1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
|
//------------------------------------------------------------------------------
// <copyright file="SqlAeadAes256CbcHmac256Algorithm.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
// <owner current="true" primary="true">balnee</owner>
// <owner current="true" primary="false">krishnib</owner>
//------------------------------------------------------------------------------
namespace System.Data.SqlClient
{
using System;
using System.Collections.Concurrent;
using System.Collections.Generic;
using System.Data.SqlClient;
using System.Diagnostics;
using System.IO;
using System.Runtime.CompilerServices;
using System.Security.Cryptography;
/// <summary>
/// This class implements authenticated encryption algorithm with associated data as described in
/// http://tools.ietf.org/html/draft-mcgrew-aead-aes-cbc-hmac-sha2-05. More specifically this implements
/// AEAD_AES_256_CBC_HMAC_SHA256 algorithm.
/// </summary>
internal class SqlAeadAes256CbcHmac256Algorithm : SqlClientEncryptionAlgorithm
{
/// <summary>
/// Algorithm Name
/// </summary>
internal const string AlgorithmName = @"AEAD_AES_256_CBC_HMAC_SHA256";
/// <summary>
/// Key size in bytes
/// </summary>
private const int _KeySizeInBytes = SqlAeadAes256CbcHmac256EncryptionKey.KeySize / 8;
/// <summary>
/// Block size in bytes. AES uses 16 byte blocks.
/// </summary>
private const int _BlockSizeInBytes = 16;
/// <summary>
/// Minimum Length of cipherText without authentication tag. This value is 1 (version byte) + 16 (IV) + 16 (minimum of 1 block of cipher Text)
/// </summary>
private const int _MinimumCipherTextLengthInBytesNoAuthenticationTag = sizeof(byte) + _BlockSizeInBytes + _BlockSizeInBytes;
/// <summary>
/// Minimum Length of cipherText. This value is 1 (version byte) + 32 (authentication tag) + 16 (IV) + 16 (minimum of 1 block of cipher Text)
/// </summary>
private const int _MinimumCipherTextLengthInBytesWithAuthenticationTag = _MinimumCipherTextLengthInBytesNoAuthenticationTag + _KeySizeInBytes;
/// <summary>
/// Cipher Mode. For this algorithm, we only use CBC mode.
/// </summary>
private const CipherMode _cipherMode = CipherMode.CBC;
/// <summary>
/// Padding mode. This algorithm uses PKCS7.
/// </summary>
private const PaddingMode _paddingMode = PaddingMode.PKCS7;
/// <summary>
/// Variable indicating whether this algorithm should work in Deterministic mode or Randomized mode.
/// For deterministic encryption, we derive an IV from the plaintext data.
/// For randomized encryption, we generate a cryptographically random IV.
/// </summary>
private readonly bool _isDeterministic;
/// <summary>
/// Algorithm Version.
/// </summary>
private readonly byte _algorithmVersion;
/// <summary>
/// Column Encryption Key. This has a root key and three derived keys.
/// </summary>
private readonly SqlAeadAes256CbcHmac256EncryptionKey _columnEncryptionKey;
/// <summary>
/// The pool of crypto providers to use for encrypt/decrypt operations.
/// </summary>
private readonly ConcurrentQueue<AesCryptoServiceProvider> _cryptoProviderPool;
/// <summary>
/// Byte array with algorithm version used for authentication tag computation.
/// </summary>
private static readonly byte[] _version = new byte[] {0x01};
/// <summary>
/// Byte array with algorithm version size used for authentication tag computation.
/// </summary>
private static readonly byte[] _versionSize = new byte[] {sizeof(byte)};
/// <summary>
/// Initializes a new instance of SqlAeadAes256CbcHmac256Algorithm algorithm with a given key and encryption type
/// </summary>
/// <param name="encryptionKey">
/// Root encryption key from which three other keys will be derived
/// </param>
/// <param name="encryptionType">Encryption Type, accepted values are Deterministic and Randomized.
/// For Deterministic encryption, a synthetic IV will be genenrated during encryption
/// For Randomized encryption, a random IV will be generated during encryption.
