1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
|
//---------------------------------------------------------------------
// <copyright file="Command.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//
// @owner Microsoft
// @backupOwner Microsoft
//---------------------------------------------------------------------
using System.Collections.Generic;
using System.Data.Common;
using System.Data.Metadata.Edm;
using System.Data.Query.PlanCompiler;
using System.Diagnostics;
using System.Linq;
namespace System.Data.Query.InternalTrees
{
/// <summary>
/// The Command object encapsulates all information relating to a single command.
/// It includes the expression tree in question, as well as the parameters to the
/// command.
/// Additionally, the Command class serves as a factory for building up different
/// nodes and Ops. Every node in the tree has a unique id, and this is enforced by
/// the node factory methods
/// </summary>
internal class Command
{
#region private state
private Dictionary<string, ParameterVar> m_parameterMap;
private List<Var> m_vars;
private List<Table> m_tables;
private Node m_root;
private MetadataWorkspace m_metadataWorkspace;
private TypeUsage m_boolType;
private TypeUsage m_intType;
private TypeUsage m_stringType;
private ConstantPredicateOp m_trueOp;
private ConstantPredicateOp m_falseOp;
private NodeInfoVisitor m_nodeInfoVisitor;
private PlanCompiler.KeyPullup m_keyPullupVisitor;
private int m_nextNodeId;
private int m_nextBranchDiscriminatorValue = 1000;
private bool m_disableVarVecEnumCaching;
private Stack<VarVec.VarVecEnumerator> m_freeVarVecEnumerators;
private Stack<VarVec> m_freeVarVecs;
// set of referenced rel properties in this query
private HashSet<RelProperty> m_referencedRelProperties;
#endregion
#region constructors
/// <summary>
/// Creates a new command
/// </summary>
internal Command(MetadataWorkspace metadataWorkspace)
{
m_parameterMap = new Dictionary<string, ParameterVar>();
m_vars = new List<Var>();
m_tables = new List<Table>();
m_metadataWorkspace = metadataWorkspace;
if(!TryGetPrimitiveType(PrimitiveTypeKind.Boolean, out m_boolType))
{
throw EntityUtil.ProviderIncompatible(System.Data.Entity.Strings.Cqt_General_NoProviderBooleanType);
}
if (!TryGetPrimitiveType(PrimitiveTypeKind.Int32, out m_intType))
{
throw EntityUtil.ProviderIncompatible(System.Data.Entity.Strings.Cqt_General_NoProviderIntegerType);
}
if (!TryGetPrimitiveType(PrimitiveTypeKind.String, out m_stringType))
{
throw EntityUtil.ProviderIncompatible(System.Data.Entity.Strings.Cqt_General_NoProviderStringType);
}
m_trueOp = new ConstantPredicateOp(m_boolType, true);
m_falseOp = new ConstantPredicateOp(m_boolType, false);
m_nodeInfoVisitor = new NodeInfoVisitor(this);
m_keyPullupVisitor = new PlanCompiler.KeyPullup(this);
// FreeLists
m_freeVarVecEnumerators = new Stack<VarVec.VarVecEnumerator>();
m_freeVarVecs = new Stack<VarVec>();
m_referencedRelProperties = new HashSet<RelProperty>();
}
#endregion
#region public methods
/// <summary>
/// Gets the metadata workspace associated with this command
/// </summary>
internal MetadataWorkspace MetadataWorkspace { get { return m_metadataWorkspace; } }
/// <summary>
/// Gets/sets the root node of the query
/// </summary>
internal Node Root { get { return m_root; } set { m_root = value; } }
internal void DisableVarVecEnumCaching() { m_disableVarVecEnumCaching = true; }
/// <summary>
/// Returns the next value for a UnionAll BranchDiscriminator.
/// </summary>
internal int NextBranchDiscriminatorValue { get { return m_nextBranchDiscriminatorValue++; } }
/// <summary>
/// Returns the next value for a node id, without incrementing it.
/// </summary>
internal int NextNodeId { get { return m_nextNodeId; } }
#region Metadata Helpers
/// <summary>
/// Helper routine to get the metadata representation for the bool type
/// </summary>
internal TypeUsage BooleanType
{
get { return m_boolType; }
}
/// <summary>
/// Helper routine to get the metadata representation of the int type
/// </summary>
internal TypeUsage IntegerType
{
get { return m_intType; }
}
/// <summary>
/// Helper routine to get the metadata representation of the string type
/// </summary>
internal TypeUsage StringType
{
get { return m_stringType; }
}
/// <summary>
/// Get the primitive type by primitive type kind
/// </summary>
/// <param name="modelType">EdmMetadata.PrimitiveTypeKind of the primitive type</param>
/// <param name="type">A TypeUsage that represents the specified primitive type</param>
/// <returns><c>True</c> if the specified primitive type could be retrieved; otherwise <c>false</c>.</returns>
private bool TryGetPrimitiveType(PrimitiveTypeKind modelType, out TypeUsage type)
{
type = null;
if (modelType == PrimitiveTypeKind.String)
{
type = TypeUsage.CreateStringTypeUsage(m_metadataWorkspace.GetModelPrimitiveType(modelType),
false /*unicode*/,
false /*fixed*/);
}
else
{
type = m_metadataWorkspace.GetCanonicalModelTypeUsage(modelType);
}
return (null != type);
}
#endregion
#region VarVec Creation
/// <summary>
/// VarVec constructor
/// </summary>
/// <returns>A new, empty, VarVec</returns>
internal VarVec CreateVarVec()
{
VarVec vec;
if (m_freeVarVecs.Count == 0)
{
vec = new VarVec(this);
}
else
{
vec = m_freeVarVecs.Pop();
vec.Clear();
}
return vec;
}
/// <summary>
/// Create a VarVec with a single Var
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
internal VarVec CreateVarVec(Var v)
{
VarVec varset = CreateVarVec();
varset.Set(v);
return varset;
}
/// <summary>
/// Create a VarVec with the set of specified vars
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
internal VarVec CreateVarVec(IEnumerable<Var> v)
{
VarVec vec = CreateVarVec();
vec.InitFrom(v);
return vec;
}
/// <summary>
/// Create a new VarVec from the input VarVec
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
internal VarVec CreateVarVec(VarVec v)
{
VarVec vec = CreateVarVec();
vec.InitFrom(v);
return vec;
}
/// <summary>
/// Release a VarVec to the freelist
/// </summary>
/// <param name="vec"></param>
internal void ReleaseVarVec(VarVec vec)
{
m_freeVarVecs.Push(vec);
}
#endregion
#region VarVecEnumerator
/// <summary>
/// Create a new enumerator for a VarVec; use a free one if its
/// available; otherwise, create a new one
/// </summary>
/// <param name="vec"></param>
/// <returns></returns>
internal VarVec.VarVecEnumerator GetVarVecEnumerator(VarVec vec)
