1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
//---------------------------------------------------------------------
// <copyright file="Solver.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System;
using System.Collections.Generic;
using System.Linq;
namespace System.Data.Common.Utils.Boolean
{
using IfThenElseKey = Triple<Vertex, Vertex, Vertex>;
using System.Diagnostics;
/// <summary>
/// Supports construction of canonical Boolean expressions as Reduced Ordered
/// Boolean Decision Diagrams (ROBDD). As a side effect, supports simplification and SAT:
///
/// - The canonical form of a valid expression is Solver.One
/// - The canonical form of an unsatisfiable expression is Solver.Zero
/// - The lack of redundancy in the trees allows us to produce compact representations
/// of expressions
///
/// Any method taking a Vertex argument requires that the argument is either
/// a 'sink' (Solver.One or Solver.Zero) or generated by this Solver instance.
/// </summary>
internal sealed class Solver
{
#region Fields
readonly Dictionary<IfThenElseKey, Vertex> _computedIfThenElseValues =
new Dictionary<IfThenElseKey, Vertex>();
readonly Dictionary<Vertex, Vertex> _knownVertices =
new Dictionary<Vertex, Vertex>(VertexValueComparer.Instance);
int _variableCount;
// a standard Boolean variable has children '1' and '0'
internal readonly static Vertex[] BooleanVariableChildren = new Vertex[] { Vertex.One, Vertex.Zero };
#endregion
#region Expression factory methods
internal int CreateVariable()
{
return ++_variableCount;
}
internal Vertex Not(Vertex vertex)
{
// Not(v) iff. 'if v then 0 else 1'
return IfThenElse(vertex, Vertex.Zero, Vertex.One);
}
internal Vertex And(IEnumerable<Vertex> children)
{
// assuming input vertices v1, v2, ..., vn:
//
// v1
// 0|\1
// | v2
// |/0 \1
// | ...
// | /0 \1
// | vn
// | /0 \1
// FALSE TRUE
//
// order the children to minimize churn when building tree bottom up
return children
.OrderByDescending(child => child.Variable)
.Aggregate(Vertex.One, (left, right) => IfThenElse(left, right, Vertex.Zero));
}
internal Vertex And(Vertex left, Vertex right)
{
// left AND right iff. if 'left' then 'right' else '0'
return IfThenElse(left, right, Vertex.Zero);
}
internal Vertex Or(IEnumerable<Vertex> children)
{
// assuming input vertices v1, v2, ..., vn:
//
// v1
// 1|\0
// | v2
// |/1 \0
// | ...
// | /1 \0
// | vn
// | /1 \0
// TRUE FALSE
//
// order the children to minimize churn when building tree bottom up
return children
.OrderByDescending(child => child.Variable)
.Aggregate(Vertex.Zero, (left, right) => IfThenElse(left, Vertex.One, right));
}
/// <summary>
/// Creates a leaf vertex; all children must be sinks
/// </summary>
internal Vertex CreateLeafVertex(int variable, Vertex[] children)
{
Debug.Assert(null != children, "children must be specified");
Debug.Assert(2 <= children.Length, "must be at least 2 children");
Debug.Assert(children.All(child => child != null), "children must not be null");
Debug.Assert(children.All(child => child.IsSink()), "children must be sinks");
Debug.Assert(variable <= _variableCount, "variable out of range");
return GetUniqueVertex(variable, children);
}
#endregion
#region Private helper methods
/// <summary>
/// Returns a Vertex with the given configuration. If this configuration
/// is known, returns the existing vertex. Otherwise, a new
/// vertex is created. This ensures the vertex is unique in the context
/// of this solver.
/// </summary>
private Vertex GetUniqueVertex(int variable, Vertex[] children)
{
AssertVerticesValid(children);
Vertex result = new Vertex(variable, children);
// see if we know this vertex already
Vertex canonicalResult;
if (_knownVertices.TryGetValue(result, out canonicalResult))
{
return canonicalResult;
}
// remember the vertex (because it came first, it's canonical)
_knownVertices.Add(result, result);
return result;
}
/// <summary>
/// Composes the given vertices to produce a new ROBDD.
/// </summary>
private Vertex IfThenElse(Vertex condition, Vertex then, Vertex @else)
{
AssertVertexValid(condition);
AssertVertexValid(then);
AssertVertexValid(@else);
// check for terminal conditions in the recursion
if (condition.IsOne())
{
// if '1' then 'then' else '@else' iff. 'then'
return then;
}
if (condition.IsZero())
{
// if '0' then 'then' else '@else' iff. '@else'
return @else;
}
if (then.IsOne() && @else.IsZero())
{
// if 'condition' then '1' else '0' iff. condition
return condition;
}
if (then.Equals(@else))
{
// if 'condition' then 'x' else 'x' iff. x
return then;
}
Vertex result;
IfThenElseKey key = new IfThenElseKey(condition, then, @else);
// check if we've already computed this result
if (_computedIfThenElseValues.TryGetValue(key, out result))
{
return result;
}
int topVariableDomainCount;
int topVariable = DetermineTopVariable(condition, then, @else, out topVariableDomainCount);
// Recursively compute the new BDD node
// Note that we preserve the 'ordered' invariant since the child nodes
// cannot contain references to variables < topVariable, and
// the topVariable is eliminated from the children through
// the call to EvaluateFor.