/// </param>
/// <param name="algorithmVersion">
/// Algorithm version
/// </param>
internal SqlAeadAes256CbcHmac256Algorithm(SqlAeadAes256CbcHmac256EncryptionKey encryptionKey, SqlClientEncryptionType encryptionType, byte algorithmVersion) {
_columnEncryptionKey = encryptionKey;
_algorithmVersion = algorithmVersion;
_version[0] = algorithmVersion;
Debug.Assert (null != encryptionKey, "Null encryption key detected in AeadAes256CbcHmac256 algorithm");
Debug.Assert (0x01 == algorithmVersion, "Unknown algorithm version passed to AeadAes256CbcHmac256");
// Validate encryption type for this algorithm
// This algorithm can only provide randomized or deterministic encryption types.
if (encryptionType == SqlClientEncryptionType.Deterministic) {
_isDeterministic = true;
}
else {
Debug.Assert (SqlClientEncryptionType.Randomized == encryptionType, "Invalid Encryption Type detected in SqlAeadAes256CbcHmac256Algorithm, this should've been caught in factory class");
}
_cryptoProviderPool = new ConcurrentQueue<AesCryptoServiceProvider>();
}
/// <summary>
/// Encryption Algorithm
/// cell_iv = HMAC_SHA-2-256(iv_key, cell_data) truncated to 128 bits
/// cell_ciphertext = AES-CBC-256(enc_key, cell_iv, cell_data) with PKCS7 padding.
/// cell_tag = HMAC_SHA-2-256(mac_key, versionbyte + cell_iv + cell_ciphertext + versionbyte_length)
/// cell_blob = versionbyte + cell_tag + cell_iv + cell_ciphertext
/// </summary>
/// <param name="plainText">Plaintext data to be encrypted</param>
/// <returns>Returns the ciphertext corresponding to the plaintext.</returns>
internal override byte[] EncryptData(byte[] plainText) {
return EncryptData(plainText, hasAuthenticationTag: true);
}
/// <summary>
/// Encryption Algorithm
/// cell_iv = HMAC_SHA-2-256(iv_key, cell_data) truncated to 128 bits
/// cell_ciphertext = AES-CBC-256(enc_key, cell_iv, cell_data) with PKCS7 padding.
/// (optional) cell_tag = HMAC_SHA-2-256(mac_key, versionbyte + cell_iv + cell_ciphertext + versionbyte_length)
/// cell_blob = versionbyte + [cell_tag] + cell_iv + cell_ciphertext
/// </summary>
/// <param name="plainText">Plaintext data to be encrypted</param>
/// <param name="hasAuthenticationTag">Does the algorithm require authentication tag.</param>
/// <returns>Returns the ciphertext corresponding to the plaintext.</returns>
protected byte[] EncryptData(byte[] plainText, bool hasAuthenticationTag) {
// Empty values get encrypted and decrypted properly for both Deterministic and Randomized encryptions.
Debug.Assert(plainText != null);
byte[] iv = new byte[_BlockSizeInBytes];
// Prepare IV
// Should be 1 single block (16 bytes)
if (_isDeterministic) {
SqlSecurityUtility.GetHMACWithSHA256(plainText, _columnEncryptionKey.IVKey, iv);
}
else {
SqlSecurityUtility.GenerateRandomBytes(iv);
}
int numBlocks = plainText.Length / _BlockSizeInBytes + 1;
// Final blob we return = version + HMAC + iv + cipherText
const int hmacStartIndex = 1;
int authenticationTagLen = hasAuthenticationTag ? _KeySizeInBytes : 0;
int ivStartIndex = hmacStartIndex + authenticationTagLen;
int cipherStartIndex = ivStartIndex + _BlockSizeInBytes; // this is where hmac starts.
// Output buffer size = size of VersionByte + Authentication Tag + IV + cipher Text blocks.
int outputBufSize = sizeof(byte) + authenticationTagLen + iv.Length + (numBlocks*_BlockSizeInBytes);
byte[] outBuffer = new byte[outputBufSize];
// Store the version and IV rightaway
outBuffer[0] = _algorithmVersion;
Buffer.BlockCopy(iv, 0, outBuffer, ivStartIndex, iv.Length);
AesCryptoServiceProvider aesAlg;
// Try to get a provider from the pool.