{
VarVec.VarVecEnumerator enumerator;
if (m_disableVarVecEnumCaching ||
m_freeVarVecEnumerators.Count == 0)
{
enumerator = new VarVec.VarVecEnumerator(vec);
}
else
{
enumerator = m_freeVarVecEnumerators.Pop();
enumerator.Init(vec);
}
return enumerator;
}
/// <summary>
/// Release an enumerator; keep it in a local stack for future use
/// </summary>
/// <param name="enumerator"></param>
internal void ReleaseVarVecEnumerator(VarVec.VarVecEnumerator enumerator)
{
if (!m_disableVarVecEnumCaching)
{
m_freeVarVecEnumerators.Push(enumerator);
}
}
#endregion
#region VarList
/// <summary>
/// Create an ordered list of Vars - initially empty
/// </summary>
/// <returns></returns>
internal static VarList CreateVarList()
{
return new VarList();
}
/// <summary>
/// Create an ordered list of Vars
/// </summary>
/// <param name="vars"></param>
/// <returns></returns>
internal static VarList CreateVarList(IEnumerable<Var> vars)
{
return new VarList(vars);
}
#endregion
#region VarMap
internal VarMap CreateVarMap()
{
return new VarMap();
}
#endregion
#region Table Helpers
private int NewTableId()
{
return m_tables.Count;
}
/// <summary>
/// Create a table whose element type is "elementType"
/// </summary>
/// <param name="elementType">type of each element (row) of the table</param>
/// <returns>a table definition object</returns>
internal static TableMD CreateTableDefinition(TypeUsage elementType)
{
return new TableMD(elementType, null);
}
/// <summary>
/// Creates a new table definition based on an extent. The element type
/// of the extent manifests as the single column of the table
/// </summary>
/// <param name="extent">the metadata extent</param>
/// <returns>A new TableMD instance based on the extent</returns>
internal static TableMD CreateTableDefinition(EntitySetBase extent)
{
return new TableMD(TypeUsage.Create(extent.ElementType), extent);
}
/// <summary>
/// Create a "flat" table definition object (ie) the table has one column
/// for each property of the specified row type
/// </summary>
/// <param name="type">the shape of each row of the table</param>
/// <returns>the table definition</returns>
internal TableMD CreateFlatTableDefinition(RowType type)
{
return CreateFlatTableDefinition(type.Properties, new List<EdmMember>(), null);
}
/// <summary>
/// Create a "flat" table defintion. The table has one column for each property
/// specified, and the key columns of the table are those specified in the
/// keyMembers parameter
/// </summary>
/// <param name="properties">list of columns for the table</param>
/// <param name="keyMembers">the key columns (if any)</param>
/// <param name="entitySet">(OPTIONAL) entityset corresponding to this table</param>
/// <returns></returns>
internal TableMD CreateFlatTableDefinition(IEnumerable<EdmProperty> properties, IEnumerable<EdmMember> keyMembers, EntitySetBase entitySet)
{
return new TableMD(properties, keyMembers, entitySet);
}
/// <summary>
/// Creates a new table instance
/// </summary>
/// <param name="tableMetadata">table metadata</param>
/// <returns>A new Table instance with columns as defined in the specified metadata</returns>
internal Table CreateTableInstance(TableMD tableMetadata)
{
Table t = new Table(this, tableMetadata, NewTableId());
m_tables.Add(t);
return t;
}
#endregion
#region Var Access
/// <summary>
/// All vars in the query
/// </summary>
internal IEnumerable<Var> Vars
{
get { return m_vars.Where(v => v.VarType != VarType.NotValid); }
}
/// <summary>
/// Access an existing variable in the query (by its id)
/// </summary>
/// <param name="id">The ID of the variable to retrieve</param>
/// <returns>The variable with the specified ID</returns>
internal Var GetVar(int id)
{
Debug.Assert(m_vars[id].VarType != VarType.NotValid, "The var has been replaced by a different var and is no longer valid.");
return m_vars[id];
}
/// <summary>
/// Gets the ParameterVar that corresponds to a given named parameter
/// </summary>
/// <param name="paramName">The name of the parameter for which to retrieve the ParameterVar</param>
/// <returns>The ParameterVar that corresponds to the specified parameter</returns>
internal ParameterVar GetParameter(string paramName)
{
return m_parameterMap[paramName];
}
#endregion
#region Var Creation
private int NewVarId()
{
return m_vars.Count;
}
/// <summary>
/// Creates a variable for a parameter in the query
/// </summary>
/// <param name="parameterName">The name of the parameter for which to create the var</param>
/// <param name="parameterType">The type of the parameter, and therefore the new var</param>
/// <returns>A new ParameterVar instance with the specified name and type</returns>
internal ParameterVar CreateParameterVar(string parameterName,
TypeUsage parameterType)
{
if (m_parameterMap.ContainsKey(parameterName))
throw new Exception("duplicate parameter name: " + parameterName);
ParameterVar v = new ParameterVar(NewVarId(), parameterType, parameterName);
m_vars.Add(v);
m_parameterMap[parameterName] = v;
return v;
}
/// <summary>
/// Creates a variable for the given parameter variable and replaces it in parameter map.
/// </summary>
/// <param name="oldVar">Parameter variable that needs to replaced.</param>
/// <param name="generateReplacementType">Delegate that generates the replacement parameter's type.</param>
/// <returns>A new ParameterVar instance created of <paramref name="oldVar"/>.</returns>
/// <remarks>
/// This method should be used only to replace external enum or strong spatial parameters with a counterpart whose
/// type is the underlying type of the enum type, or the union type contating the strong spatial type of the <paramref name="oldVar"/>.
/// The operation invalidates the <paramref name="oldVar"/>. After the operation has completed
/// the <paramref name="oldVar"/>) is invalidated internally and should no longer be used.
/// </remarks>Func<
private ParameterVar ReplaceParameterVar(ParameterVar oldVar, Func<TypeUsage, TypeUsage> generateReplacementType)
{
Debug.Assert(oldVar != null, "oldVar != null");
Debug.Assert(m_vars.Contains(oldVar));
ParameterVar v = new ParameterVar(NewVarId(), generateReplacementType(oldVar.Type), oldVar.ParameterName);
m_parameterMap[oldVar.ParameterName] = v;
m_vars.Add(v);
return v;
}
/// <summary>
/// Creates a variable for the given enum parameter variable and replaces it in parameter map.
