1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
//------------------------------------------------------------------------------
// <copyright file="SqlException.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
// <owner current="true" primary="true">balnee</owner>
// <owner current="true" primary="false">krishnib</owner>
//------------------------------------------------------------------------------
namespace System.Data.SqlClient
{
using System;
using System.Diagnostics;
using System.Reflection;
using System.Security;
using System.Security.Cryptography;
using System.Text;
internal static class SqlSecurityUtility {
/// <summary>
/// Computes a keyed hash of a given text and returns. It fills the buffer "hash" with computed hash value.
/// </summary>
/// <param name="plainText">Plain text bytes whose hash has to be computed.</param>
/// <param name="key">key used for the HMAC</param>
/// <param name="hash">Output buffer where the computed hash value is stored. If its less that 64 bytes, the hash is truncated</param>
/// <returns>HMAC value</returns>
internal static void GetHMACWithSHA256(byte[] plainText, byte[] key, byte[] hash) {
const int MaxSHA256HashBytes = 32;
Debug.Assert(key != null && plainText != null);
Debug.Assert(hash.Length != 0 && hash.Length <= MaxSHA256HashBytes);
using (HMACSHA256 hmac = new HMACSHA256(key)) {
byte[] computedHash = hmac.ComputeHash(plainText);
// Truncate the hash if needed
Buffer.BlockCopy (computedHash, 0, hash, 0, hash.Length);
}
}
/// <summary>
/// Computes SHA256 hash of a given input
/// </summary>
/// <param name="input">input byte array which needs to be hashed</param>
/// <returns>Returns SHA256 hash in a string form</returns>
internal static string GetSHA256Hash(byte[] input) {
Debug.Assert(input != null);
using (SHA256 sha256 = SHA256Cng.Create()) {
byte[] hashValue = sha256.ComputeHash(input);
return GetHexString(hashValue);
}
}
/// <summary>
/// Generates cryptographicall random bytes
/// </summary>
/// <param name="length">No of cryptographically random bytes to be generated</param>
/// <returns>A byte array containing cryptographically generated random bytes</returns>
internal static void GenerateRandomBytes(byte[] randomBytes) {
// Generate random bytes cryptographically.
RNGCryptoServiceProvider rngCsp = new RNGCryptoServiceProvider();
rngCsp.GetBytes(randomBytes);
}
/// <summary>
/// Compares two byte arrays and returns true if all bytes are equal
/// </summary>
/// <param name="buffer1">input buffer</param>
/// <param name="buffer2">another buffer to be compared against</param>
/// <returns>returns true if both the arrays have the same byte values else returns false</returns>
internal static bool CompareBytes(byte[] buffer1, byte[] buffer2, int buffer2Index, int lengthToCompare) {
if (null == buffer1 || null == buffer2) {
return false;
}
Debug.Assert (buffer2Index > -1 && buffer2Index < buffer2.Length, "invalid index");// bounds on buffer2Index
if ((buffer2.Length -buffer2Index) < lengthToCompare) {
return false;
}
for (int index = 0; index < buffer1.Length && index < lengthToCompare; ++index) {
if (buffer1[index] != buffer2[buffer2Index + index]) {
return false;
}
}
return true;
}
/// <summary>
/// Gets hex representation of byte array.
/// <param name="input">input byte array</param>
/// </summary>
internal static string GetHexString(byte[] input) {
Debug.Assert(input != null);
StringBuilder str = new StringBuilder();
foreach (byte b in input) {
str.AppendFormat(b.ToString(@"X2"));
}
return str.ToString();
}
/// <summary>
/// Returns the caller's function name in the format of [ClassName].[FunctionName]
/// </summary>
internal static string GetCurrentFunctionName() {
StackTrace stackTrace = new StackTrace();
StackFrame stackFrame = stackTrace.GetFrame(1);
MethodBase methodBase = stackFrame.GetMethod();
return string.Format(@"{0}.{1}", methodBase.DeclaringType.Name, methodBase.Name);
}
/// <summary>
/// Return the algorithm name mapped to an Id.
/// </summary>
/// <param name="cipherAlgorithmId"></param>
/// <returns></returns>
private static string ValidateAndGetEncryptionAlgorithmName (byte cipherAlgorithmId, string cipherAlgorithmName) {
if (TdsEnums.CustomCipherAlgorithmId == cipherAlgorithmId) {
if (null == cipherAlgorithmName) {
throw SQL.NullColumnEncryptionAlgorithm(SqlClientEncryptionAlgorithmFactoryList.GetInstance().GetRegisteredCipherAlgorithmNames());
}
return cipherAlgorithmName;
}
else if (TdsEnums.AEAD_AES_256_CBC_HMAC_SHA256 == cipherAlgorithmId) {
return SqlAeadAes256CbcHmac256Algorithm.AlgorithmName;
}
else if (TdsEnums.AES_256_CBC == cipherAlgorithmId) {
return SqlAes256CbcAlgorithm.AlgorithmName;
}
else {
throw SQL.UnknownColumnEncryptionAlgorithmId(cipherAlgorithmId, GetRegisteredCipherAlgorithmIds());
}
}
/// <summary>
/// Retrieves a string with comma separated list of registered algorithm Ids (enclosed in quotes).
/// </summary>
private static string GetRegisteredCipherAlgorithmIds () {
return @"'1', '2'";
}
/// <summary>
/// Encrypts the plaintext.
