File: ConversionContext.cs

package info (click to toggle)
mono 6.14.1%2Bds2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,282,732 kB
  • sloc: cs: 11,182,461; xml: 2,850,281; ansic: 699,123; cpp: 122,919; perl: 58,604; javascript: 30,841; asm: 21,845; makefile: 19,602; sh: 10,973; python: 4,772; pascal: 925; sql: 859; sed: 16; php: 1
file content (200 lines) | stat: -rw-r--r-- 8,069 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
//---------------------------------------------------------------------
// <copyright file="ConversionContext.cs" company="Microsoft">
//      Copyright (c) Microsoft Corporation.  All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;

namespace System.Data.Common.Utils.Boolean
{
    /// <summary>
    /// Manages state used to translate BoolExpr to decision diagram vertices and back again.
    /// Specializations exist for generic and DomainConstraint expressions.
    /// </summary>
    internal abstract class ConversionContext<T_Identifier>
    {
        /// <summary>
        /// Gets the solver instance associated with this conversion context. Used to reterieve
        /// canonical Decision Diagram vertices for this context.
        /// </summary>
        internal readonly Solver Solver = new Solver();

        /// <summary>
        /// Given a term in BoolExpr, returns the corresponding decision diagram vertex.
        /// </summary>
        internal abstract Vertex TranslateTermToVertex(TermExpr<T_Identifier> term);

        /// <summary>
        /// Describes a vertex as a series of literal->vertex successors such that the literal
        /// logically implies the given vertex successor.
        /// </summary>
        internal abstract IEnumerable<LiteralVertexPair<T_Identifier>> GetSuccessors(Vertex vertex);
    }

    /// <summary>
    /// VertexLiteral pair, used for ConversionContext.GetSuccessors
    /// </summary>
    internal sealed class LiteralVertexPair<T_Identifier>
    {
        internal readonly Vertex Vertex;
        internal readonly Literal<T_Identifier> Literal;

        internal LiteralVertexPair(Vertex vertex, Literal<T_Identifier> literal)
        {
            this.Vertex = vertex;
            this.Literal = literal;
        }
    }

    /// <summary>
    /// Generic implementation of a ConversionContext
    /// </summary>
    internal sealed class GenericConversionContext<T_Identifier> : ConversionContext<T_Identifier>
    {
        readonly Dictionary<TermExpr<T_Identifier>, int> _variableMap = new Dictionary<TermExpr<T_Identifier>, int>();
        Dictionary<int, TermExpr<T_Identifier>> _inverseVariableMap;

        internal override Vertex TranslateTermToVertex(TermExpr<T_Identifier> term)
        {
            int variable;
            if (!_variableMap.TryGetValue(term, out variable))
            {
                variable = Solver.CreateVariable();
                _variableMap.Add(term, variable);
            }
            return Solver.CreateLeafVertex(variable, Solver.BooleanVariableChildren);
        }

        internal override IEnumerable<LiteralVertexPair<T_Identifier>> GetSuccessors(Vertex vertex)
        {
            LiteralVertexPair<T_Identifier>[] successors = new LiteralVertexPair<T_Identifier>[2];

            Debug.Assert(2 == vertex.Children.Length);
            Vertex then = vertex.Children[0];
            Vertex @else = vertex.Children[1];

            // get corresponding term expression
            InitializeInverseVariableMap();
            TermExpr<T_Identifier> term = _inverseVariableMap[vertex.Variable];

            // add positive successor (then)
            Literal<T_Identifier> literal = new Literal<T_Identifier>(term, true);
            successors[0] = new LiteralVertexPair<T_Identifier>(then, literal);

            // add negative successor (else)
            literal = literal.MakeNegated();
            successors[1] = new LiteralVertexPair<T_Identifier>(@else, literal);
            return successors;
        }

        private void InitializeInverseVariableMap()
        {
            if (null == _inverseVariableMap)
            {
                _inverseVariableMap = _variableMap.ToDictionary(kvp => kvp.Value, kvp => kvp.Key);
            }
        }
    }

    /// <summary>
    /// Specialization of ConversionContext for DomainConstraint BoolExpr
    /// </summary>
    internal sealed class DomainConstraintConversionContext<T_Variable, T_Element> : ConversionContext<DomainConstraint<T_Variable, T_Element>>
    {
        /// <summary>
        /// A map from domain variables to decision diagram variables.
        /// </summary>
        readonly Dictionary<DomainVariable<T_Variable, T_Element>, int> _domainVariableToRobddVariableMap =
            new Dictionary<DomainVariable<T_Variable, T_Element>, int>();
        Dictionary<int, DomainVariable<T_Variable, T_Element>> _inverseMap;

        /// <summary>
        /// Translates a domain constraint term to an N-ary DD vertex. 
        /// </summary>
        internal override Vertex TranslateTermToVertex(TermExpr<DomainConstraint<T_Variable, T_Element>> term)
        {
            var range = term.Identifier.Range;
            var domainVariable = term.Identifier.Variable;
            var domain = domainVariable.Domain;

            if (range.All(element => !domain.Contains(element)))
            {
                // trivially false
                return Vertex.Zero;
            }

            if (domain.All(element => range.Contains(element)))
            {
                // trivially true
                return Vertex.One;
            }

            // determine assignments for this constraints (if the range contains a value in the domain, '1', else '0')
            Vertex[] children = domain.Select(element => range.Contains(element) ? Vertex.One : Vertex.Zero).ToArray();

            // see if we know this variable
            int robddVariable;
            if (!_domainVariableToRobddVariableMap.TryGetValue(domainVariable, out robddVariable))
            {
                robddVariable = Solver.CreateVariable();
                _domainVariableToRobddVariableMap[domainVariable] = robddVariable;
            }

            // create a new vertex with the given assignments
            return Solver.CreateLeafVertex(robddVariable, children);
        }

        internal override IEnumerable<LiteralVertexPair<DomainConstraint<T_Variable, T_Element>>> GetSuccessors(Vertex vertex)
        {
            InitializeInverseMap();
            var domainVariable = _inverseMap[vertex.Variable];

            // since vertex children are ordinally aligned with domain, handle domain as array
            var domain = domainVariable.Domain.ToArray();

            // foreach unique successor vertex, build up range
            Dictionary<Vertex, Set<T_Element>> vertexToRange = new Dictionary<Vertex, Set<T_Element>>();

            for (int i = 0; i < vertex.Children.Length; i++)
            {
                Vertex successorVertex = vertex.Children[i];
                Set<T_Element> range;
                if (!vertexToRange.TryGetValue(successorVertex, out range))
                {
                    range = new Set<T_Element>(domainVariable.Domain.Comparer);
                    vertexToRange.Add(successorVertex, range);
                }
                range.Add(domain[i]);
            }

            foreach (var vertexRange in vertexToRange)
            {
                var successorVertex = vertexRange.Key;
                var range = vertexRange.Value;

                // construct a DomainConstraint including the given range
                var constraint = new DomainConstraint<T_Variable, T_Element>(domainVariable, range.MakeReadOnly());
                var literal = new Literal<DomainConstraint<T_Variable, T_Element>>(
                    new TermExpr<DomainConstraint<T_Variable, T_Element>>(constraint), true);

                yield return new LiteralVertexPair<DomainConstraint<T_Variable, T_Element>>(successorVertex, literal);
            }
        }

        private void InitializeInverseMap()
        {
            if (null == _inverseMap)
            {
                _inverseMap = _domainVariableToRobddVariableMap.ToDictionary(kvp => kvp.Value, kvp => kvp.Key);
            }
        }
    }
}