/// </summary>
/// <param name="oldVar">Enum parameter variable that needs to replaced.</param>
/// <returns>A new ParameterVar instance created of <paramref name="oldVar"/>.</returns>
/// <remarks>
/// This method should be used only to replace external enum parameter with a counterpart whose
/// type is the underlying type of the enum type of the <paramref name="oldVar"/>.
/// The operation invalidates the <paramref name="oldVar"/>. After the operation has completed
/// the <paramref name="oldVar"/>) is invalidated internally and should no longer be used.
/// </remarks>
internal ParameterVar ReplaceEnumParameterVar(ParameterVar oldVar)
{
return ReplaceParameterVar(oldVar, t => TypeHelpers.CreateEnumUnderlyingTypeUsage(t));
}
/// <summary>
/// Creates a variable for the given spatial parameter variable and replaces it in parameter map.
/// </summary>
/// <param name="oldVar">Spatial parameter variable that needs to replaced.</param>
/// <returns>A new ParameterVar instance created of <paramref name="oldVar"/>.</returns>
/// <remarks>
/// This method should be used only to replace external strong spatial parameter with a counterpart whose
/// type is the appropriate union type for <paramref name="oldVar"/>.
/// The operation invalidates the <paramref name="oldVar"/>. After the operation has completed
/// the <paramref name="oldVar"/>) is invalidated internally and should no longer be used.
/// </remarks>
internal ParameterVar ReplaceStrongSpatialParameterVar(ParameterVar oldVar)
{
return ReplaceParameterVar(oldVar, t => TypeHelpers.CreateSpatialUnionTypeUsage(t));
}
/// <summary>
/// Creates a new var for a table column
/// </summary>
/// <param name="table">The table instance that produces the column</param>
/// <param name="columnMD">column metadata</param>
/// <returns>A new ColumnVar instance that references the specified column in the given table</returns>
internal ColumnVar CreateColumnVar(Table table, ColumnMD columnMD)
{
// create a new column var now
ColumnVar c = new ColumnVar(NewVarId(), table, columnMD);
table.Columns.Add(c);
m_vars.Add(c);
return c;
}
/// <summary>
/// Creates a computed var (ie) a variable that is computed by an expression
/// </summary>
/// <param name="type">The type of the result produced by the expression that defines the variable</param>
/// <returns>A new ComputedVar instance with the specified result type</returns>
internal ComputedVar CreateComputedVar(TypeUsage type)
{
ComputedVar v = new ComputedVar(NewVarId(), type);
m_vars.Add(v);
return v;
}
/// <summary>
/// Creates a SetOp Var of
/// </summary>
/// <param name="type">Datatype of the Var</param>
/// <returns>A new SetOp Var with the specified result type</returns>
internal SetOpVar CreateSetOpVar(TypeUsage type)
{
SetOpVar v = new SetOpVar(NewVarId(), type);
m_vars.Add(v);
return v;
}
#endregion
#region Node Creation
//
// The routines below help in node construction. All command tree nodes must go
// through these routines. These routines help to stamp each node with a unique
// id (the id is very helpful for debugging)
//
/// <summary>
/// Creates a Node with zero children
/// </summary>
/// <param name="op">The operator that the Node should reference</param>
/// <returns>A new Node with zero children that references the specified Op</returns>
internal Node CreateNode(Op op)
{
return this.CreateNode(op, new List<Node>());
}
/// <summary>
/// Creates a node with a single child Node
/// </summary>
/// <param name="op">The operator that the Node should reference</param>
/// <param name="arg1">The single child Node</param>
/// <returns>A new Node with the specified child Node, that references the specified Op</returns>
internal Node CreateNode(Op op, Node arg1)
{
List<Node> l = new List<Node>();
l.Add(arg1);
return this.CreateNode(op, l);
}
/// <summary>
/// Creates a node with two child Nodes
/// </summary>
/// <param name="op">The operator that the Node should reference</param>
/// <param name="arg1">The first child Node</param>
/// <param name="arg2">the second child Node</param>
/// <returns>A new Node with the specified child Nodes, that references the specified Op</returns>
internal Node CreateNode(Op op, Node arg1, Node arg2)
{
List<Node> l = new List<Node>();
l.Add(arg1); l.Add(arg2);
return this.CreateNode(op, l);
}
/// <summary>
/// Creates a node with 3 child Nodes
/// </summary>
/// <param name="op">The operator that the Node should reference</param>
/// <param name="arg1">The first child Node</param>
/// <param name="arg2">The second child Node</param>
/// <param name="arg3">The third child Node</param>
/// <returns>A new Node with the specified child Nodes, that references the specified Op</returns>
internal Node CreateNode(Op op, Node arg1, Node arg2, Node arg3)
{
List<Node> l = new List<Node>();
l.Add(arg1); l.Add(arg2); l.Add(arg3);
return this.CreateNode(op, l);
}
/// <summary>
/// Create a Node with the specified list of child Nodes
/// </summary>
/// <param name="op">The operator that the Node should reference</param>
/// <param name="args">The list of child Nodes</param>
/// <returns>A new Node with the specified child nodes, that references the specified Op</returns>
internal Node CreateNode(Op op, IList<Node> args)
{
return new Node(m_nextNodeId++, op, new List<Node>(args));
}
/// <summary>
/// Create a Node with the specified list of child Nodes
/// </summary>
/// <param name="op">The operator that the Node should reference</param>
/// <param name="args">The list of child Nodes</param>
/// <returns>A new Node with the specified child nodes, that references the specified Op</returns>
internal Node CreateNode(Op op, List<Node> args)
{
return new Node(m_nextNodeId++, op, args);
}
#endregion
#region ScalarOps
/// <summary>
/// Creates a new ConstantOp
/// </summary>
/// <param name="type">The type of the constant value</param>
/// <param name="value">The constant value (may be null)</param>
/// <returns>A new ConstantOp with the specified type and value</returns>
internal ConstantBaseOp CreateConstantOp(TypeUsage type, object value)
{
// create a NullOp if necessary
if (value == null)
{
return new NullOp(type);
}
// Identify "safe" constants - the only safe ones are boolean (and we should
// probably include ints eventually)
else if (TypeSemantics.IsBooleanType(type))
{
return new InternalConstantOp(type, value);
}
else
{
return new ConstantOp(type, value);
}
}
/// <summary>
/// Create an "internal" constantOp - only for use by the plan compiler to
/// represent internally generated constants.
