildNodeInfo"></param>
/// <param name="applyKind"></param>
/// <returns></returns>
private static bool CanRewriteApply(Node rightChild, ExtendedNodeInfo applyRightChildNodeInfo, OpType applyKind)
{
//Check whether it produces only one definition
if (applyRightChildNodeInfo.Definitions.Count != 1)
{
return false;
}
//Check whether it produces at most one row
if (applyRightChildNodeInfo.MaxRows != RowCount.One)
{
return false;
}
//For cross apply it must also return exactly one row
if (applyKind == OpType.CrossApply && (applyRightChildNodeInfo.MinRows != RowCount.One))
{
return false;
}
//Dev10 #488632: Make sure the right child not only declares to produce only one definition,
// but has exactly one output. For example, ScanTableOp really outputs all the columns from the table,
// but in its ExtendedNodeInfo.Definitions only these that are referenced are shown.
// This is to allow for projection pruning of the unreferenced columns.
if (OutputCountVisitor.CountOutputs(rightChild) != 1)
{
return false;
}
return true;
}
/// <summary>
/// A visitor that calculates the number of output columns for a subtree
/// with a given root
/// </summary>
internal class OutputCountVisitor : BasicOpVisitorOfT<int>
{
#region Constructors
internal OutputCountVisitor()
{
}
#endregion
#region Public Methods
/// <summary>
/// Calculates the number of output columns for the subtree
/// rooted at the given node
/// </summary>
/// <param name="node"></param>
/// <returns></returns>
internal static int CountOutputs(Node node)
{
OutputCountVisitor visitor = new OutputCountVisitor();
return visitor.VisitNode(node);
}
#endregion
#region Visitor Methods
#region Helpers
/// <summary>
/// Visitor for children. Simply visit all children,
/// and sum the number of their outputs.
/// </summary>
/// <param name="n">Current node</param>
/// <returns></returns>
internal new int VisitChildren(Node n)
{
int result = 0;
foreach (Node child in n.Children)
{
result += VisitNode(child);
}
return result;
}
/// <summary>
/// A default processor for any node.
/// Returns the sum of the children outputs
/// </summary>
/// <param name="n"></param>
/// <returns>/returns>
protected override int VisitDefault(Node n)
{
return VisitChildren(n);
}
#endregion
#region RelOp Visitors
#region SetOp Visitors
/// <summary>
/// The number of outputs is same as for any of the inputs
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override int VisitSetOp(SetOp op, Node n)
{
return op.Outputs.Count;
}
#endregion
/// <summary>
/// Distinct
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override int Visit(DistinctOp op, Node n)
{
return op.Keys.Count;
}
/// <summary>
/// FilterOp
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override int Visit(FilterOp op, Node n)
{
return VisitNode(n.Child0);
}
/// <summary>
/// GroupByOp
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override int Visit(GroupByOp op, Node n)
{
return op.Outputs.Count;
}
/// <summary>
/// ProjectOp
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override int Visit(ProjectOp op, Node n)
{
return op.Outputs.Count;
}
#region TableOps
/// <summary>
/// ScanTableOp
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override int Visit(ScanTableOp op, Node n)
{
return op.Table.Columns.Count;
}
/// <summary>
/// SingleRowTableOp
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override int Visit(SingleRowTableOp op, Node n)
{
return 0;
}
/// <summary>
/// Same as the input
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override int VisitSortOp(SortBaseOp op, Node n)
{
return VisitNode(n.Child0);
}
#endregion
#endregion
#endregion
}
/// <summary>
/// A utility class that remaps a given var at its definition and also remaps all its references.
/// The given var is remapped to an arbitrary new var.
/// If the var is defined by a ScanTable, all the vars defined by that table and all their references
/// are remapped as well.
/// </summary>
internal class VarDefinitionRemapper : VarRemapper
{
private readonly Var m_oldVar;
private VarDefinitionRemapper(Var oldVar, Command command)
: base(command)
{
this.m_oldVar = oldVar;
}
/// <summary>
/// Public entry point.
/// Remaps the subtree rooted at the given tree
/// </summary>
/// <param name="root"></param>
/// <param name="command"></param>
/// <param name="oldVar"></param>
internal static void RemapSubtree(Node root, Command command, Var oldVar)
{
VarDefinitionRemapper remapper = new VarDefinitionRemapper(oldVar, command);
remapper.RemapSubtree(root);
}
/// <summary>
/// Update vars in this subtree. Recompute the nodeinfo along the way
/// Unlike the base implementation, we want to visit the childrent, even if no vars are in the
/// remapping dictionary.
/// </summary>
/// <param name="subTree"></param>
internal override void RemapSubtree(Node subTree)
{
foreach (Node chi in subTree.Children)
{
RemapSubtree(chi);
}
VisitNode(subTree);
m_command.RecomputeNodeInfo(subTree);
}
/// <summary>
/// If the node defines the node that needs to be remapped,
/// it remaps it to a new var.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override void Visit(VarDefOp op, Node n)
{
if (op.Var == m_oldVar)
{
Var newVar = m_command.CreateComputedVar(n.Child0.Op.Type);
n.Op = m_command.CreateVarDefOp(newVar);
AddMapping(m_oldVar, newVar);
}
}
/// <summary>
/// If the columnVars defined by the table contain the var that needs to be remapped
/// all the column vars produces by the table are remaped to new vars.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override void Visit(ScanTableOp op, Node n)
{
if (op.Table.Columns.Contains(m_oldVar))
{
ScanTableOp newScanTableOp = m_command.CreateScanTableOp(op.Table.TableMetadata);
VarDefListOp varDefListOp = m_command.CreateVarDefListOp();
for (int i = 0; i < op.Table.Columns.Count; i++)
{
AddMapping(op.Table.Columns[i], newScanTableOp.Table.Columns[i]);
}
n.Op = newScanTableOp;
}
}
/// <summary>
/// The var that needs to be remapped may be produced by a set op,
/// in which case the varmaps need to be updated too.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
protected override void VisitSetOp(SetOp op, Node n)
{
base.VisitSetOp(op, n);
if (op.Outputs.IsSet(m_oldVar))
{
Var newVar = m_command.CreateSetOpVar(m_oldVar.Type);
op.Outputs.Clear(m_oldVar);
op.Outputs.Set(newVar);
RemapVarMapKey(op.VarMap[0], newVar);
RemapVarMapKey(op.VarMap[1], newVar);
AddMapping(m_oldVar, newVar);
}
}
/// <summary>
/// Replaces the entry in the varMap in which m_oldVar is a key
/// with an entry in which newVAr is the key and the value remains the same.
