1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
//---------------------------------------------------------------------
// <copyright file="ConversionContext.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
namespace System.Data.Common.Utils.Boolean
{
/// <summary>
/// Manages state used to translate BoolExpr to decision diagram vertices and back again.
/// Specializations exist for generic and DomainConstraint expressions.
/// </summary>
internal abstract class ConversionContext<T_Identifier>
{
/// <summary>
/// Gets the solver instance associated with this conversion context. Used to reterieve
/// canonical Decision Diagram vertices for this context.
/// </summary>
internal readonly Solver Solver = new Solver();
/// <summary>
/// Given a term in BoolExpr, returns the corresponding decision diagram vertex.
/// </summary>
internal abstract Vertex TranslateTermToVertex(TermExpr<T_Identifier> term);
/// <summary>
/// Describes a vertex as a series of literal->vertex successors such that the literal
/// logically implies the given vertex successor.
/// </summary>
internal abstract IEnumerable<LiteralVertexPair<T_Identifier>> GetSuccessors(Vertex vertex);
}
/// <summary>
/// VertexLiteral pair, used for ConversionContext.GetSuccessors
/// </summary>
internal sealed class LiteralVertexPair<T_Identifier>
{
internal readonly Vertex Vertex;
internal readonly Literal<T_Identifier> Literal;
internal LiteralVertexPair(Vertex vertex, Literal<T_Identifier> literal)
{
this.Vertex = vertex;
this.Literal = literal;
}
}
/// <summary>
/// Generic implementation of a ConversionContext
/// </summary>
internal sealed class GenericConversionContext<T_Identifier> : ConversionContext<T_Identifier>
{
readonly Dictionary<TermExpr<T_Identifier>, int> _variableMap = new Dictionary<TermExpr<T_Identifier>, int>();
Dictionary<int, TermExpr<T_Identifier>> _inverseVariableMap;
internal override Vertex TranslateTermToVertex(TermExpr<T_Identifier> term)
{
int variable;
if (!_variableMap.TryGetValue(term, out variable))
{
variable = Solver.CreateVariable();
_variableMap.Add(term, variable);
}
return Solver.CreateLeafVertex(variable, Solver.BooleanVariableChildren);
}
internal override IEnumerable<LiteralVertexPair<T_Identifier>> GetSuccessors(Vertex vertex)
{
LiteralVertexPair<T_Identifier>[] successors = new LiteralVertexPair<T_Identifier>[2];
Debug.Assert(2 == vertex.Children.Length);
Vertex then = vertex.Children[0];
Vertex @else = vertex.Children[1];
// get corresponding term expression
InitializeInverseVariableMap();
TermExpr<T_Identifier> term = _inverseVariableMap[vertex.Variable];
// add positive successor (then)
Literal<T_Identifier> literal = new Literal<T_Identifier>(term, true);
successors[0] = new LiteralVertexPair<T_Identifier>(then, literal);
// add negative successor (else)
literal = literal.MakeNegated();
successors[1] = new LiteralVertexPair<T_Identifier>(@else, literal);
return successors;
}
private void InitializeInverseVariableMap()
{
if (null == _inverseVariableMap)
{
_inverseVariableMap = _variableMap.ToDictionary(kvp => kvp.Value, kvp => kvp.Key);
}
}
}
/// <summary>
/// Specialization of ConversionContext for DomainConstraint BoolExpr
/// </summary>
internal sealed class DomainConstraintConversionContext<T_Variable, T_Element> : ConversionContext<DomainConstraint<T_Variable, T_Element>>
{
/// <summary>
/// A map from domain variables to decision diagram variables.
/// </summary>
readonly Dictionary<DomainVariable<T_Variable, T_Element>, int> _domainVariableToRobddVariableMap =
new Dictionary<DomainVariable<T_Variable, T_Element>, int>();
Dictionary<int, DomainVariable<T_Variable, T_Element>> _inverseMap;
/// <summary>
/// Translates a domain constraint term to an N-ary DD vertex.
/// </summary>
internal override Vertex TranslateTermToVertex(TermExpr<DomainConstraint<T_Variable, T_Element>> term)
{
var range = term.Identifier.Range;
var domainVariable = term.Identifier.Variable;
var domain = domainVariable.Domain;
if (range.All(element => !domain.Contains(element)))
{
// trivially false
return Vertex.Zero;
}
if (domain.All(element => range.Contains(element)))
{
// trivially true
return Vertex.One;
}
// determine assignments for this constraints (if the range contains a value in the domain, '1', else '0')
Vertex[] children = domain.Select(element => range.Contains(element) ? Vertex.One : Vertex.Zero).ToArray();
// see if we know this variable
int robddVariable;
if (!_domainVariableToRobddVariableMap.TryGetValue(domainVariable, out robddVariable))
{
robddVariable = Solver.CreateVariable();
_domainVariableToRobddVariableMap[domainVariable] = robddVariable;
}
// create a new vertex with the given assignments
return Solver.CreateLeafVertex(robddVariable, children);
}
internal override IEnumerable<LiteralVertexPair<DomainConstraint<T_Variable, T_Element>>> GetSuccessors(Vertex vertex)
{
InitializeInverseMap();
var domainVariable = _inverseMap[vertex.Variable];
// since vertex children are ordinally aligned with domain, handle domain as array
var domain = domainVariable.Domain.ToArray();
// foreach unique successor vertex, build up range
Dictionary<Vertex, Set<T_Element>> vertexToRange = new Dictionary<Vertex, Set<T_Element>>();
for (int i = 0; i < vertex.Children.Length; i++)
{
Vertex successorVertex = vertex.Children[i];
Set<T_Element> range;
if (!vertexToRange.TryGetValue(successorVertex, out range))
{
range = new Set<T_Element>(domainVariable.Domain.Comparer);
vertexToRange.Add(successorVertex, range);
}
range.Add(domain[i]);
}
foreach (var vertexRange in vertexToRange)
{
var successorVertex = vertexRange.Key;
var range = vertexRange.Value;
// construct a DomainConstraint including the given range
var constraint = new DomainConstraint<T_Variable, T_Element>(domainVariable, range.MakeReadOnly());
var literal = new Literal<DomainConstraint<T_Variable, T_Element>>(
new TermExpr<DomainConstraint<T_Variable, T_Element>>(constraint), true);
yield return new LiteralVertexPair<DomainConstraint<T_Variable, T_Element>>(successorVertex, literal);
}
}
private void InitializeInverseMap()
{
if (null == _inverseMap)
{
_inverseMap = _domainVariableToRobddVariableMap.ToDictionary(kvp => kvp.Value, kvp => kvp.Key);
}
}
}
}
|