/// User constants in the query should never get into this function
/// </summary>
/// <param name="type">datatype of the constant</param>
/// <param name="value">constant value</param>
/// <returns>a new "internal" constant op that represents the constant</returns>
internal InternalConstantOp CreateInternalConstantOp(TypeUsage type, object value)
{
return new InternalConstantOp(type, value);
}
/// <summary>
/// An internal constant that serves as a null sentinel, i.e. it is only ever used
/// to be checked whether it is null
/// </summary>
/// <returns></returns>
internal NullSentinelOp CreateNullSentinelOp()
{
return new NullSentinelOp(this.IntegerType, 1);
}
/// <summary>
/// An "internal" null constant
/// </summary>
/// <param name="type">datatype of the null constant</param>
/// <returns>a new "internal" null constant op</returns>
internal NullOp CreateNullOp(TypeUsage type)
{
return new NullOp(type);
}
/// <summary>
/// Create a constant predicateOp
/// </summary>
/// <param name="value">value of the constant predicate</param>
/// <returns></returns>
internal ConstantPredicateOp CreateConstantPredicateOp(bool value)
{
return value ? m_trueOp : m_falseOp;
}
/// <summary>
/// Create a constant predicate with value=true
/// </summary>
/// <returns></returns>
internal ConstantPredicateOp CreateTrueOp()
{
return m_trueOp;
}
/// <summary>
/// Create a constant predicateOp with the value false
/// </summary>
/// <returns></returns>
internal ConstantPredicateOp CreateFalseOp()
{
return m_falseOp;
}
/// <summary>
/// Creates a new FunctionOp
/// </summary>
/// <param name="function">EdmFunction metadata that represents the function that is invoked by the Op</param>
/// <returns>A new FunctionOp that references the specified function metadata</returns>
internal FunctionOp CreateFunctionOp(EdmFunction function)
{
return new FunctionOp(function);
}
/// <summary>
/// Creates a new TreatOp
/// </summary>
/// <param name="type">Type metadata that specifies the type that the child of the treat node should be treated as</param>
/// <returns>A new TreatOp that references the specified type metadata</returns>
internal TreatOp CreateTreatOp(TypeUsage type)
{
return new TreatOp(type, false);
}
/// <summary>
/// Create a "dummy" treatOp (i.e.) we can actually ignore the treatOp.
/// </summary>
/// <param name="type"></param>
/// <returns></returns>
internal TreatOp CreateFakeTreatOp(TypeUsage type)
{
return new TreatOp(type, true);
}
/// <summary>
/// Creates a new IsOfOp, which tests if the argument is of the specified type or a promotable type
/// </summary>
/// <param name="isOfType">Type metadata that specifies the type with which the type of the argument should be compared</param>
/// <returns>A new IsOfOp that references the specified type metadata</returns>
internal IsOfOp CreateIsOfOp(TypeUsage isOfType)
{
return new IsOfOp(isOfType, false/*only*/, m_boolType);
}
/// <summary>
/// Creates a new IsOfOp, which tests if the argument is of the specified type (and only the specified type)
/// </summary>
/// <param name="isOfType">Type metadata that specifies the type with which the type of the argument should be compared</param>
/// <returns>A new IsOfOp that references the specified type metadata</returns>
internal IsOfOp CreateIsOfOnlyOp(TypeUsage isOfType)
{
return new IsOfOp(isOfType, true /* "only" */, m_boolType);
}
/// <summary>
/// Creates a new CastOp
/// </summary>
/// <param name="type">Type metadata that represents the type to which the argument should be cast</param>
/// <returns>A new CastOp that references the specified type metadata</returns>
internal CastOp CreateCastOp(TypeUsage type)
{
return new CastOp(type);
}
/// <summary>
/// Creates a new SoftCastOp and casts the input to the desired type.
///
/// The caller is expected to determine if the cast is necessary or not
/// </summary>
/// <param name="type">Type metadata that represents the type to which the argument should be cast</param>
/// <returns>A new CastOp that references the specified type metadata</returns>
internal SoftCastOp CreateSoftCastOp(TypeUsage type)
{
return new SoftCastOp(type);
}
/// <summary>
/// Creates a new ComparisonOp of the specified type
/// </summary>
/// <param name="opType">An OpType that specifies one of the valid comparison OpTypes: EQ, GT, GE, NE, LT, LE</param>
/// <returns>A new ComparisonOp of the specified comparison OpType</returns>
internal ComparisonOp CreateComparisonOp(OpType opType)
{
return new ComparisonOp(opType, this.BooleanType);
}
/// <summary>
/// Creates a new LikeOp
/// </summary>
/// <returns>The new LikeOp</returns>
internal LikeOp CreateLikeOp()
{
return new LikeOp(this.BooleanType);
}
/// <summary>
/// Creates a new ConditionalOp of the specified type
/// </summary>
/// <param name="opType">An OpType that specifies one of the valid condition operations: And, Or, Not, IsNull</param>
/// <returns>A new ConditionalOp with the specified conditional OpType</returns>
internal ConditionalOp CreateConditionalOp(OpType opType)
{
return new ConditionalOp(opType, this.BooleanType);
}
/// <summary>
/// Creates a new CaseOp
/// </summary>
/// <param name="type">The result type of the CaseOp</param>
/// <returns>A new CaseOp with the specified result type</returns>
internal CaseOp CreateCaseOp(TypeUsage type)
{
return new CaseOp(type);
}
/// <summary>
/// Creates a new AggregateOp
/// </summary>
/// <param name="aggFunc">EdmFunction metadata that specifies the aggregate function</param>
/// <param name="distinctAgg">Indicates whether or not the aggregate is a distinct aggregate</param>
/// <returns>A new AggregateOp with the specified function metadata and distinct property</returns>
internal AggregateOp CreateAggregateOp(EdmFunction aggFunc, bool distinctAgg)
{
return new AggregateOp(aggFunc, distinctAgg);
}
/// <summary>
/// Creates a named type constructor
/// </summary>
/// <param name="type">Type metadata that specifies the type of the instance to construct</param>
/// <returns>A new NewInstanceOp with the specified result type</returns>
internal NewInstanceOp CreateNewInstanceOp(TypeUsage type)
{
return new NewInstanceOp(type);
}
/// <summary>
/// Build out a new NewEntityOp constructing the entity <paramref name="type"/> scoped to the <paramref name="entitySet"/>.
/// </summary>
internal NewEntityOp CreateScopedNewEntityOp(TypeUsage type, List<RelProperty> relProperties, EntitySet entitySet)
{
return new NewEntityOp(type, relProperties, true, entitySet);
}
/// <summary>
/// Build out a new NewEntityOp constructing the uscoped entity <paramref name="type"/>.