// If no provider is available, create a new one.
if (!_cryptoProviderPool.TryDequeue(out aesAlg)) {
aesAlg = new AesCryptoServiceProvider();
try {
// Set various algorithm properties
aesAlg.Key = _columnEncryptionKey.EncryptionKey;
aesAlg.Mode = _cipherMode;
aesAlg.Padding = _paddingMode;
}
catch (Exception) {
if (aesAlg != null) {
aesAlg.Dispose();
}
throw;
}
}
try {
// Always set the IV since it changes from cell to cell.
aesAlg.IV = iv;
// Compute CipherText and authentication tag in a single pass
using (ICryptoTransform encryptor = aesAlg.CreateEncryptor()) {
Debug.Assert(encryptor.CanTransformMultipleBlocks, "AES Encryptor can transform multiple blocks");
int count = 0;
int cipherIndex = cipherStartIndex; // this is where cipherText starts
if (numBlocks > 1) {
count = (numBlocks - 1) * _BlockSizeInBytes;
cipherIndex += encryptor.TransformBlock(plainText, 0, count, outBuffer, cipherIndex);
}
byte[] buffTmp = encryptor.TransformFinalBlock(plainText, count, plainText.Length - count); // done encrypting
Buffer.BlockCopy(buffTmp, 0, outBuffer, cipherIndex, buffTmp.Length);
cipherIndex += buffTmp.Length;
}
if (hasAuthenticationTag) {
using (HMACSHA256 hmac = new HMACSHA256(_columnEncryptionKey.MACKey)) {
Debug.Assert(hmac.CanTransformMultipleBlocks, "HMAC can't transform multiple blocks");
hmac.TransformBlock(_version, 0, _version.Length, _version, 0);
hmac.TransformBlock(iv, 0, iv.Length, iv, 0);
// Compute HMAC on final block
hmac.TransformBlock(outBuffer, cipherStartIndex, numBlocks * _BlockSizeInBytes, outBuffer, cipherStartIndex);
hmac.TransformFinalBlock(_versionSize, 0, _versionSize.Length);
byte[] hash = hmac.Hash;
Debug.Assert(hash.Length >= authenticationTagLen, "Unexpected hash size");
Buffer.BlockCopy(hash, 0, outBuffer, hmacStartIndex, authenticationTagLen);
}
}
}
finally {
// Return the provider to the pool.
_cryptoProviderPool.Enqueue(aesAlg);
}
return outBuffer;
}
/// <summary>
/// Decryption steps
/// 1. Validate version byte
/// 2. Validate Authentication tag
/// 3. Decrypt the message
/// </summary>
/// <param name="cipherText"></param>
/// <returns></returns>
internal override byte[] DecryptData(byte[] cipherText) {
return DecryptData(cipherText, hasAuthenticationTag: true);
}
/// <summary>
/// Decryption steps
/// 1. Validate version byte
/// 2. (optional) Validate Authentication tag
/// 3. Decrypt the message
/// </summary>
/// <param name="cipherText"></param>
/// <param name="hasAuthenticationTag"></param>
/// <returns></returns>
protected byte[] DecryptData(byte[] cipherText, bool hasAuthenticationTag) {
Debug.Assert(cipherText != null);
byte[] iv = new byte[_BlockSizeInBytes];
int minimumCipherTextLength = hasAuthenticationTag ? _MinimumCipherTextLengthInBytesWithAuthenticationTag : _MinimumCipherTextLengthInBytesNoAuthenticationTag;
if (cipherText.Length < minimumCipherTextLength) {
throw SQL.InvalidCipherTextSize(cipherText.Length, minimumCipherTextLength);
}
// Validate the version byte
int startIndex = 0;
if (cipherText[startIndex] != _algorithmVersion) {
// Cipher text was computed with a different algorithm version than this.