/// </summary>
/// <param name="varMap"></param>
/// <param name="newVar"></param>
private void RemapVarMapKey(VarMap varMap, Var newVar)
{
Var value = varMap[m_oldVar];
varMap.Remove(m_oldVar);
varMap.Add(newVar, value);
}
}
#endregion
#region CrossApply over LeftOuterJoin of SingleRowTable with anything and with constant predicate
internal static readonly PatternMatchRule Rule_CrossApplyOverLeftOuterJoinOverSingleRowTable =
new PatternMatchRule(new Node(CrossApplyOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeftOuterJoinOp.Pattern,
new Node(SingleRowTableOp.Pattern),
new Node(LeafOp.Pattern),
new Node(ConstantPredicateOp.Pattern))),
ProcessCrossApplyOverLeftOuterJoinOverSingleRowTable);
/// <summary>
/// Convert a CrossApply(X, LeftOuterJoin(SingleRowTable, Y, on true))
/// into just OuterApply(X, Y)
/// </summary>
/// <param name="context">rule processing context</param>
/// <param name="joinNode">the join node</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessCrossApplyOverLeftOuterJoinOverSingleRowTable(RuleProcessingContext context, Node applyNode, out Node newNode)
{
newNode = applyNode;
Node joinNode = applyNode.Child1;
//Check the value of the predicate
ConstantPredicateOp joinPredicate = (ConstantPredicateOp)joinNode.Child2.Op;
if (joinPredicate.IsFalse)
{
return false;
}
applyNode.Op = context.Command.CreateOuterApplyOp();
applyNode.Child1 = joinNode.Child1;
return true;
}
#endregion
#region All ApplyOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
ApplyOpRules.Rule_CrossApplyOverAnything,
ApplyOpRules.Rule_CrossApplyOverFilter,
ApplyOpRules.Rule_CrossApplyOverProject,
ApplyOpRules.Rule_OuterApplyOverAnything,
ApplyOpRules.Rule_OuterApplyOverProjectInternalConstantOverFilter,
ApplyOpRules.Rule_OuterApplyOverProjectNullSentinelOverFilter,
ApplyOpRules.Rule_OuterApplyOverProject,
ApplyOpRules.Rule_OuterApplyOverFilter,
ApplyOpRules.Rule_CrossApplyOverLeftOuterJoinOverSingleRowTable,
ApplyOpRules.Rule_CrossApplyIntoScalarSubquery,
ApplyOpRules.Rule_OuterApplyIntoScalarSubquery,
};
#endregion
}
#endregion
#region Join Rules
/// <summary>
/// Transformation rules for JoinOps
/// </summary>
internal static class JoinOpRules
{
#region JoinOverProject
internal static readonly PatternMatchRule Rule_CrossJoinOverProject1 =
new PatternMatchRule(new Node(CrossJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern))),
ProcessJoinOverProject);
internal static readonly PatternMatchRule Rule_CrossJoinOverProject2 =
new PatternMatchRule(new Node(CrossJoinOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessJoinOverProject);
internal static readonly PatternMatchRule Rule_InnerJoinOverProject1 =
new PatternMatchRule(new Node(InnerJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessJoinOverProject);
internal static readonly PatternMatchRule Rule_InnerJoinOverProject2 =
new PatternMatchRule(new Node(InnerJoinOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessJoinOverProject);
internal static readonly PatternMatchRule Rule_OuterJoinOverProject2 =
new PatternMatchRule(new Node(LeftOuterJoinOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessJoinOverProject);
/// <summary>
/// CrossJoin(Project(A), B) => Project(CrossJoin(A, B), modifiedvars)
/// InnerJoin(Project(A), B, p) => Project(InnerJoin(A, B, p'), modifiedvars)
/// LeftOuterJoin(Project(A), B, p) => Project(LeftOuterJoin(A, B, p'), modifiedvars)
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="joinNode">Current JoinOp tree to process</param>
/// <param name="newNode">Transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessJoinOverProject(RuleProcessingContext context, Node joinNode, out Node newNode)
{
newNode = joinNode;
TransformationRulesContext trc = (TransformationRulesContext)context;
Command command = trc.Command;
Node joinConditionNode = joinNode.HasChild2 ? joinNode.Child2 : (Node)null;
Dictionary<Var, int> varRefMap = new Dictionary<Var, int>();
if (joinConditionNode != null && !trc.IsScalarOpTree(joinConditionNode, varRefMap))
{
return false;
}
Node newJoinNode;
Node newProjectNode;
// Now locate the ProjectOps
VarVec newVarSet = command.CreateVarVec();
List<Node> varDefNodes = new List<Node>();
//
// Try and handle "project" on both sides only if we're not dealing with
// an LOJ.
