File: Constructors.fs

package info (click to toggle)
mono 6.12.0.199%2Bds-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 1,273,192 kB
  • sloc: cs: 11,181,844; xml: 2,850,076; ansic: 689,413; cpp: 123,344; perl: 59,361; javascript: 30,841; asm: 21,845; makefile: 19,951; sh: 15,030; python: 4,771; pascal: 925; sql: 859; sed: 16; php: 1
file content (315 lines) | stat: -rw-r--r-- 9,236 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
module Constructors

type MyClass(x0, y0, z0) =
    let mutable x = x0
    let mutable y = y0
    let mutable z = z0
    do
        printfn "Initialized object that has coordinates (%d, %d, %d)" x y z
    member this.X with get() = x and set(value) = x <- value
    member this.Y with get() = y and set(value) = y <- value
    member this.Z with get() = z and set(value) = z <- value
    new() = MyClass(0, 0, 0)

type MyClassObjectParameters(x0:string, y0, z0) =
    let mutable x = x0
    let mutable y = y0
    let mutable z = z0
    member this.X with get() = x and set(value) = x <- value
    member this.Y with get() = y and set(value) = y <- value
    member internal this.Z with get() = z and set(value) = z <- value
  
//    new() = MyClassObjectParameters("", 0, 0)
//    new(x0:string) = MyClassObjectParameters("", x0, x0)

type MyStruct =
    struct
       val X : int
       val Y : int
       val Z : int
       new(x, y, z) = { X = x; Y = y; Z = z }
    end

let myStructure1 = new MyStruct(1, 2, 3)


// Error Each argument of the primary constructor for a struct must be given a type, 
// for example 'type S(x1:int, x2: int) = ...'. 
// These arguments determine the fields of the struct

type MyStruct2 =
    struct
       [<DefaultValue>] 
       val mutable X : int

       [<DefaultValue>] 
       val mutable Y : int

       [<DefaultValue>] 
       val mutable Z : int
    end

let myStructure2 = new MyStruct2()



type MyClass3 =
    val a : int
    val b : int
    // The following version of the constructor is an error
    // because b is not initialized.
    // new (a0, b0) = { a = a0; }
    // The following version is acceptable because all fields are initialized.
    new(a0, b0) = { a = a0; b = b0; }


type MyClass3_1 (a0, b0)=
    let a : int = a0
    let b : int = b0
    //val c : int

type MyClass3_2 =
    val a : int
    member this.b : int = 19

type MyClass3_3() =
    [<DefaultValue>] val mutable internal a : int
    [<DefaultValue>] val mutable b : int    

type MyClass3_4 (a0, b0) =
    [<DefaultValue>] val mutable a : int
    [<DefaultValue>] val mutable b : int

let myClassObj = new MyClass3(35, 22)
printfn "%d %d" (myClassObj.a) (myClassObj.b)

// type MyStruct3 (a0, b0) =
// Each argument of the primary constructor for a struct must be given a type, 
// for example 'type S(x1:int, x2: int) = ...'. 
// These arguments determine the fields of the struct
type MyStruct33 (a0:int, b0:int) = 
    struct 
        [<DefaultValue>] val mutable a : int
        [<DefaultValue>] val mutable b : int

        new (a0:int) = MyStruct33(a0, 0)
        new (a0:int, b0:int, c0:int) = MyStruct33(a0, b0)
    end

let myStruct = new MyStruct33()
let myStruct2 = new MyStruct33(10, 15)

type MyStruct44 (a0:int, b0:int) = 
    struct 
        [<DefaultValue>] val mutable a : int
        [<DefaultValue>] val mutable b : int
    end


type MyStruct55 (a0:int, b0:int) = 
    struct 
        [<DefaultValue>] val mutable a : int
        [<DefaultValue>] val mutable b : int
        new (a0:int) = MyStruct55(34, 12) //then {this.a = 71}
    end

type MyStruct66 = 
    struct 
        val a : int
        val b : int
        new (a0:int) = {a = a0; b = 83}
    end

type MyStruct77 = 
    struct 
        [<DefaultValue>] val mutable a : int
        val b : int
//        new (a0:int) = {b = 83; a = 12} // doesn't work
        new (a0:int) = {b = 83}
    end

type MyStruct88 = 
    struct 
        [<DefaultValue>] val mutable a : int
        val b : int
//        new (a0:int) = {b = 83; a = 12} // doesn't work
        new (a0:int) = {b = 83}
        new (a0:int, b0:int) = {b = 87}
    end



type PetData = {
    name : string
    age : int
    animal : string
}

type Pet(name:string, age:int, animal:string) =
    let mutable age = age
    let mutable animal = animal

    new (name:string) =
        Pet(name, 5, "dog")

    new (data:PetData) =
        Pet(data.name, data.age, data.animal) then System.Console.WriteLine("Pet created from PetData")



type public MyType =
  val private myvar: int
  val private myvar2: string

  new () = 
    for i in 1 .. 10 do
      printfn "Before field assignments %i" i
    { myvar = 1; myvar2 = "test" } 
    then 
      for i in 1 .. 10 do
        printfn "After field assignments %i" i




//A primary constructor in a class can execute code in a do binding. 
// However, what if you have to execute code in an additional constructor, without a do binding? 
// To do this, you use the then keyword.