throw SQL.InvalidAlgorithmVersion(cipherText[startIndex], _algorithmVersion);
}
startIndex += 1;
int authenticationTagOffset = 0;
// Read authentication tag
if (hasAuthenticationTag) {
authenticationTagOffset = startIndex;
startIndex += _KeySizeInBytes; // authentication tag size is _KeySizeInBytes
}
// Read cell IV
Buffer.BlockCopy(cipherText, startIndex, iv, 0, iv.Length);
startIndex += iv.Length;
// Read encrypted text
int cipherTextOffset = startIndex;
int cipherTextCount = cipherText.Length - startIndex;
if (hasAuthenticationTag) {
// Compute authentication tag
byte[] authenticationTag = PrepareAuthenticationTag(iv, cipherText, cipherTextOffset, cipherTextCount);
if (!SqlSecurityUtility.CompareBytes(authenticationTag, cipherText, authenticationTagOffset, authenticationTag.Length)) {
// Potentially tampered data, throw an exception
throw SQL.InvalidAuthenticationTag();
}
}
// Decrypt the text and return
return DecryptData(iv, cipherText, cipherTextOffset, cipherTextCount);
}
/// <summary>
/// Decrypts plain text data using AES in CBC mode
/// </summary>
/// <param name="plainText"> cipher text data to be decrypted</param>
/// <param name="iv">IV to be used for decryption</param>
/// <returns>Returns decrypted plain text data</returns>
private byte[] DecryptData(byte[] iv, byte[] cipherText, int offset, int count) {
Debug.Assert((iv != null) && (cipherText != null));
Debug.Assert (offset > -1 && count > -1);
Debug.Assert ((count+offset) <= cipherText.Length);
byte[] plainText;
AesCryptoServiceProvider aesAlg;
// Try to get a provider from the pool.
// If no provider is available, create a new one.
if (!_cryptoProviderPool.TryDequeue(out aesAlg)) {
aesAlg = new AesCryptoServiceProvider();
try {
// Set various algorithm properties
aesAlg.Key = _columnEncryptionKey.EncryptionKey;
aesAlg.Mode = _cipherMode;
aesAlg.Padding = _paddingMode;
}
catch (Exception) {
if (aesAlg != null) {
aesAlg.Dispose();
}
throw;
}
}
try {
// Always set the IV since it changes from cell to cell.
aesAlg.IV = iv;
// Create the streams used for decryption.
using (MemoryStream msDecrypt = new MemoryStream()) {
// Create an encryptor to perform the stream transform.
using (ICryptoTransform decryptor = aesAlg.CreateDecryptor()) {
using (CryptoStream csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Write)) {
// Decrypt the secret message and get the plain text data
csDecrypt.Write(cipherText, offset, count);
csDecrypt.FlushFinalBlock();
plainText = msDecrypt.ToArray();
}
}
}
}
finally {
// Return the provider to the pool.
_cryptoProviderPool.Enqueue(aesAlg);
}
return plainText;
}
/// <summary>
/// Prepares an authentication tag.
/// Authentication Tag = HMAC_SHA-2-256(mac_key, versionbyte + cell_iv + cell_ciphertext + versionbyte_length)
/// </summary>
/// <param name="cipherText"></param>
/// <returns></returns>
private byte[] PrepareAuthenticationTag(byte[] iv, byte[] cipherText, int offset, int length) {
Debug.Assert(cipherText != null);
byte[] computedHash;
byte[] authenticationTag = new byte[_KeySizeInBytes];
// Raw Tag Length:
// 1 for the version byte
// 1 block for IV (16 bytes)
// cipherText.Length
// 1 byte for version byte length
using (HMACSHA256 hmac = new HMACSHA256(_columnEncryptionKey.MACKey)) {
int retVal = 0;
retVal = hmac.TransformBlock(_version, 0, _version.Length, _version, 0);
Debug.Assert(retVal == _version.Length);
retVal = hmac.TransformBlock(iv, 0, iv.Length, iv, 0);
Debug.Assert(retVal == iv.Length);
retVal = hmac.TransformBlock(cipherText, offset, length, cipherText, offset);
Debug.Assert(retVal == length);
hmac.TransformFinalBlock(_versionSize, 0, _versionSize.Length);
computedHash = hmac.Hash;
}
Debug.Assert (computedHash.Length >= authenticationTag.Length);
Buffer.BlockCopy (computedHash, 0, authenticationTag, 0, authenticationTag.Length);
return authenticationTag;
}
}
}
|