//
if ((joinNode.Op.OpType != OpType.LeftOuterJoin) &&
(joinNode.Child0.Op.OpType == OpType.Project) &&
(joinNode.Child1.Op.OpType == OpType.Project))
{
ProjectOp projectOp1 = (ProjectOp)joinNode.Child0.Op;
ProjectOp projectOp2 = (ProjectOp)joinNode.Child1.Op;
Dictionary<Var, Node> varMap1 = trc.GetVarMap(joinNode.Child0.Child1, varRefMap);
Dictionary<Var, Node> varMap2 = trc.GetVarMap(joinNode.Child1.Child1, varRefMap);
if (varMap1 == null || varMap2 == null)
{
return false;
}
if (joinConditionNode != null)
{
joinConditionNode = trc.ReMap(joinConditionNode, varMap1);
joinConditionNode = trc.ReMap(joinConditionNode, varMap2);
newJoinNode = context.Command.CreateNode(joinNode.Op, joinNode.Child0.Child0, joinNode.Child1.Child0, joinConditionNode);
}
else
{
newJoinNode = context.Command.CreateNode(joinNode.Op, joinNode.Child0.Child0, joinNode.Child1.Child0);
}
newVarSet.InitFrom(projectOp1.Outputs);
foreach (Var v in projectOp2.Outputs)
{
newVarSet.Set(v);
}
ProjectOp newProjectOp = command.CreateProjectOp(newVarSet);
varDefNodes.AddRange(joinNode.Child0.Child1.Children);
varDefNodes.AddRange(joinNode.Child1.Child1.Children);
Node varDefListNode = command.CreateNode(
command.CreateVarDefListOp(),
varDefNodes);
newProjectNode = command.CreateNode(newProjectOp,
newJoinNode, varDefListNode);
newNode = newProjectNode;
return true;
}
int projectNodeIdx = -1;
int otherNodeIdx = -1;
if (joinNode.Child0.Op.OpType == OpType.Project)
{
projectNodeIdx = 0;
otherNodeIdx = 1;
}
else
{
PlanCompiler.Assert(joinNode.Op.OpType != OpType.LeftOuterJoin, "unexpected non-LeftOuterJoin");
projectNodeIdx = 1;
otherNodeIdx = 0;
}
Node projectNode = joinNode.Children[projectNodeIdx];
ProjectOp projectOp = projectNode.Op as ProjectOp;
Dictionary<Var, Node> varMap = trc.GetVarMap(projectNode.Child1, varRefMap);
if (varMap == null)
{
return false;
}
ExtendedNodeInfo otherChildInfo = command.GetExtendedNodeInfo(joinNode.Children[otherNodeIdx]);
VarVec vec = command.CreateVarVec(projectOp.Outputs);
vec.Or(otherChildInfo.Definitions);
projectOp.Outputs.InitFrom(vec);
if (joinConditionNode != null)
{
joinConditionNode = trc.ReMap(joinConditionNode, varMap);
joinNode.Child2 = joinConditionNode;
}
joinNode.Children[projectNodeIdx] = projectNode.Child0; // bypass the projectOp
context.Command.RecomputeNodeInfo(joinNode);
newNode = context.Command.CreateNode(projectOp, joinNode, projectNode.Child1);
return true;
}
#endregion
#region JoinOverFilter
internal static readonly PatternMatchRule Rule_CrossJoinOverFilter1 =
new PatternMatchRule(new Node(CrossJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern))),
ProcessJoinOverFilter);
internal static readonly PatternMatchRule Rule_CrossJoinOverFilter2 =
new PatternMatchRule(new Node(CrossJoinOp.Pattern,
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessJoinOverFilter);
internal static readonly PatternMatchRule Rule_InnerJoinOverFilter1 =
new PatternMatchRule(new Node(InnerJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern)),
ProcessJoinOverFilter);
internal static readonly PatternMatchRule Rule_InnerJoinOverFilter2 =
new PatternMatchRule(new Node(InnerJoinOp.Pattern,
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessJoinOverFilter);
internal static readonly PatternMatchRule Rule_OuterJoinOverFilter2 =
new PatternMatchRule(new Node(LeftOuterJoinOp.Pattern,
new Node(FilterOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessJoinOverFilter);
/// <summary>
/// CrossJoin(Filter(A,p), B) => Filter(CrossJoin(A, B), p)
/// CrossJoin(A, Filter(B,p)) => Filter(CrossJoin(A, B), p)
///
/// InnerJoin(Filter(A,p), B, c) => Filter(InnerJoin(A, B, c), p)
/// InnerJoin(A, Filter(B,p), c) => Filter(InnerJoin(A, B, c), p)
///
/// LeftOuterJoin(Filter(A,p), B, c) => Filter(LeftOuterJoin(A, B, c), p)
///
/// Note that the predicate on the right table in a left-outer-join cannot be pulled
/// up above the join.