/// </summary>
internal NewEntityOp CreateNewEntityOp(TypeUsage type, List<RelProperty> relProperties)
{
return new NewEntityOp(type, relProperties, false, null);
}
/// <summary>
/// Create a discriminated named type constructor
/// </summary>
/// <param name="type">Type metadata that specifies the type of the instance to construct</param>
/// <param name="discriminatorMap">Mapping information including discriminator values</param>
/// <param name="entitySet">the entityset that this instance belongs to</param>
/// <param name="relProperties">list of rel properties that have corresponding values</param>
/// <returns>A new DiscriminatedNewInstanceOp with the specified result type and discrimination behavior</returns>
internal DiscriminatedNewEntityOp CreateDiscriminatedNewEntityOp(TypeUsage type, ExplicitDiscriminatorMap discriminatorMap,
EntitySet entitySet, List<RelProperty> relProperties)
{
return new DiscriminatedNewEntityOp(type, discriminatorMap, entitySet, relProperties);
}
/// <summary>
/// Creates a multiset constructor
/// </summary>
/// <param name="type">Type metadata that specifies the type of the multiset to construct</param>
/// <returns>A new NewMultiSetOp with the specified result type</returns>
internal NewMultisetOp CreateNewMultisetOp(TypeUsage type)
{
return new NewMultisetOp(type);
}
/// <summary>
/// Creates a record constructor
/// </summary>
/// <param name="type">Type metadata that specifies that record type to construct</param>
/// <returns>A new NewRecordOp with the specified result type</returns>
internal NewRecordOp CreateNewRecordOp(TypeUsage type)
{
return new NewRecordOp(type);
}
/// <summary>
/// Creates a record constructor
/// </summary>
/// <param name="type">Type metadata that specifies that record type to construct</param>
/// <returns>A new NewRecordOp with the specified result type</returns>
internal NewRecordOp CreateNewRecordOp(RowType type)
{
return new NewRecordOp(TypeUsage.Create(type));
}
/// <summary>
/// A variant of the above method to create a NewRecordOp. An additional
/// argument - fields - is supplied, and the semantics is that only these fields
/// have any values specified as part of the Node. All other fields are
/// considered to be null.
/// </summary>
/// <param name="type"></param>
/// <param name="fields"></param>
/// <returns></returns>
internal NewRecordOp CreateNewRecordOp(TypeUsage type,
List<EdmProperty> fields)
{
return new NewRecordOp(type, fields);
}
/// <summary>
/// Creates a new VarRefOp
/// </summary>
/// <param name="v">The variable to reference</param>
/// <returns>A new VarRefOp that references the specified variable</returns>
internal VarRefOp CreateVarRefOp(Var v)
{
return new VarRefOp(v);
}
/// <summary>
/// Creates a new ArithmeticOp of the specified type
/// </summary>
/// <param name="opType">An OpType that specifies one of the valid arithmetic operations: Plus, Minus, Multiply, Divide, Modulo, UnaryMinus</param>
/// <param name="type">Type metadata that specifies the result type of the arithmetic operation</param>
/// <returns>A new ArithmeticOp of the specified arithmetic OpType</returns>
internal ArithmeticOp CreateArithmeticOp(OpType opType, TypeUsage type)
{
return new ArithmeticOp(opType, type);
}
/// <summary>
/// Creates a new PropertyOp
/// </summary>
/// <param name="prop">EdmProperty metadata that specifies the property</param>
/// <returns>A new PropertyOp that references the specified property metadata</returns>
internal PropertyOp CreatePropertyOp(EdmMember prop)
{
//
// Track all rel-properties
//
NavigationProperty navProp = prop as NavigationProperty;
if (navProp != null)
{
RelProperty relProperty = new RelProperty(navProp.RelationshipType, navProp.FromEndMember, navProp.ToEndMember);
AddRelPropertyReference(relProperty);
RelProperty inverseRelProperty = new RelProperty(navProp.RelationshipType, navProp.ToEndMember, navProp.FromEndMember);
AddRelPropertyReference(inverseRelProperty);
}
// Actually create the propertyOp
return new PropertyOp(Helper.GetModelTypeUsage(prop), prop);
}
/// <summary>
/// Create a "relationship" propertyOp
/// </summary>
/// <param name="prop">the relationship property</param>
/// <returns>a RelPropertyOp</returns>
internal RelPropertyOp CreateRelPropertyOp(RelProperty prop)
{
AddRelPropertyReference(prop);
return new RelPropertyOp(prop.ToEnd.TypeUsage, prop);
}
/// <summary>
/// Creates a new RefOp
/// </summary>
/// <param name="entitySet">The EntitySet to which the ref refers</param>
/// <param name="type">The result type of the RefOp</param>
/// <returns>A new RefOp that references the specified EntitySet and has the specified result type</returns>
internal RefOp CreateRefOp(EntitySet entitySet, TypeUsage type)
{
return new RefOp(entitySet, type);
}
/// <summary>
/// Creates a new ExistsOp
/// </summary>
/// <returns>A new ExistsOp</returns>
internal ExistsOp CreateExistsOp()
{
return new ExistsOp(this.BooleanType);
}
/// <summary>
/// Creates a new ElementOp
/// </summary>
/// <param name="type">Type metadata that specifies the result (element) type</param>
/// <returns>A new ElementOp with the specified result type</returns>
internal ElementOp CreateElementOp(TypeUsage type)
{
return new ElementOp(type);
}
/// <summary>
/// Creates a new GetEntityRefOp: a ref-extractor (from an entity instance) Op
/// </summary>
/// <param name="type">Type metadata that specifies the result type</param>
/// <returns>A new GetEntityKeyOp with the specified result type</returns>
internal GetEntityRefOp CreateGetEntityRefOp(TypeUsage type)
{
return new GetEntityRefOp(type);
}
/// <summary>
/// Creates a new GetRefKeyOp: a key-extractor (from a ref instance) Op
/// </summary>
/// <param name="type">Type metadata that specifies the result type</param>
/// <returns>A new GetRefKeyOp with the specified result type</returns>
internal GetRefKeyOp CreateGetRefKeyOp(TypeUsage type)
{
return new GetRefKeyOp(type);
}
/// <summary>
/// Creates a new CollectOp
/// </summary>
/// <param name="type">Type metadata that specifies the result type of the Nest operation</param>
/// <returns>A new NestOp with the specified result type</returns>
internal CollectOp CreateCollectOp(TypeUsage type)
{
return new CollectOp(type);
}
/// <summary>
/// Create a DerefOp
/// </summary>
/// <param name="type">Entity type of the target entity</param>
/// <returns>a DerefOp</returns>
internal DerefOp CreateDerefOp(TypeUsage type)
{
return new DerefOp(type);
}
/// <summary>
/// Create a new NavigateOp node
/// </summary>
/// <param name="type">the output type of the navigateOp</param>
/// <param name="relProperty">the relationship property</param>
/// <returns>the navigateOp</returns>
internal NavigateOp CreateNavigateOp(TypeUsage type, RelProperty relProperty)
{
// keep track of rel-properties
AddRelPropertyReference(relProperty);
return new NavigateOp(type, relProperty);
}
#endregion
#region AncillaryOps
/// <summary>
/// Creates a VarDefListOp
/// </summary>
/// <returns>A new VarDefListOp</returns>
internal VarDefListOp CreateVarDefListOp()
{
return VarDefListOp.Instance;
}
/// <summary>
/// Creates a VarDefOp (for a computed var)
/// </summary>
/// <param name="v">The computed var</param>
/// <returns>A new VarDefOp that references the computed var</returns>
internal VarDefOp CreateVarDefOp(Var v)
{
return new VarDefOp(v);
}
/// <summary>
/// Create a VarDefOp and the associated node for an expression.
