1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795
|
//---------------------------------------------------------------------
// <copyright file="ProjectionPruner.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
//using System.Diagnostics; // Please use PlanCompiler.Assert instead of Debug.Assert in this class...
// It is fine to use Debug.Assert in cases where you assert an obvious thing that is supposed
// to prevent from simple mistakes during development (e.g. method argument validation
// in cases where it was you who created the variables or the variables had already been validated or
// in "else" clauses where due to code changes (e.g. adding a new value to an enum type) the default
// "else" block is chosen why the new condition should be treated separately). This kind of asserts are
// (can be) helpful when developing new code to avoid simple mistakes but have no or little value in
// the shipped product.
// PlanCompiler.Assert *MUST* be used to verify conditions in the trees. These would be assumptions
// about how the tree was built etc. - in these cases we probably want to throw an exception (this is
// what PlanCompiler.Assert does when the condition is not met) if either the assumption is not correct
// or the tree was built/rewritten not the way we thought it was.
// Use your judgment - if you rather remove an assert than ship it use Debug.Assert otherwise use
// PlanCompiler.Assert.
using System.Globalization;
using System.Text;
using System.Linq;
using md = System.Data.Metadata.Edm;
using cqt = System.Data.Common.CommandTrees;
using System.Data.Query.InternalTrees;
namespace System.Data.Query.PlanCompiler
{
/// <summary>
/// The ProjectionPruner module is responsible for eliminating unnecessary column
/// references (and other expressions) from the query.
///
/// Projection pruning logically operates in two passes - the first pass is a top-down
/// pass where information about all referenced columns and expressions is collected
/// (pushed down from a node to its children).
///
/// The second phase is a bottom-up phase, where each node (in response to the
/// information collected above) attempts to rid itself of unwanted columns and
/// expressions.
///
/// The two phases can be combined into a single tree walk, where for each node, the
/// processing is on the lines of:
///
/// - compute and push information to children (top-down)
/// - process children
/// - eliminate unnecessary references from myself (bottom-up)
///
/// </summary>
internal class ProjectionPruner : BasicOpVisitorOfNode
{
#region Nested Classes
/// <summary>
/// This class tracks down the vars that are referenced in the column map
/// </summary>
private class ColumnMapVarTracker : ColumnMapVisitor<VarVec>
{
#region public methods
/// <summary>
/// Find all vars that were referenced in the column map. Looks for VarRefColumnMap
/// in the ColumnMap tree, and tracks those vars
///
/// NOTE: The "vec" parameter must be supplied by the caller. The caller is responsible for
/// clearing out this parameter (if necessary) before calling into this function
/// </summary>
/// <param name="columnMap">the column map to traverse</param>
/// <param name="vec">the set of referenced columns</param>
internal static void FindVars(ColumnMap columnMap, VarVec vec)
{
ColumnMapVarTracker tracker = new ColumnMapVarTracker();
columnMap.Accept<VarVec>(tracker, vec);
return;
}
#endregion
#region constructors
/// <summary>
/// Trivial constructor
/// </summary>
private ColumnMapVarTracker() : base() { }
#endregion
#region overrides
/// <summary>
/// Handler for VarRefColumnMap. Simply adds the "var" to the set of referenced vars
/// </summary>
/// <param name="columnMap">the current varRefColumnMap</param>
/// <param name="arg">the set of referenced vars so far</param>
internal override void Visit(VarRefColumnMap columnMap, VarVec arg)
{
arg.Set(columnMap.Var);
base.Visit(columnMap, arg);
}
#endregion
}
#endregion
#region private state
private PlanCompiler m_compilerState;
private Command m_command { get { return m_compilerState.Command; } }
private VarVec m_referencedVars; // the list of referenced vars in the query
#endregion
#region constructor
/// <summary>
/// Trivial private constructor
/// </summary>
/// <param name="compilerState">current compiler state</param>
private ProjectionPruner(PlanCompiler compilerState)
{
m_compilerState = compilerState;
m_referencedVars = compilerState.Command.CreateVarVec();
}
#endregion
#region Process Driver
/// <summary>
/// Runs through the root node of the tree, and eliminates all
/// unreferenced expressions
/// </summary>
/// <param name="compilerState">current compiler state</param>
internal static void Process(PlanCompiler compilerState)
{
compilerState.Command.Root = Process(compilerState, compilerState.Command.Root);
}
/// <summary>
/// Runs through the given subtree, and eliminates all
/// unreferenced expressions
/// </summary>
/// <param name="compilerState">current compiler state</param>
/// <param name="node">The node to be processed</param>
/// <returns>The processed, i.e. transformed node</returns>
internal static Node Process(PlanCompiler compilerState, Node node)
{
ProjectionPruner pruner = new ProjectionPruner(compilerState);
return pruner.Process(node);
}
/// <summary>
/// The real driver of the pruning process. Simply invokes the visitor over the input node
/// </summary>
/// <param name="node">The node to be processed</param>
/// <returns>The processed node</returns>
private Node Process(Node node)
{
return VisitNode(node);
}
#endregion
#region misc helpers
/// <summary>
/// Adds a reference to this Var
/// </summary>
/// <param name="v"></param>
private void AddReference(Var v)
{
m_referencedVars.Set(v);
}
/// <summary>
/// Adds a reference to each var in a set of Vars
/// </summary>
/// <param name="varSet"></param>
private void AddReference(IEnumerable<Var> varSet)
{
foreach (Var v in varSet)
{
AddReference(v);
}
}
/// <summary>
/// Is this Var referenced?