///
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="joinNode">Current JoinOp tree to process</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessJoinOverFilter(RuleProcessingContext context, Node joinNode, out Node newNode)
{
newNode = joinNode;
TransformationRulesContext trc = (TransformationRulesContext)context;
Command command = trc.Command;
Node predicateNode = null;
Node newLeftInput = joinNode.Child0;
// get the predicate from the first filter
if (joinNode.Child0.Op.OpType == OpType.Filter)
{
predicateNode = joinNode.Child0.Child1;
newLeftInput = joinNode.Child0.Child0; // bypass the filter
}
// get the predicate from the second filter
Node newRightInput = joinNode.Child1;
if (joinNode.Child1.Op.OpType == OpType.Filter && joinNode.Op.OpType != OpType.LeftOuterJoin)
{
if (predicateNode == null)
{
predicateNode = joinNode.Child1.Child1;
}
else
{
predicateNode = command.CreateNode(
command.CreateConditionalOp(OpType.And),
predicateNode, joinNode.Child1.Child1);
}
newRightInput = joinNode.Child1.Child0; // bypass the filter
}
// No optimizations to perform if we can't locate the appropriate predicate
if (predicateNode == null)
{
return false;
}
//
// Create a new join node with the new inputs
//
Node newJoinNode;
if (joinNode.Op.OpType == OpType.CrossJoin)
{
newJoinNode = command.CreateNode(joinNode.Op, newLeftInput, newRightInput);
}
else
{
newJoinNode = command.CreateNode(joinNode.Op, newLeftInput, newRightInput, joinNode.Child2);
}
//
// create a new filterOp with the combined predicates, and with the
// newjoinNode as the input
//
FilterOp newFilterOp = command.CreateFilterOp();
newNode = command.CreateNode(newFilterOp, newJoinNode, predicateNode);
//
// Mark this subtree so that we don't try to push filters down again
//
trc.SuppressFilterPushdown(newNode);
return true;
}
#endregion
#region Join over SingleRowTable
internal static readonly PatternMatchRule Rule_CrossJoinOverSingleRowTable1 =
new PatternMatchRule(new Node(CrossJoinOp.Pattern,
new Node(SingleRowTableOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessJoinOverSingleRowTable);
internal static readonly PatternMatchRule Rule_CrossJoinOverSingleRowTable2 =
new PatternMatchRule(new Node(CrossJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(SingleRowTableOp.Pattern)),
ProcessJoinOverSingleRowTable);
internal static readonly PatternMatchRule Rule_LeftOuterJoinOverSingleRowTable =
new PatternMatchRule(new Node(LeftOuterJoinOp.Pattern,
new Node(LeafOp.Pattern),
new Node(SingleRowTableOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessJoinOverSingleRowTable);
/// <summary>
/// Convert a CrossJoin(SingleRowTable, X) or CrossJoin(X, SingleRowTable) or LeftOuterJoin(X, SingleRowTable)
/// into just "X"
/// </summary>
/// <param name="context">rule processing context</param>
/// <param name="joinNode">the join node</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessJoinOverSingleRowTable(RuleProcessingContext context, Node joinNode, out Node newNode)
{
newNode = joinNode;
if (joinNode.Child0.Op.OpType == OpType.SingleRowTable)
{
newNode = joinNode.Child1;
}
else
{
newNode = joinNode.Child0;
}
return true;
}
#endregion
#region Misc
#endregion
#region All JoinOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
Rule_CrossJoinOverProject1,
Rule_CrossJoinOverProject2,
Rule_InnerJoinOverProject1,
Rule_InnerJoinOverProject2,
Rule_OuterJoinOverProject2,
Rule_CrossJoinOverFilter1,
Rule_CrossJoinOverFilter2,
Rule_InnerJoinOverFilter1,
Rule_InnerJoinOverFilter2,
Rule_OuterJoinOverFilter2,
Rule_CrossJoinOverSingleRowTable1,
Rule_CrossJoinOverSingleRowTable2,
Rule_LeftOuterJoinOverSingleRowTable,
};
#endregion
}
#endregion
#region SingleRowOp Rules
/// <summary>
/// Rules for SingleRowOp
/// </summary>
internal static class SingleRowOpRules
{
internal static readonly PatternMatchRule Rule_SingleRowOpOverAnything =
new PatternMatchRule(new Node(SingleRowOp.Pattern,
new Node(LeafOp.Pattern)),
ProcessSingleRowOpOverAnything);
/// <summary>
/// Convert a
/// SingleRowOp(X) => X
/// if X produces at most one row
/// </summary>
/// <param name="context">Rule Processing context</param>
/// <param name="singleRowNode">Current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessSingleRowOpOverAnything(RuleProcessingContext context, Node singleRowNode, out Node newNode)
{
newNode = singleRowNode;
TransformationRulesContext trc = (TransformationRulesContext)context;
ExtendedNodeInfo childNodeInfo = context.Command.GetExtendedNodeInfo(singleRowNode.Child0);
// If the input to this Op can produce at most one row, then we don't need the
// singleRowOp - simply return the input
if (childNodeInfo.MaxRows <= RowCount.One)
{
newNode = singleRowNode.Child0;
return true;
}
//
// if the current node is a FilterOp, then try and determine if the FilterOp
// produces one row at most
//
if (singleRowNode.Child0.Op.OpType == OpType.Filter)
{
Predicate predicate = new Predicate(context.Command, singleRowNode.Child0.Child1);
if (predicate.SatisfiesKey(childNodeInfo.Keys.KeyVars, childNodeInfo.Definitions))
{
childNodeInfo.MaxRows = RowCount.One;
newNode = singleRowNode.Child0;
return true;
}
}
// we couldn't do anything
return false;
}
internal static readonly PatternMatchRule Rule_SingleRowOpOverProject =
new PatternMatchRule(new Node(SingleRowOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern), new Node(LeafOp.Pattern))),
ProcessSingleRowOpOverProject);
/// <summary>
/// Convert
/// SingleRowOp(Project) => Project(SingleRowOp)
/// </summary>
/// <param name="context">Rule Processing context</param>
/// <param name="singleRowNode">current subtree</param>
/// <param name="newNode">transformeed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessSingleRowOpOverProject(RuleProcessingContext context, Node singleRowNode, out Node newNode)
{
newNode = singleRowNode;
Node projectNode = singleRowNode.Child0;
Node projectNodeInput = projectNode.Child0;
// Simply push the SingleRowOp below the ProjectOp
singleRowNode.Child0 = projectNodeInput;
context.Command.RecomputeNodeInfo(singleRowNode);
projectNode.Child0 = singleRowNode;
newNode = projectNode;
return true; // subtree modified internally
}
#region All SingleRowOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
Rule_SingleRowOpOverAnything,
Rule_SingleRowOpOverProject,
};
#endregion
}
#endregion
#region SetOp Rules
/// <summary>
/// SetOp Transformation Rules
/// </summary>
internal static class SetOpRules
{
#region SetOpOverFilters
internal static readonly SimpleRule Rule_UnionAllOverEmptySet =
new SimpleRule(OpType.UnionAll, ProcessSetOpOverEmptySet);
internal static readonly SimpleRule Rule_IntersectOverEmptySet =
new SimpleRule(OpType.Intersect, ProcessSetOpOverEmptySet);
internal static readonly SimpleRule Rule_ExceptOverEmptySet =
new SimpleRule(OpType.Except, ProcessSetOpOverEmptySet);
/// <summary>
/// Process a SetOp when one of the inputs is an emptyset.