/// </summary>
internal static byte[] EncryptWithKey (byte[] plainText, SqlCipherMetadata md, string serverName) {
Debug.Assert(serverName != null, @"serverName should not be null in EncryptWithKey.");
// Initialize cipherAlgo if not already done.
if (!md.IsAlgorithmInitialized()) {
SqlSecurityUtility.DecryptSymmetricKey(md, serverName);
}
Debug.Assert(md.IsAlgorithmInitialized(), "Encryption Algorithm is not initialized");
byte[] cipherText = md.CipherAlgorithm.EncryptData(plainText); // this call succeeds or throws.
if (null == cipherText || 0 == cipherText.Length) {
SQL.NullCipherText();
}
return cipherText;
}
/// <summary>
/// Gets a string with first/last 10 bytes in the buff (useful for exception handling).
/// </summary>
internal static string GetBytesAsString(byte[] buff, bool fLast, int countOfBytes) {
int count = (buff.Length > countOfBytes) ? countOfBytes : buff.Length;
int startIndex = 0;
if (fLast) {
startIndex = buff.Length - count;
Debug.Assert(startIndex >= 0);
}
return BitConverter.ToString(buff, startIndex, count);
}
/// <summary>
/// Decrypts the ciphertext.
/// </summary>
internal static byte[] DecryptWithKey(byte[] cipherText, SqlCipherMetadata md, string serverName) {
Debug.Assert(serverName != null, @"serverName should not be null in DecryptWithKey.");
// Initialize cipherAlgo if not already done.
if (!md.IsAlgorithmInitialized()) {
SqlSecurityUtility.DecryptSymmetricKey(md, serverName);
}
Debug.Assert(md.IsAlgorithmInitialized(), "Decryption Algorithm is not initialized");
try {
byte[] plainText = md.CipherAlgorithm.DecryptData(cipherText); // this call succeeds or throws.
if (null == plainText) {
throw SQL.NullPlainText ();
}
return plainText;
}
catch (Exception e) {
// compute the strings to pass
string keyStr = GetBytesAsString(md.EncryptionKeyInfo.Value.encryptedKey, fLast:true, countOfBytes:10);
string valStr = GetBytesAsString(cipherText, fLast:false, countOfBytes:10);
throw SQL.ThrowDecryptionFailed(keyStr, valStr, e);
}
}
/// <summary>
/// <para> Decrypts the symmetric key and saves it in metadata. In addition, intializes
/// the SqlClientEncryptionAlgorithm for rapid decryption.</para>
/// </summary>
internal static void DecryptSymmetricKey(SqlCipherMetadata md, string serverName) {
Debug.Assert(serverName != null, @"serverName should not be null in DecryptSymmetricKey.");
Debug.Assert(md != null, "md should not be null in DecryptSymmetricKey.");
Debug.Assert(md.EncryptionInfo.HasValue, "md.EncryptionInfo should not be null in DecryptSymmetricKey.");
Debug.Assert(md.EncryptionInfo.Value.ColumnEncryptionKeyValues != null, "md.EncryptionInfo.ColumnEncryptionKeyValues should not be null in DecryptSymmetricKey.");
SqlClientSymmetricKey symKey = null;
SqlEncryptionKeyInfo? encryptionkeyInfoChosen = null;
SqlSymmetricKeyCache cache = SqlSymmetricKeyCache.GetInstance();
Exception lastException = null;
foreach (SqlEncryptionKeyInfo keyInfo in md.EncryptionInfo.Value.ColumnEncryptionKeyValues) {
try {
if (cache.GetKey(keyInfo, serverName, out symKey)) {
encryptionkeyInfoChosen = keyInfo;
break;
}
} catch (Exception e) {
lastException = e;
}
}
if (null == symKey) {
Debug.Assert (null != lastException, "CEK decryption failed without raising exceptions");
throw lastException;
}
Debug.Assert(encryptionkeyInfoChosen.HasValue, "encryptionkeyInfoChosen must have a value.");
// Given the symmetric key instantiate a SqlClientEncryptionAlgorithm object and cache it in metadata
md.CipherAlgorithm = null;
SqlClientEncryptionAlgorithm cipherAlgorithm = null;
string algorithmName = ValidateAndGetEncryptionAlgorithmName(md.CipherAlgorithmId, md.CipherAlgorithmName); // may throw
SqlClientEncryptionAlgorithmFactoryList.GetInstance().GetAlgorithm(symKey, md.EncryptionType, algorithmName, out cipherAlgorithm); // will validate algorithm name and type
Debug.Assert(cipherAlgorithm != null);
md.CipherAlgorithm = cipherAlgorithm;
md.EncryptionKeyInfo = encryptionkeyInfoChosen;
return;
}
/// <summary>
/// Calculates the length of the Base64 string used to represent a byte[] with the specified length.
/// </summary>
/// <param name="byteLength"></param>
/// <returns></returns>
internal static int GetBase64LengthFromByteLength(int byteLength) {
Debug.Assert(byteLength <= UInt16.MaxValue, @"Encrypted column encryption key cannot be larger than 65536 bytes");
// Base64 encoding uses 1 character to encode 6 bits which means 4 characters for 3 bytes and pads to 4 byte multiples.
return (int)((double)byteLength * 4 / 3) + 4;
}
}
}
|