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
private bool IsReferenced(Var v)
{
return m_referencedVars.IsSet(v);
}
/// <summary>
/// Is this var unreferenced? Duh
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
private bool IsUnreferenced(Var v)
{
return !IsReferenced(v);
}
/// <summary>
/// Prunes a VarMap - gets rid of unreferenced vars from the VarMap inplace
/// Additionally, propagates var references to the inner vars
/// </summary>
/// <param name="varMap"></param>
private void PruneVarMap(VarMap varMap)
{
List<Var> unreferencedVars = new List<Var>();
// build up a list of unreferenced vars
foreach (Var v in varMap.Keys)
{
if (!IsReferenced(v))
{
unreferencedVars.Add(v);
}
else
{
AddReference(varMap[v]);
}
}
// remove each of the corresponding entries from the varmap
foreach (Var v in unreferencedVars)
{
varMap.Remove(v);
}
}
/// <summary>
/// Prunes a varset - gets rid of unreferenced vars from the Varset in place
/// </summary>
/// <param name="varSet">the varset to prune</param>
private void PruneVarSet(VarVec varSet)
{
varSet.And(m_referencedVars);
}
#endregion
#region Visitor Helpers
/// <summary>
/// Visits the children and recomputes the node info
/// </summary>
/// <param name="n">The current node</param>
protected override void VisitChildren(Node n)
{
base.VisitChildren(n);
m_command.RecomputeNodeInfo(n);
}
/// <summary>
/// Visits the children in reverse order and recomputes the node info
/// </summary>
/// <param name="n">The current node</param>
protected override void VisitChildrenReverse(Node n)
{
base.VisitChildrenReverse(n);
m_command.RecomputeNodeInfo(n);
}
#endregion
#region Visitor methods
#region AncillaryOp Visitors
/// <summary>
/// VarDefListOp
///
/// Walks the children (VarDefOp), and looks for those whose Vars
/// have been referenced. Only those VarDefOps are visited - the
/// others are ignored.
///
/// At the end, a new list of children is created - with only those
/// VarDefOps that have been referenced
/// </summary>
/// <param name="op">the varDefListOp</param>
/// <param name="n">corresponding node</param>
/// <returns>modified node</returns>
public override Node Visit(VarDefListOp op, Node n)
{
// NOTE: It would be nice to optimize this to only create a new node
// and new list, if we needed to eliminate some arguments, but
// I'm not sure that the effort to eliminate the allocations
// wouldn't be more expensive than the allocations themselves.
// It's something that we can consider if it shows up on the
// perf radar.
// Get rid of all the children that we don't care about (ie)
// those VarDefOp's that haven't been referenced
List<Node> newChildren = new List<Node>();
foreach (Node chi in n.Children)
{
VarDefOp varDefOp = chi.Op as VarDefOp;
if (IsReferenced(varDefOp.Var))
{
newChildren.Add(VisitNode(chi));
}
}
return m_command.CreateNode(op, newChildren);
}
#endregion
#region PhysicalOps
/// <summary>
/// PhysicalProjectOp
///
/// Insist that all Vars in this are required
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(PhysicalProjectOp op, Node n)
{
if (n == m_command.Root)
{
//
// Walk the column map to find all the referenced vars
//
ColumnMapVarTracker.FindVars(op.ColumnMap, m_referencedVars);
op.Outputs.RemoveAll(IsUnreferenced);
}
else
{
AddReference(op.Outputs);
}
// then visit the children
VisitChildren(n);
return n;
}
/// <summary>
/// NestOps
///
/// Common handling for all NestOps.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
protected override Node VisitNestOp(NestBaseOp op, Node n)
{
// Mark all vars as needed
AddReference(op.Outputs);
// visit children. Need to do some more actually - to indicate that all
// vars from the children are really required.