///
/// An emptyset is represented by a Filter(X, ConstantPredicate)
/// where the ConstantPredicate has a value of "false"
///
/// The general rules are
/// UnionAll(X, EmptySet) => X
/// UnionAll(EmptySet, X) => X
/// Intersect(EmptySet, X) => EmptySet
/// Intersect(X, EmptySet) => EmptySet
/// Except(EmptySet, X) => EmptySet
/// Except(X, EmptySet) => X
///
/// These rules then translate into
/// UnionAll: return the non-empty input
/// Intersect: return the empty input
/// Except: return the "left" input
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="setOpNode">the current setop tree</param>
/// <param name="filterNodeIndex">Index of the filter node in the setop</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
private static bool ProcessSetOpOverEmptySet(RuleProcessingContext context, Node setOpNode, out Node newNode)
{
bool leftChildIsEmptySet = context.Command.GetExtendedNodeInfo(setOpNode.Child0).MaxRows == RowCount.Zero;
bool rightChildIsEmptySet = context.Command.GetExtendedNodeInfo(setOpNode.Child1).MaxRows == RowCount.Zero;
if (!leftChildIsEmptySet && !rightChildIsEmptySet)
{
newNode = setOpNode;
return false;
}
int indexToReturn;
SetOp setOp = (SetOp)setOpNode.Op;
if (!rightChildIsEmptySet && setOp.OpType == OpType.UnionAll ||
!leftChildIsEmptySet && setOp.OpType == OpType.Intersect)
{
indexToReturn = 1;
}
else
{
indexToReturn = 0;
}
newNode = setOpNode.Children[indexToReturn];
TransformationRulesContext trc = (TransformationRulesContext)context;
foreach (KeyValuePair<Var, Var> kv in setOp.VarMap[indexToReturn])
{
trc.AddVarMapping(kv.Key, kv.Value);
}
return true;
}
#endregion
#region All SetOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
Rule_UnionAllOverEmptySet,
Rule_IntersectOverEmptySet,
Rule_ExceptOverEmptySet,
};
#endregion
}
#endregion
#region GroupByOp Rules
/// <summary>
/// Transformation Rules for GroupByOps
/// </summary>
internal static class GroupByOpRules
{
#region GroupByOpWithSimpleVarRedefinitions
internal static readonly SimpleRule Rule_GroupByOpWithSimpleVarRedefinitions = new SimpleRule(OpType.GroupBy, ProcessGroupByWithSimpleVarRedefinitions);
/// <summary>
/// If the GroupByOp defines some computedVars as part of its keys, but those computedVars are simply
/// redefinitions of other Vars, then eliminate the computedVars.
///
/// GroupBy(X, VarDefList(VarDef(cv1, VarRef(v1)), ...), VarDefList(...))
/// can be transformed into
/// GroupBy(X, VarDefList(...))
/// where cv1 has now been replaced by v1
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessGroupByWithSimpleVarRedefinitions(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
GroupByOp groupByOp = (GroupByOp)n.Op;
// no local keys? nothing to do
if (n.Child1.Children.Count == 0)
{
return false;
}
TransformationRulesContext trc = (TransformationRulesContext)context;
Command command = trc.Command;
ExtendedNodeInfo nodeInfo = command.GetExtendedNodeInfo(n);
//
// Check to see if any of the computed Vars defined by this GroupByOp
// are simple redefinitions of other VarRefOps. Consider only those
// VarRefOps that are not "external" references
//
bool canEliminateSomeVars = false;
foreach (Node varDefNode in n.Child1.Children)
{
Node definingExprNode = varDefNode.Child0;
if (definingExprNode.Op.OpType == OpType.VarRef)
{
VarRefOp varRefOp = (VarRefOp)definingExprNode.Op;
if (!nodeInfo.ExternalReferences.IsSet(varRefOp.Var))
{
// this is a Var that we should remove
canEliminateSomeVars = true;
}
}
}
// Did we have any redefinitions
if (!canEliminateSomeVars)
{
return false;
}
//
// OK. We've now identified a set of vars that are simple redefinitions.