 // Executing side effects in the primary constructor and
// additional constructors.
type Person(nameIn : string, idIn : int) =
    let mutable name = nameIn
    let mutable id = idIn
    do printfn "Created a person object."
    member this.Name with get() = name and set(v) = name <- v
    member this.ID with get() = id and set(v) = id <- v
    new() =
        Person("Invalid Name", -1)
        then
            printfn "Created an invalid person object."
    new(person : Person) =
        Person(person.Name, person.ID)
        then
            printfn "Created a copy of person object."

let person1 = new Person("Humberto Acevedo", 123458734)
let person2 = new Person()
let person3 = new Person(person1)




// Self Identifiers in Constructors
// In other members, you provide a name for the current 
// object in the definition of each member. 
// You can also put the self identifier on the first line of the class definition 
// by using the as keyword immediately following the constructor parameters. 
// The following example illustrates this syntax.+
type MyClass1(x) as this =
    // This use of the self identifier produces a warning - avoid.
    let x1 = this.X
    // This use of the self identifier is acceptable.
    do printfn "Initializing object with X =%d" this.X
    member this.X = x



// In additional constructors, you can also define a self identifier 
// by putting the as clause right after the constructor parameters. 
// The following example illustrates this syntax.
type MyClass2(x : int) =
    member this.X = x
    new() as this = MyClass2(0) then printfn "Initializing with X = %d" this.X



// Assigning Values to Properties at Initialization
// You can assign values to the properties of a class object in the initialization code 
// by appending a list of assignments of the form property = value 
// to the argument list for a constructor. This is shown in the following code example.
type Account() =
    let mutable balance = 0.0
    let mutable number = 0
    let mutable firstName = ""
    let mutable lastName = ""
    member this.AccountNumber
       with get() = number
       and set(value) = number <- value
    member this.FirstName
       with get() = firstName
       and set(value) = firstName <- value
    member this.LastName
       with get() = lastName
       and set(value) = lastName <- value
    member this.Balance
       with get() = balance
       and set(value) = balance <- value
    member this.Deposit(amount: float) = this.Balance <- this.Balance + amount
    member this.Withdraw(amount: float) = this.Balance <- this.Balance - amount


let account1 = new Account(AccountNumber=8782108,
                           FirstName="Darren", LastName="Parker",
                           Balance=1543.33)




// The following version of the previous code illustrates the combination 
// of ordinary arguments, optional arguments, and property settings in one constructor call.
type Account2(accountNumber : int, ?first: string, ?last: string, ?bal : float) =
   let mutable balance = defaultArg bal 0.0
   let mutable number = accountNumber
   let mutable firstName = defaultArg first ""
   let mutable lastName = defaultArg last ""
   member this.AccountNumber
      with get() = number
      and set(value) = number <- value
   member this.FirstName
      with get() = firstName
      and set(value) = firstName <- value
   member this.LastName
      with get() = lastName
      and set(value) = lastName <- value
   member this.Balance
      with get() = balance
      and set(value) = balance <- value
   member this.Deposit(amount: float) = this.Balance <- this.Balance + amount
   member this.Withdraw(amount: float) = this.Balance <- this.Balance - amount


let account2 = new Account2(8782108, bal = 543.33,
                          FirstName="Raman", LastName="Iyer")



// Constructors and Inheritance
type MyClassBase2(x: int) =
   let mutable z = x * x
   do for i in 1..z do printf "%d " i


type MyClassDerived2(y: int) =
   inherit MyClassBase2(y * 2)
   do for i in 1..y do printf "%d " i


// In the case of multiple constructors, the following code can be used. 
// The first line of the derived class constructors is the inherit clause, 
// and the fields appear as explicit fields that are declared with the val keyword. 
// For more information, see Explicit Fields: The val Keyword.+
type BaseClass =
    val string1 : string
    new (str) = { string1 = str }
    new () = { string1 = "" }

type DerivedClass =
    inherit BaseClass

    val string2 : string
    new (str1, str2) = { inherit BaseClass(str1); string2 = str2 }
    new (str2) = { inherit BaseClass(); string2 = str2 }

let obj1 = DerivedClass("A", "B")
let obj2 = DerivedClass("A")