VisitChildren(n);
return n;
}
/// <summary>
/// SingleStreamNestOp
///
/// Insist (for now) that all Vars are required
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(SingleStreamNestOp op, Node n)
{
AddReference(op.Discriminator);
return VisitNestOp(op, n);
}
/// <summary>
/// MultiStreamNestOp
///
/// Insist (for now) that all Vars are required
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(MultiStreamNestOp op, Node n)
{
return VisitNestOp(op, n);
}
#endregion
#region RelOp Visitors
/// <summary>
/// ApplyOps
///
/// Common handling for all ApplyOps. Visit the right child first to capture
/// any references to the left, and then visit the left child.
/// </summary>
/// <param name="op"></param>
/// <param name="n">the apply op</param>
/// <returns>modified subtree</returns>
protected override Node VisitApplyOp(ApplyBaseOp op, Node n)
{
// visit the right child first, then the left
VisitChildrenReverse(n);
return n;
}
/// <summary>
/// DistinctOp
///
/// We remove all null and constant keys that are not referenced as long as
/// there is one key left. We add all remaining keys to the referenced list
/// and proceed to the inputs
/// </summary>
/// <param name="op">the DistinctOp</param>
/// <param name="n">Current subtree</param>
/// <returns></returns>
public override Node Visit(DistinctOp op, Node n)
{
if (op.Keys.Count > 1 && n.Child0.Op.OpType == OpType.Project)
{
RemoveRedundantConstantKeys(op.Keys, ((ProjectOp)n.Child0.Op).Outputs, n.Child0.Child1);
}
AddReference(op.Keys); // mark all keys as referenced - nothing more to do
VisitChildren(n); // visit the children
return n;
}
/// <summary>
/// ElementOp
///
/// An ElementOp that is still present when Projection Prunning is invoked can only get introduced
/// in the TransformationRules phase by transforming an apply operation into a scalar subquery.
/// Such ElementOp serves as root of a defining expression of a VarDefinitionOp node and
/// thus what it produces is useful.
/// </summary>
/// <param name="op">the ElementOp</param>
/// <param name="n">Current subtree</param>
/// <returns></returns>
public override Node Visit(ElementOp op, Node n)
{
ExtendedNodeInfo nodeInfo = m_command.GetExtendedNodeInfo(n.Child0);
AddReference(nodeInfo.Definitions);
n.Child0 = VisitNode(n.Child0); // visit the child
m_command.RecomputeNodeInfo(n);
return n;
}
/// <summary>
/// FilterOp
///
/// First visit the predicate (because that may contain references to
/// the relop input), and then visit the relop input. No additional
/// processing is required
/// </summary>
/// <param name="op">the filterOp</param>
/// <param name="n">current node</param>
/// <returns></returns>
public override Node Visit(FilterOp op, Node n)
{
// visit the predicate first, and then teh relop input
VisitChildrenReverse(n);
return n;
}
/// <summary>
/// GroupByBase
///
/// First, we visit the vardeflist for aggregates and potentially group aggregates
/// as they may reference keys (including constant keys).
/// Then we remove all null and constant keys that are not referenced as long as
/// there is one key left. We add all remaining key columns to the referenced list.
/// Then we walk through the vardeflist for the keys; and finally process the relop input
/// Once we're done, we update the "Outputs" varset - to account for any
/// pruned vars. The "Keys" varset will not change
/// </summary>
/// <param name="op">the groupbyOp</param>
/// <param name="n">current subtree</param>
/// <returns>modified subtree</returns>
protected override Node VisitGroupByOp(GroupByBaseOp op, Node n)
{
// DevDiv#322980: Visit the vardeflist for aggregates and potentially group aggregates before removing
// redundant constant keys. This is because they may depend on (reference) the keys
for (int i = n.Children.Count - 1; i >= 2; i--)
{
n.Children[i] = VisitNode(n.Children[i]);
}
//All constant and null keys that are not referenced can be removed
//as long as there is at least one key left.
if (op.Keys.Count > 1)
{
RemoveRedundantConstantKeys(op.Keys, op.Outputs, n.Child1);
}
AddReference(op.Keys); // all keys are referenced
//Visit the keys
n.Children[1] = VisitNode(n.Children[1]);
//Visit the input
n.Children[0] = VisitNode(n.Children[0]);
PruneVarSet(op.Outputs); // remove unnecessary vars from the outputs
//SQLBUDT #543064: If there are no keys to start with
// and none of the aggregates is referenced, the GroupBy
// is equivalent to a SingleRowTableOp
if (op.Keys.Count == 0 && op.Outputs.Count == 0)
{
return m_command.CreateNode(m_command.CreateSingleRowTableOp());
}
m_command.RecomputeNodeInfo(n);
return n;
}
/// <summary>
/// Helper method for removing redundant constant keys from GroupByOp and DistictOp.