/// We create a computedVar first - of the same type as the expression, and
/// then create a VarDefOp for the computed Var. Finally, we create a Node for
/// the VarDefOp
/// </summary>
/// <param name="definingExpr"></param>
/// <param name="computedVar">new Var produced</param>
/// <returns></returns>
internal Node CreateVarDefNode(Node definingExpr, out Var computedVar)
{
Debug.Assert(definingExpr.Op != null);
ScalarOp scalarOp = definingExpr.Op as ScalarOp;
Debug.Assert(scalarOp != null);
computedVar = this.CreateComputedVar(scalarOp.Type);
VarDefOp varDefOp = this.CreateVarDefOp(computedVar);
Node varDefNode = this.CreateNode(varDefOp, definingExpr);
return varDefNode;
}
/// <summary>
/// Creates a VarDefListOp with a single child - a VarDefOp created as in the function
/// above.
/// </summary>
/// <param name="definingExpr"></param>
/// <param name="computedVar">the computed Var produced</param>
/// <returns></returns>
internal Node CreateVarDefListNode(Node definingExpr, out Var computedVar)
{
Node varDefNode = this.CreateVarDefNode(definingExpr, out computedVar);
VarDefListOp op = this.CreateVarDefListOp();
Node varDefListNode = this.CreateNode(op, varDefNode);
return varDefListNode;
}
#endregion
#region RelOps
/// <summary>
/// Creates a new ScanTableOp
/// </summary>
/// <param name="tableMetadata">A Table metadata instance that specifies the table that should be scanned</param>
/// <returns>A new ScanTableOp that references a new Table instance based on the specified table metadata</returns>
internal ScanTableOp CreateScanTableOp(TableMD tableMetadata)
{
Table table = this.CreateTableInstance(tableMetadata);
return CreateScanTableOp(table);
}
/// <summary>
/// A variant of the above
/// </summary>
/// <param name="table">The table instance</param>
/// <returns>a new ScanTableOp</returns>
internal ScanTableOp CreateScanTableOp(Table table)
{
return new ScanTableOp(table);
}
/// <summary>
/// Creates an instance of a ScanViewOp
/// </summary>
/// <param name="table">the table instance</param>
/// <returns>a new ScanViewOp</returns>
internal ScanViewOp CreateScanViewOp(Table table)
{
return new ScanViewOp(table);
}
/// <summary>
/// Creates an instance of a ScanViewOp
/// </summary>
/// <param name="tableMetadata">the table metadata</param>
/// <returns>a new ScanViewOp</returns>
internal ScanViewOp CreateScanViewOp(TableMD tableMetadata)
{
Table table = this.CreateTableInstance(tableMetadata);
return this.CreateScanViewOp(table);
}
/// <summary>
/// Creates a new UnnestOp, which creates a streaming result from a scalar (non-RelOp) value
/// </summary>
/// <param name="v">The Var that indicates the value to unnest</param>
/// <returns>A new UnnestOp that targets the specified Var</returns>
internal UnnestOp CreateUnnestOp(Var v)
{
Table t = this.CreateTableInstance(Command.CreateTableDefinition(TypeHelpers.GetEdmType<CollectionType>(v.Type).TypeUsage));
return CreateUnnestOp(v, t);
}
/// <summary>
/// Creates a new UnnestOp - a variant of the above with the Table supplied
/// </summary>
/// <param name="v">the unnest Var</param>
/// <param name="t">the table instance</param>
/// <returns>a new UnnestOp</returns>
internal UnnestOp CreateUnnestOp(Var v, Table t)
{
return new UnnestOp(v, t);
}
/// <summary>
/// Creates a new FilterOp
/// </summary>
/// <returns>A new FilterOp</returns>
internal FilterOp CreateFilterOp()
{
return FilterOp.Instance;
}
/// <summary>
/// Creates a new ProjectOp
/// </summary>
/// <param name="vars">A VarSet that specifies the Vars produced by the projection</param>
/// <returns>A new ProjectOp with the specified output VarSet</returns>
internal ProjectOp CreateProjectOp(VarVec vars)
{
return new ProjectOp(vars);
}
/// <summary>
/// A variant of the above where the ProjectOp produces exactly one var
/// </summary>
/// <param name="v"></param>
/// <returns></returns>
internal ProjectOp CreateProjectOp(Var v)
{
VarVec varSet = this.CreateVarVec();
varSet.Set(v);
return new ProjectOp(varSet);
}
#region JoinOps
/// <summary>
/// Creates a new InnerJoinOp
/// </summary>
/// <returns>A new InnerJoinOp</returns>
internal InnerJoinOp CreateInnerJoinOp()
{
return InnerJoinOp.Instance;
}
/// <summary>
/// Creates a new LeftOuterJoinOp
/// </summary>
/// <returns>A new LeftOuterJoinOp</returns>
internal LeftOuterJoinOp CreateLeftOuterJoinOp()
{
return LeftOuterJoinOp.Instance;
}
/// <summary>
/// Creates a new FullOuterJoinOp
/// </summary>
/// <returns>A new FullOuterJoinOp</returns>
internal FullOuterJoinOp CreateFullOuterJoinOp()
{
return FullOuterJoinOp.Instance;
}
/// <summary>
/// Creates a new CrossJoinOp
/// </summary>
/// <returns>A new CrossJoinOp</returns>
internal CrossJoinOp CreateCrossJoinOp()
{
return CrossJoinOp.Instance;
}
#endregion
#region ApplyOps
/// <summary>
/// Creates a new CrossApplyOp
/// </summary>
/// <returns>A new CrossApplyOp</returns>