// Try and replace the computed Vars with the Vars that they're redefining
//
// Lets now build up a new VarDefListNode
List<Node> newVarDefNodes = new List<Node>();
foreach (Node varDefNode in n.Child1.Children)
{
VarDefOp varDefOp = (VarDefOp)varDefNode.Op;
VarRefOp varRefOp = varDefNode.Child0.Op as VarRefOp;
if (varRefOp != null && !nodeInfo.ExternalReferences.IsSet(varRefOp.Var))
{
groupByOp.Outputs.Clear(varDefOp.Var);
groupByOp.Outputs.Set(varRefOp.Var);
groupByOp.Keys.Clear(varDefOp.Var);
groupByOp.Keys.Set(varRefOp.Var);
trc.AddVarMapping(varDefOp.Var, varRefOp.Var);
}
else
{
newVarDefNodes.Add(varDefNode);
}
}
// Create a new vardeflist node, and set that as Child1 for the group by op
Node newVarDefListNode = command.CreateNode(command.CreateVarDefListOp(), newVarDefNodes);
n.Child1 = newVarDefListNode;
return true; // subtree modified
}
#endregion
#region GroupByOverProject
internal static readonly PatternMatchRule Rule_GroupByOverProject =
new PatternMatchRule(new Node(GroupByOp.Pattern,
new Node(ProjectOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern)),
ProcessGroupByOverProject);
/// <summary>
/// Converts a GroupBy(Project(X, c1,..ck), agg1, agg2, .. aggm) =>
/// GroupBy(X, agg1', agg2', .. aggm')
/// where agg1', agg2', .. aggm' are the "mapped" versions
/// of agg1, agg2, .. aggm, such that the references to c1, ... ck are
/// replaced by their definitions.
///
/// We only do this if each c1, ..ck is referenced (in aggregates) at most once or it is a constant.
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="projectNode">Current ProjectOp node</param>
/// <param name="newNode">modified subtree</param>
/// <returns>Transformation status</returns>
static bool ProcessGroupByOverProject(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
GroupByOp op = (GroupByOp)n.Op;
Command command = ((TransformationRulesContext)context).Command;
Node projectNode = n.Child0;
Node projectNodeVarDefList = projectNode.Child1;
Node keys = n.Child1;
Node aggregates = n.Child2;
// If there are any keys, we should not remove the inner project
if (keys.Children.Count > 0)
{
return false;
}
//Get a list of all defining vars
VarVec projectDefinitions = command.GetExtendedNodeInfo(projectNode).LocalDefinitions;
//If any of the defined vars is output, than we need the extra project anyway.
if (op.Outputs.Overlaps(projectDefinitions))
{
return false;
}
bool createdNewProjectDefinitions = false;
//If there are any constants remove them from the list that needs to be tested,
//These can safely be replaced
for (int i = 0; i < projectNodeVarDefList.Children.Count; i++)
{
Node varDefNode = projectNodeVarDefList.Children[i];
if (varDefNode.Child0.Op.OpType == OpType.Constant || varDefNode.Child0.Op.OpType == OpType.InternalConstant || varDefNode.Child0.Op.OpType == OpType.NullSentinel)
{
//We shouldn't modify the original project definitions, thus we copy it
// the first time we encounter a constant
if (!createdNewProjectDefinitions)
{
projectDefinitions = command.CreateVarVec(projectDefinitions);
createdNewProjectDefinitions = true;
}
projectDefinitions.Clear(((VarDefOp)varDefNode.Op).Var);
}
}
if (VarRefUsageFinder.AnyVarUsedMoreThanOnce(projectDefinitions, aggregates, command))
{
return false;
}
//If we got here it means that all vars were either constants, or used at most once
// Create a dictionary to be used for remapping the keys and the aggregates
Dictionary<Var, Node> varToDefiningNode = new Dictionary<Var, Node>(projectNodeVarDefList.Children.Count);
for (int j = 0; j < projectNodeVarDefList.Children.Count; j++)
{
Node varDefNode = projectNodeVarDefList.Children[j];
Var var = ((VarDefOp)varDefNode.Op).Var;
varToDefiningNode.Add(var, varDefNode.Child0);
}
newNode.Child2 = VarRefReplacer.Replace(varToDefiningNode, aggregates, command);
newNode.Child0 = projectNode.Child0;
return true;
}
/// <summary>
/// Replaces each occurrence of the given vars with their definitions.
/// </summary>
internal class VarRefReplacer : BasicOpVisitorOfNode
{
private Dictionary<Var, Node> m_varReplacementTable;
private Command m_command;
private VarRefReplacer(Dictionary<Var, Node> varReplacementTable, Command command)
{
this.m_varReplacementTable = varReplacementTable;
this.m_command = command;
}
/// <summary>
/// "Public" entry point. In the subtree rooted at the given root,
/// replace each occurrence of the given vars with their definitions,
/// where each key-value pair in the dictionary is a var-definition pair.
/// </summary>
/// <param name="varReplacementTable"></param>
/// <param name="root"></param>
/// <param name="command"></param>
/// <returns></returns>
internal static Node Replace(Dictionary<Var, Node> varReplacementTable, Node root, Command command)
{
VarRefReplacer replacer = new VarRefReplacer(varReplacementTable, command);
return replacer.VisitNode(root);
}
public override Node Visit(VarRefOp op, Node n)
{
Node replacementNode;
if (m_varReplacementTable.TryGetValue(op.Var, out replacementNode))
{
return replacementNode;
}
else
{
return n;
}
}
/// <summary>
/// Recomputes node info post regular processing.
/// </summary>
/// <param name="n"></param>
/// <returns></returns>
protected override Node VisitDefault(Node n)
{
Node result = base.VisitDefault(n);
m_command.RecomputeNodeInfo(result);
return result;
}
}
/// <summary>
/// Used to determine whether any of the given vars occurs more than once
/// in a given subtree.
/// </summary>
internal class VarRefUsageFinder : BasicOpVisitor
{
private bool m_anyUsedMoreThenOnce = false;
private VarVec m_varVec;
private VarVec m_usedVars;
private VarRefUsageFinder(VarVec varVec, Command command)
{
this.m_varVec = varVec;
this.m_usedVars = command.CreateVarVec();
}
/// <summary>
/// Public entry point. Returns true if at least one of the given vars occurs more than
/// once in the subtree rooted at the given root.