/// It only examines the keys defined in the given varDefListNode.
/// It removes all constant and null keys that are not referenced elsewhere,
/// but ensuring that at least one key is left.
/// It should not be called with empty keyVec.
/// </summary>
/// <param name="keyVec">The keys</param>
/// <param name="outputVec">The var vec that needs to be updated along with the keys</param>
/// <param name="varDefListNode">Var def list node for the keys </param>
private void RemoveRedundantConstantKeys(VarVec keyVec, VarVec outputVec, Node varDefListNode)
{
//Find all the keys that are nulls and constants
List<Node> constantKeys = varDefListNode.Children.Where(d => d.Op.OpType == OpType.VarDef
&& PlanCompilerUtil.IsConstantBaseOp(d.Child0.Op.OpType)).ToList();
VarVec constantKeyVars = this.m_command.CreateVarVec(constantKeys.Select(d => ((VarDefOp)d.Op).Var));
//Get the list of unreferenced constant keys
constantKeyVars.Minus(m_referencedVars);
//Remove the unreferenced constant keys
keyVec.Minus(constantKeyVars);
outputVec.Minus(constantKeyVars);
varDefListNode.Children.RemoveAll(c => constantKeys.Contains(c) && constantKeyVars.IsSet(((VarDefOp)c.Op).Var));
//If no keys are left add one.
if (keyVec.Count == 0)
{
Node keyNode = constantKeys.First();
Var keyVar = ((VarDefOp)keyNode.Op).Var;
keyVec.Set(keyVar);
outputVec.Set(keyVar);
varDefListNode.Children.Add(keyNode);
}
}
/// <summary>
/// First defer to default handling for groupby nodes
/// If all group aggregate vars are prunned out turn it into a GroupBy.
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(GroupByIntoOp op, Node n)
{
Node result = VisitGroupByOp(op, n);
//Transform the GroupByInto into a GroupBy if all group aggregate vars were prunned out
if (result.Op.OpType == OpType.GroupByInto && n.Child3.Children.Count == 0)
{
GroupByIntoOp newOp = (GroupByIntoOp)result.Op;
result = m_command.CreateNode(m_command.CreateGroupByOp(newOp.Keys, newOp.Outputs),
result.Child0, result.Child1, result.Child2);
}
return result;
}
/// <summary>
/// JoinOps
///
/// Common handling for all join ops. For all joins (other than crossjoin),
/// we must first visit the predicate (to capture any references from it), and
/// then visit the relop inputs. The relop inputs can be visited in any order
/// because there can be no correlations between them
/// For crossjoins, we simply use the default processing - visit all children
/// ; there can be no correlations between the nodes anyway
/// </summary>
/// <param name="op"></param>
/// <param name="n">Node for the join subtree</param>
/// <returns>modified subtree</returns>
protected override Node VisitJoinOp(JoinBaseOp op, Node n)
{
// Simply visit all children for a CrossJoin
if (n.Op.OpType == OpType.CrossJoin)
{
VisitChildren(n);
return n;
}
// For other joins, we first need to visit the predicate, and then the
// other inputs
// first visit the predicate
n.Child2 = VisitNode(n.Child2);
// then visit the 2 join inputs
n.Child0 = VisitNode(n.Child0);
n.Child1 = VisitNode(n.Child1);
m_command.RecomputeNodeInfo(n);
return n;
}
/// <summary>
/// ProjectOp
///
/// We visit the projections first (the VarDefListOp child), and then
/// the input (the RelOp child) - this reverse order is necessary, since
/// the projections need to be visited to determine if anything from
/// the input is really needed.
///
/// The VarDefListOp child will handle the removal of unnecessary VarDefOps.