internal CrossApplyOp CreateCrossApplyOp()
{
return CrossApplyOp.Instance;
}
/// <summary>
/// Creates a new OuterApplyOp
/// </summary>
/// <returns>A new OuterApplyOp</returns>
internal OuterApplyOp CreateOuterApplyOp()
{
return OuterApplyOp.Instance;
}
#endregion
#region SortKeys
/// <summary>
/// Creates a new SortKey with the specified var, order and collation
/// </summary>
/// <param name="v">The variable to sort on</param>
/// <param name="asc">The sort order (true for ascending, false for descending)</param>
/// <param name="collation">The sort collation</param>
/// <returns>A new SortKey with the specified var, order and collation</returns>
internal static SortKey CreateSortKey(Var v, bool asc, string collation)
{
return new SortKey(v, asc, collation);
}
/// <summary>
/// Creates a new SortKey with the specified var and order
/// </summary>
/// <param name="v">The variable to sort on</param>
/// <param name="asc">The sort order (true for ascending, false for descending)</param>
/// <returns>A new SortKey with the specified var and order</returns>
internal static SortKey CreateSortKey(Var v, bool asc)
{
return new SortKey(v, asc, "");
}
/// <summary>
/// Creates a new SortKey with the specified var
/// </summary>
/// <param name="v">The variable to sort on</param>
/// <returns>A new SortKey with the specified var</returns>
internal static SortKey CreateSortKey(Var v)
{
return new SortKey(v, true, "");
}
#endregion
/// <summary>
/// Creates a new SortOp
/// </summary>
/// <param name="sortKeys">The list of SortKeys that define the sort var, order and collation for each sort key</param>
/// <returns>A new SortOp with the specified sort keys</returns>
internal SortOp CreateSortOp(List<SortKey> sortKeys)
{
return new SortOp(sortKeys);
}
/// <summary>
/// Creates a new ConstrainedSortOp
/// </summary>
/// <param name="sortKeys">The list of SortKeys that define the sort var, order and collation for each sort key</param>
/// <returns>A new ConstrainedSortOp with the specified sort keys and a default WithTies value of false</returns>
internal ConstrainedSortOp CreateConstrainedSortOp(List<SortKey> sortKeys)
{
return new ConstrainedSortOp(sortKeys, false);
}
/// <summary>
/// Creates a new ConstrainedSortOp
/// </summary>
/// <param name="sortKeys">The list of SortKeys that define the sort var, order and collation for each sort key</param>
/// <param name="withTies">The value to use for the WithTies property of the new ConstrainedSortOp</param>
/// <returns>A new ConstrainedSortOp with the specified sort keys and WithTies value</returns>
internal ConstrainedSortOp CreateConstrainedSortOp(List<SortKey> sortKeys, bool withTies)
{
return new ConstrainedSortOp(sortKeys, withTies);
}
/// <summary>
/// Creates a new GroupByOp
/// </summary>
/// <param name="gbyKeys">A VarSet that specifies the Key variables produced by the GroupByOp</param>
/// <param name="outputs">A VarSet that specifies all (Key and Aggregate) variables produced by the GroupByOp</param>
/// <returns>A new GroupByOp with the specified key and output VarSets</returns>
internal GroupByOp CreateGroupByOp(VarVec gbyKeys, VarVec outputs)
{
return new GroupByOp(gbyKeys, outputs);
}
/// <summary>
/// Creates a new GroupByIntoOp
/// </summary>
/// <param name="gbyKeys">A VarSet that specifies the Key variables produced by the GroupByOp</param>
/// <param name="outputs">A VarSet that specifies the vars from the input that represent the real grouping input</param>
/// <param name="inputs">A VarSet that specifies all (Key and Aggregate) variables produced by the GroupByOp</param>
/// <returns>A new GroupByOp with the specified key and output VarSets</returns>
internal GroupByIntoOp CreateGroupByIntoOp(VarVec gbyKeys, VarVec inputs, VarVec outputs)
{
return new GroupByIntoOp(gbyKeys, inputs, outputs);
}
/// <summary>
/// Creates a new DistinctOp
/// <param name="keyVars">list of key vars</param>
/// </summary>
/// <returns>A new DistinctOp</returns>
internal DistinctOp CreateDistinctOp(VarVec keyVars)
{
return new DistinctOp(keyVars);
}
/// <summary>
/// An overload of the above - where the distinct has exactly one key
/// </summary>
/// <param name="keyVar"></param>
/// <returns></returns>
internal DistinctOp CreateDistinctOp(Var keyVar)
{
return new DistinctOp(this.CreateVarVec(keyVar));
}
/// <summary>
/// Creates a new UnionAllOp
/// </summary>
/// <param name="leftMap">Mappings from the Output Vars to the Vars produced by the left argument</param>
/// <param name="rightMap">Mappings from the Output Vars to the Vars produced by the right argument</param>
/// <returns>A UnionAllOp that references the specified left and right Vars</returns>
internal UnionAllOp CreateUnionAllOp(VarMap leftMap, VarMap rightMap)
{
return CreateUnionAllOp(leftMap, rightMap, null);
}
/// <summary>
/// Creates a new UnionAllOp, with a branch descriminator.