/// </summary>
/// <param name="varVec"></param>
/// <param name="root"></param>
/// <param name="command"></param>
/// <returns></returns>
internal static bool AnyVarUsedMoreThanOnce(VarVec varVec, Node root, Command command)
{
VarRefUsageFinder usageFinder = new VarRefUsageFinder(varVec, command);
usageFinder.VisitNode(root);
return usageFinder.m_anyUsedMoreThenOnce;
}
public override void Visit(VarRefOp op, Node n)
{
Var referencedVar = op.Var;
if (m_varVec.IsSet(referencedVar))
{
if (m_usedVars.IsSet(referencedVar))
{
this.m_anyUsedMoreThenOnce = true;
}
else
{
m_usedVars.Set(referencedVar);
}
}
}
protected override void VisitChildren(Node n)
{
//small optimization: no need to continue if we have the answer
if (m_anyUsedMoreThenOnce)
{
return;
}
base.VisitChildren(n);
}
}
#endregion
#region GroupByOpWithNoAggregates
internal static readonly PatternMatchRule Rule_GroupByOpWithNoAggregates =
new PatternMatchRule(new Node(GroupByOp.Pattern,
new Node(LeafOp.Pattern),
new Node(LeafOp.Pattern),
new Node(VarDefListOp.Pattern)),
ProcessGroupByOpWithNoAggregates);
/// <summary>
/// If the GroupByOp has no aggregates:
///
/// (1) and if it includes all all the keys of the input, than it is unnecessary
/// GroupBy (X, keys) -> Project(X, keys) where keys includes all keys of X.
///
/// (2) else it can be turned into a Distinct:
/// GroupBy (X, keys) -> Distinct(X, keys)
///
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessGroupByOpWithNoAggregates(RuleProcessingContext context, Node n, out Node newNode)
{
Command command = context.Command;
GroupByOp op = (GroupByOp)n.Op;
ExtendedNodeInfo nodeInfo = command.GetExtendedNodeInfo(n.Child0);
ProjectOp newOp = command.CreateProjectOp(op.Keys);
VarDefListOp varDefListOp = command.CreateVarDefListOp();
Node varDefListNode = command.CreateNode(varDefListOp);
newNode = command.CreateNode(newOp, n.Child0, n.Child1);
//If we know the keys of the input and the list of keys includes them all,
// this is the result, otherwise add distinct
if (nodeInfo.Keys.NoKeys || !op.Keys.Subsumes(nodeInfo.Keys.KeyVars))
{
newNode = command.CreateNode(command.CreateDistinctOp(command.CreateVarVec(op.Keys)), newNode);
}
return true;
}
#endregion
#region GroupByOpOnAllInputColumnsWithAggregateOperation
internal static readonly SimpleRule Rule_GroupByOpOnAllInputColumnsWithAggregateOperation = new SimpleRule(
OpType.GroupBy, ProcessGroupByOpOnAllInputColumnsWithAggregateOperation);
/// <summary>
/// Converts a GroupBy(X, Y, Z) => OuterApply(X', GroupBy(Filter(X, key(X') == key(X)), Y, Z))
/// if and only if X is a ScanTableOp, and Z is the upper node of an aggregate function and
/// the group by operation uses all the columns of X as the key.
/// Additionally, the top-level physical projection must only expose one variable. If it exposes
/// more than one (more than just the aggregate itself), then this rule must not apply.
/// This is a fix for devdiv bug 851732. Since now we're supporting NewRecordOp nodes as
/// part of the GroupBy aggregate variable computations, we are also respecting the fact that
/// group by (e => e) means that we're grouping by all columns of entity e. This was not a
/// problem when the NewRecordOp node was not being processed since this caused the GroupBy
/// statement to be simplified to a form with no keys and no output columns. The generated SQL
/// is correct, but it is different from what it used to be and may be incompatible if the
/// entity contains fields with datatypes that do not support being grouped by, such as blobs
/// and images.
/// This rule simplifies the tree so that we remain compatible with the way we were generating
/// queries that contain group by (e => e).
/// What this does is enabling the tree to take a shape that further optimization can convert
/// into an expression that groups by the key of the table and calls the aggregate function
/// as expected.
/// </summary>
/// <param name="context"> Rule processing context </param>
/// <param name="n"> Current ProjectOp node </param>
/// <param name="newNode"> modified subtree </param>
/// <returns> Transformation status </returns>
private static bool ProcessGroupByOpOnAllInputColumnsWithAggregateOperation(RuleProcessingContext context, Node n, out Node newNode)
{
newNode = n;
var rootOp = context.Command.Root.Op as PhysicalProjectOp;
if (rootOp == null ||
rootOp.Outputs.Count > 1)
{
return false;
}
if (n.Child0.Op.OpType != OpType.ScanTable)
{
return false;
}
if (n.Child2 == null
|| n.Child2.Child0 == null
|| n.Child2.Child0.Child0 == null
|| n.Child2.Child0.Child0.Op.OpType != OpType.Aggregate)
{
return false;
}
var groupByOp = (GroupByOp)n.Op;
var sourceTable = ((ScanTableOp)n.Child0.Op).Table;
var allInputColumns = sourceTable.Columns;
// Exit if the group's keys do not contain all the columns defined by Child0
foreach (var column in allInputColumns)
{
if (!groupByOp.Keys.IsSet(column))
{
return false;
}
}
// All the columns of Child0 are used, so remove them from the outputs and the keys
foreach (var column in allInputColumns)
{
groupByOp.Outputs.Clear(column);
groupByOp.Keys.Clear(column);
}
// Build the OuterApply and also set the filter around the GroupBy's scan table.