/// On the way out, we then update our "Vars" property to reflect the Vars
/// that have been eliminated
/// </summary>
/// <param name="op">the ProjectOp</param>
/// <param name="n">the current node</param>
/// <returns>modified subtree</returns>
public override Node Visit(ProjectOp op, Node n)
{
// Update my Vars - to remove "unreferenced" vars. Do this before visiting
// the children - the outputs of the ProjectOp are only consumed by upstream
// consumers, and if a Var has not yet been referenced, its not needed upstream
PruneVarSet(op.Outputs);
// first visit the computed expressions, then visit the input relop
VisitChildrenReverse(n);
// If there are no Vars left, then simply return my child - otherwise,
// return the current node
return op.Outputs.IsEmpty ? n.Child0 : n;
}
/// <summary>
/// ScanTableOp
///
/// Update the list of referenced columns
/// </summary>
/// <param name="op"></param>
/// <param name="n"></param>
/// <returns></returns>
public override Node Visit(ScanTableOp op, Node n)
{
PlanCompiler.Assert(!n.HasChild0, "scanTable with an input?"); // no more views
// update the list of referenced columns in the table
op.Table.ReferencedColumns.And(m_referencedVars);
m_command.RecomputeNodeInfo(n);
return n;
}
/// <summary>
/// SetOps
///
/// Common handling for all SetOps. We first identify the "output" vars
/// that are referenced, and mark the corresponding "input" vars as referenced
/// We then remove all unreferenced output Vars from the "Outputs" varset
/// as well as from the Varmaps.
/// Finally, we visit the children
/// </summary>
/// <param name="op"></param>
/// <param name="n">current node</param>
/// <returns></returns>
protected override Node VisitSetOp(SetOp op, Node n)
{
// Prune the outputs varset, except for Intersect and Except, which require
// all their outputs to compare, so don't bother pruning them.
if (OpType.Intersect == op.OpType || OpType.Except == op.OpType)
{
AddReference(op.Outputs);
}
PruneVarSet(op.Outputs);
// Prune the varmaps. Identify which of the setOp vars have been
// referenced, and eliminate those entries that don't show up. Additionally
// mark all the other Vars as referenced
foreach (VarMap varMap in op.VarMap)
{
PruneVarMap(varMap);
}
// Now visit the children
VisitChildren(n);
return n;
}
/// <summary>
/// SortOp
///
/// First visit the sort keys - no sort key can be eliminated.
/// Then process the vardeflist child (if there is one) that contains computed
/// vars, and finally process the relop input. As before, the computedvars
/// and sortkeys need to be processed before the relop input
/// </summary>
/// <param name="op">the sortop</param>
/// <param name="n">the current subtree</param>
/// <returns>modified subtree</returns>
protected override Node VisitSortOp(SortBaseOp op, Node n)
{
// first visit the sort keys
foreach (InternalTrees.SortKey sk in op.Keys)
{
AddReference(sk.Var);
}
// next walk through all the computed expressions
if (n.HasChild1)
{
n.Child1 = VisitNode(n.Child1);
}
// finally process the input
n.Child0 = VisitNode(n.Child0);
m_command.RecomputeNodeInfo(n);
return n;
}
/// <summary>
/// UnnestOp
///
/// Marks the unnestVar as referenced, and if there
/// is a child, visits the child.
/// </summary>
/// <param name="op">the unnestOp</param>
/// <param name="n">current subtree</param>
/// <returns>modified subtree</returns>
public override Node Visit(UnnestOp op, Node n)
{
AddReference(op.Var);
VisitChildren(n); // visit my vardefop - defining the unnest var(if any)
return n;
}
#endregion
#region ScalarOps Visitors
//
// The only ScalarOps that need special processing are
// * VarRefOp: we mark the corresponding Var as referenced
// * ExistsOp: We mark the (only) Var of the child ProjectOp as referenced
//
#region ScalarOps with special treatment
/// <summary>
/// VarRefOp
///
/// Mark the corresponding Var as "referenced"
/// </summary>
/// <param name="op">the VarRefOp</param>
/// <param name="n">current node</param>
/// <returns></returns>
public override Node Visit(VarRefOp op, Node n)
{
AddReference(op.Var);
return n;
}
/// <summary>
/// ExistsOp
///
/// The child must be a ProjectOp - with exactly 1 var. Mark it as referenced
/// </summary>
/// <param name="op">the ExistsOp</param>
/// <param name="n">the input node</param>
/// <returns></returns>
public override Node Visit(ExistsOp op, Node n)
{
// Ensure that the child is a projectOp, and has exactly one var. Mark
// that var as referenced always
ProjectOp projectOp = (ProjectOp)n.Child0.Op;
//It is enougth to reference the first output, this usually is a simple constant
AddReference(projectOp.Outputs.First);
VisitChildren(n);
return n;
}
#endregion
#endregion
#endregion
}
}
|