Vertex[] resultCases = new Vertex[topVariableDomainCount];
bool allResultsEqual = true;
for (int i = 0; i < topVariableDomainCount; i++)
{
resultCases[i] = IfThenElse(
EvaluateFor(condition, topVariable, i),
EvaluateFor(then, topVariable, i),
EvaluateFor(@else, topVariable, i));
if (i > 0 && // first vertex is equivalent to itself
allResultsEqual && // we've already found a mismatch
!resultCases[i].Equals(resultCases[0]))
{
allResultsEqual = false;
}
}
// if the results are identical, any may be returned
if (allResultsEqual)
{
return resultCases[0];
}
// create new vertex
result = GetUniqueVertex(topVariable, resultCases);
// remember result so that we don't try to compute this if-then-else pattern again
_computedIfThenElseValues.Add(key, result);
return result;
}
/// <summary>
/// Given parts of an if-then-else statement, determines the top variable (nearest
/// root). Used to determine which variable forms the root of a composed Vertex.
/// </summary>
private static int DetermineTopVariable(Vertex condition, Vertex then, Vertex @else, out int topVariableDomainCount)
{
int topVariable;
if (condition.Variable < then.Variable)
{
topVariable = condition.Variable;
topVariableDomainCount = condition.Children.Length;
}
else
{
topVariable = then.Variable;
topVariableDomainCount = then.Children.Length;
}
if (@else.Variable < topVariable)
{
topVariable = @else.Variable;
topVariableDomainCount = @else.Children.Length;
}
return topVariable;
}
/// <summary>
/// Returns 'vertex' evaluated for the given value of 'variable'. Requires that
/// the variable is less than or equal to vertex.Variable.
/// </summary>
private static Vertex EvaluateFor(Vertex vertex, int variable, int variableAssigment)
{
if (variable < vertex.Variable)
{
// If the variable we're setting is less than the vertex variable, the
// the Vertex 'ordered' invariant ensures that the vertex contains no reference
// to that variable. Binding the variable is therefore a no-op.
return vertex;
}
Debug.Assert(variable == vertex.Variable,
"variable must be less than or equal to vertex.Variable");
// If the 'vertex' is conditioned on the given 'variable', the children
// represent the decompositions of the function for various assignments
// to that variable.
Debug.Assert(variableAssigment < vertex.Children.Length, "variable assignment out of range");
return vertex.Children[variableAssigment];
}
/// <summary>
/// Checks requirements for vertices.
/// </summary>
[Conditional("DEBUG")]
private void AssertVerticesValid(IEnumerable<Vertex> vertices)
{
Debug.Assert(null != vertices);
foreach (Vertex vertex in vertices)
{
AssertVertexValid(vertex);
}
}
/// <summary>
/// Checks requirements for a vertex argument (must not be null, and must be in scope
/// for this solver)
/// </summary>
[Conditional("DEBUG")]
private void AssertVertexValid(Vertex vertex)
{
Debug.Assert(vertex != null, "vertex must not be null");
// sinks are ok
if (!vertex.IsSink())
{
// so are vertices created by this solver
Vertex comparisonVertex;
Debug.Assert(_knownVertices.TryGetValue(vertex, out comparisonVertex) &&
comparisonVertex.Equals(vertex), "vertex not created by this solver");
}
}
#endregion
/// <summary>
/// Supports value comparison of vertices. In general, we use reference comparison
/// since the Solver ensures a single instance of each canonical Vertex. The Solver
/// needs this comparer to ensure a single instance of each canonical Vertex though...
/// </summary>
private class VertexValueComparer : IEqualityComparer<Vertex>
{
private VertexValueComparer() { }
internal static readonly VertexValueComparer Instance = new VertexValueComparer();
public bool Equals(Vertex x, Vertex y)
{
if (x.IsSink())
{
// sync nodes '1' and '0' each have one static instance; use reference
return x.Equals(y);
}
if (x.Variable != y.Variable ||
x.Children.Length != y.Children.Length)
{
return false;
}
for (int i = 0; i < x.Children.Length; i++)
{
// use reference comparison for the children (they must be
// canonical already)
if (!x.Children[i].Equals(y.Children[i]))
{
return false;
}
}
return true;
}
public int GetHashCode(Vertex vertex)
{
// sync nodes '1' and '0' each have one static instance; use reference
if (vertex.IsSink())
{
return vertex.GetHashCode();
}
Debug.Assert(2 <= vertex.Children.Length, "internal vertices must have at least 2 children");
unchecked
{
return ((vertex.Children[0].GetHashCode() << 5) + 1) + vertex.Children[1].GetHashCode();
}
}
}
}
/// <summary>
/// Record structure containing three values.
/// </summary>
struct Triple<T1, T2, T3> : IEquatable<Triple<T1, T2, T3>>
where T1 : IEquatable<T1>
where T2 : IEquatable<T2>
where T3 : IEquatable<T3>
{
readonly T1 _value1;
readonly T2 _value2;
readonly T3 _value3;
internal Triple(T1 value1, T2 value2, T3 value3)
{
Debug.Assert(null != (object)value1, "null key element");
Debug.Assert(null != (object)value2, "null key element");
Debug.Assert(null != (object)value3, "null key element");
_value1 = value1;
_value2 = value2;
_value3 = value3;
}
public bool Equals(Triple<T1, T2, T3> other)
{
return _value1.Equals(other._value1) &&
_value2.Equals(other._value2) &&
_value3.Equals(other._value3);
}
public override bool Equals(object obj)
{
Debug.Fail("used typed Equals");
return base.Equals(obj);
}
public override int GetHashCode()
{
return _value1.GetHashCode() ^
_value2.GetHashCode() ^
_value3.GetHashCode();
}
}
}
|