var command = context.Command;
var scanTableOp = command.CreateScanTableOp(sourceTable.TableMetadata);
var scanTable = command.CreateNode(scanTableOp);
var outerApplyNode = command.CreateNode(command.CreateOuterApplyOp(), scanTable, n);
Var newVar;
var varDefListNode = command.CreateVarDefListNode(command.CreateNode(command.CreateVarRefOp(groupByOp.Outputs.First)), out newVar);
newNode = command.CreateNode(
command.CreateProjectOp(newVar),
outerApplyNode,
varDefListNode);
Node equality = null;
var leftKeys = scanTableOp.Table.Keys.GetEnumerator();
var rightKeys = sourceTable.Keys.GetEnumerator();
for (int i = 0; i < sourceTable.Keys.Count; ++i)
{
leftKeys.MoveNext();
rightKeys.MoveNext();
var comparison = command.CreateNode(
command.CreateComparisonOp(OpType.EQ),
command.CreateNode(command.CreateVarRefOp(leftKeys.Current)),
command.CreateNode(command.CreateVarRefOp(rightKeys.Current)));
if (equality != null)
{
equality = command.CreateNode(
command.CreateConditionalOp(OpType.And),
equality, comparison);
}
else
{
equality = comparison;
}
}
var filter = command.CreateNode(command.CreateFilterOp(),
n.Child0,
equality);
n.Child0 = filter;
return true; // subtree modified
}
#endregion
#region All GroupByOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
GroupByOpRules.Rule_GroupByOpWithSimpleVarRedefinitions,
GroupByOpRules.Rule_GroupByOverProject,
GroupByOpRules.Rule_GroupByOpWithNoAggregates,
GroupByOpRules.Rule_GroupByOpOnAllInputColumnsWithAggregateOperation,
};
#endregion
}
#endregion
#region Sorting Rules
/// <summary>
/// Transformation Rules for SortOp
/// </summary>
internal static class SortOpRules
{
#region SortOpOverAtMostOneRow
internal static readonly SimpleRule Rule_SortOpOverAtMostOneRow = new SimpleRule(OpType.Sort, ProcessSortOpOverAtMostOneRow);
/// <summary>
/// If the SortOp's input is guaranteed to produce at most 1 row, remove the node with the SortOp:
/// Sort(X) => X, if X is guaranteed to produce no more than 1 row
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessSortOpOverAtMostOneRow(RuleProcessingContext context, Node n, out Node newNode)
{
ExtendedNodeInfo nodeInfo = ((TransformationRulesContext)context).Command.GetExtendedNodeInfo(n.Child0);
//If the input has at most one row, omit the SortOp
if (nodeInfo.MaxRows == RowCount.Zero || nodeInfo.MaxRows == RowCount.One)
{
newNode = n.Child0;
return true;
}
//Otherwise return the node as is
newNode = n;
return false;
}
#endregion
#region All SortOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
SortOpRules.Rule_SortOpOverAtMostOneRow,
};
#endregion
}
/// <summary>
/// Transformation Rules for ConstrainedSortOp
/// </summary>
internal static class ConstrainedSortOpRules
{
#region ConstrainedSortOpOverEmptySet
internal static readonly SimpleRule Rule_ConstrainedSortOpOverEmptySet = new SimpleRule(OpType.ConstrainedSort, ProcessConstrainedSortOpOverEmptySet);
/// <summary>
/// If the ConstrainedSortOp's input is guaranteed to produce no rows, remove the ConstrainedSortOp completely:
/// CSort(EmptySet) => EmptySet
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessConstrainedSortOpOverEmptySet(RuleProcessingContext context, Node n, out Node newNode)
{
ExtendedNodeInfo nodeInfo = ((TransformationRulesContext)context).Command.GetExtendedNodeInfo(n.Child0);
//If the input has no rows, remove the ConstraintSortOp node completely
if (nodeInfo.MaxRows == RowCount.Zero)
{
newNode = n.Child0;
return true;
}
newNode = n;
return false;
}
#endregion
#region All ConstrainedSortOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
ConstrainedSortOpRules.Rule_ConstrainedSortOpOverEmptySet,
};
#endregion
}
#endregion
#region DistinctOp Rules
/// <summary>
/// Transformation Rules for DistinctOp
/// </summary>
internal static class DistinctOpRules
{
#region DistinctOpOfKeys
internal static readonly SimpleRule Rule_DistinctOpOfKeys = new SimpleRule(OpType.Distinct, ProcessDistinctOpOfKeys);
/// <summary>
/// If the DistinctOp includes all all the keys of the input, than it is unnecessary.
/// Distinct (X, distinct_keys) -> Project( X, distinct_keys) where distinct_keys includes all keys of X.
/// </summary>
/// <param name="context">Rule processing context</param>
/// <param name="n">current subtree</param>
/// <param name="newNode">transformed subtree</param>
/// <returns>transformation status</returns>
static bool ProcessDistinctOpOfKeys(RuleProcessingContext context, Node n, out Node newNode)
{
Command command = context.Command;
ExtendedNodeInfo nodeInfo = command.GetExtendedNodeInfo(n.Child0);
DistinctOp op = (DistinctOp)n.Op;
//If we know the keys of the input and the list of distinct keys includes them all, omit the distinct
if (!nodeInfo.Keys.NoKeys && op.Keys.Subsumes(nodeInfo.Keys.KeyVars))
{
ProjectOp newOp = command.CreateProjectOp(op.Keys);
//Create empty vardef list
VarDefListOp varDefListOp = command.CreateVarDefListOp();
Node varDefListNode = command.CreateNode(varDefListOp);
newNode = command.CreateNode(newOp, n.Child0, varDefListNode);
return true;
}
//Otherwise return the node as is
newNode = n;
return false;
}
#endregion
#region All DistinctOp Rules
internal static readonly InternalTrees.Rule[] Rules = new InternalTrees.Rule[] {
DistinctOpRules.Rule_DistinctOpOfKeys,
};
#endregion
}
#endregion
}
|