/// </summary>
/// <param name="leftMap">Mappings from the Output Vars to the Vars produced by the left argument</param>
/// <param name="rightMap">Mappings from the Output Vars to the Vars produced by the right argument</param>
/// <param name="branchDiscriminator">Var that contains the branch discrimination value (may be null until key pullup occurs)</param>
/// <returns>A UnionAllOp that references the specified left and right Vars</returns>
internal UnionAllOp CreateUnionAllOp(VarMap leftMap, VarMap rightMap, Var branchDiscriminator)
{
Debug.Assert(leftMap.Count == rightMap.Count, "VarMap count mismatch");
VarVec vec = this.CreateVarVec();
foreach (Var v in leftMap.Keys)
{
vec.Set(v);
}
return new UnionAllOp(vec, leftMap, rightMap, branchDiscriminator);
}
/// <summary>
/// Creates a new IntersectOp
/// </summary>
/// <param name="leftMap">Mappings from the Output Vars to the Vars produced by the left argument</param>
/// <param name="rightMap">Mappings from the Output Vars to the Vars produced by the right argument</param>
/// <returns>An IntersectOp that references the specified left and right Vars</returns>
internal IntersectOp CreateIntersectOp(VarMap leftMap, VarMap rightMap)
{
Debug.Assert(leftMap.Count == rightMap.Count, "VarMap count mismatch");
VarVec vec = this.CreateVarVec();
foreach (Var v in leftMap.Keys)
{
vec.Set(v);
}
return new IntersectOp(vec, leftMap, rightMap);
}
/// <summary>
/// Creates a new ExceptOp
/// </summary>
/// <param name="leftMap">Mappings from the Output Vars to the Vars produced by the left argument</param>
/// <param name="rightMap">Mappings from the Output Vars to the Vars produced by the right argument</param>
/// <returns>An ExceptOp that references the specified left and right Vars</returns>
internal ExceptOp CreateExceptOp(VarMap leftMap, VarMap rightMap)
{
Debug.Assert(leftMap.Count == rightMap.Count, "VarMap count mismatch");
VarVec vec = this.CreateVarVec();
foreach (Var v in leftMap.Keys)
{
vec.Set(v);
}
return new ExceptOp(vec, leftMap, rightMap);
}
/// <summary>
/// Create a single-row-op (the relop analog of Element)
/// </summary>
/// <returns></returns>
internal SingleRowOp CreateSingleRowOp()
{
return SingleRowOp.Instance;
}
/// <summary>
/// Create a SingleRowTableOp - a table with exactly one row (and no columns)
/// </summary>
/// <returns></returns>
internal SingleRowTableOp CreateSingleRowTableOp()
{
return SingleRowTableOp.Instance;
}
#endregion
#region PhysicalOps
/// <summary>
/// Create a PhysicalProjectOp - with a columnMap describing the output
/// </summary>
/// <param name="outputVars">list of output vars</param>
/// <param name="columnMap">columnmap describing the output element</param>
/// <returns></returns>
internal PhysicalProjectOp CreatePhysicalProjectOp(VarList outputVars, SimpleCollectionColumnMap columnMap)
{
return new PhysicalProjectOp(outputVars, columnMap);
}
/// <summary>
/// Create a physicalProjectOp - with a single column output
/// </summary>
/// <param name="outputVar">the output element</param>
/// <returns></returns>
internal PhysicalProjectOp CreatePhysicalProjectOp(Var outputVar)
{
VarList varList = Command.CreateVarList();
varList.Add(outputVar);
VarRefColumnMap varRefColumnMap = new VarRefColumnMap(outputVar);
SimpleCollectionColumnMap collectionColumnMap = new SimpleCollectionColumnMap(
TypeUtils.CreateCollectionType(varRefColumnMap.Type), // type
null, // name
varRefColumnMap, // element map
new SimpleColumnMap[0], // keys
new SimpleColumnMap[0]); // foreign keys
return CreatePhysicalProjectOp(varList, collectionColumnMap);
}
/// <summary>
/// Another overload - with an additional discriminatorValue.
/// Should this be a subtype instead?
/// </summary>
/// <param name="collectionVar">the collectionVar</param>
/// <param name="columnMap">column map for the collection element</param>
/// <param name="flattenedElementVars">elementVars with any nested collections pulled up</param>
/// <param name="keys">keys specific to this collection</param>
/// <param name="sortKeys">sort keys specific to this collecion</param>
/// <param name="discriminatorValue">discriminator value for this collection (under the current nestOp)</param>
/// <returns>a new CollectionInfo instance</returns>
internal static CollectionInfo CreateCollectionInfo(Var collectionVar, ColumnMap columnMap, VarList flattenedElementVars, VarVec keys, List<InternalTrees.SortKey> sortKeys, object discriminatorValue)
{
return new CollectionInfo(collectionVar, columnMap, flattenedElementVars, keys, sortKeys, discriminatorValue);
}
/// <summary>
/// Create a singleStreamNestOp
/// </summary>
/// <param name="keys">keys for the nest operation</param>
/// <param name="prefixSortKeys">list of prefix sort keys</param>
/// <param name="postfixSortKeys">list of postfix sort keys</param>
/// <param name="outputVars">List of outputVars</param>
/// <param name="collectionInfoList">CollectionInfo for each collection </param>
/// <param name="discriminatorVar">Var describing the discriminator</param>
/// <returns></returns>
internal SingleStreamNestOp CreateSingleStreamNestOp(VarVec keys,
List<SortKey> prefixSortKeys, List<SortKey> postfixSortKeys,
VarVec outputVars,
List<CollectionInfo> collectionInfoList, Var discriminatorVar)
{
return new SingleStreamNestOp(keys, prefixSortKeys, postfixSortKeys, outputVars, collectionInfoList, discriminatorVar);
}
/// <summary>
/// Create a MultiStreamNestOp
/// </summary>
/// <param name="prefixSortKeys">list of prefix sort keys</param>
/// <param name="outputVars">List of outputVars</param>
/// <param name="collectionInfoList">CollectionInfo for each collection element</param>
/// <returns></returns>
internal MultiStreamNestOp CreateMultiStreamNestOp(List<SortKey> prefixSortKeys, VarVec outputVars,
List<CollectionInfo> collectionInfoList)
{
return new MultiStreamNestOp(prefixSortKeys, outputVars, collectionInfoList);
}
#endregion
#region NodeInfo
/// <summary>
/// Get auxilliary information for a Node
/// </summary>
/// <param name="n">the node</param>
/// <returns>node info for this node</returns>
internal NodeInfo GetNodeInfo(Node n)
{
return n.GetNodeInfo(this);
}
/// <summary>
/// Get extended node information for a RelOpNode
/// </summary>
/// <param name="n">the node</param>
/// <returns>extended node info for this node</returns>
internal ExtendedNodeInfo GetExtendedNodeInfo(Node n)
{
return n.GetExtendedNodeInfo(this);
}
/// <summary>
/// Recompute the nodeinfo for a node, but only if has already been computed
/// </summary>
/// <param name="n">Node in question</param>
internal void RecomputeNodeInfo(Node n)
{
m_nodeInfoVisitor.RecomputeNodeInfo(n);
}
#endregion
#region KeyInfo
/// <summary>
/// Pulls up keys if necessary and gets the key information for a Node
/// </summary>
/// <param name="n">node</param>
/// <returns>key information</returns>
internal KeyVec PullupKeys(Node n)
{
return m_keyPullupVisitor.GetKeys(n);
}
#endregion
#region Type Comparisons
//
// The functions described in this region are used through out the
// PlanCompiler to reason about type equality. Make sure that you
// use these and these alone
//
/// <summary>
/// Check to see if two types are considered "equal" for the purposes
/// of the plan compiler.
/// Two types are considered to be equal if their "identities" are equal.
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns>true, if the types are "equal"</returns>
internal static bool EqualTypes(TypeUsage x, TypeUsage y)
{
return PlanCompiler.TypeUsageEqualityComparer.Instance.Equals(x, y);
}
/// <summary>
/// Check to see if two types are considered "equal" for the purposes
/// of the plan compiler
/// </summary>
/// <param name="x"></param>
/// <param name="y"></param>
/// <returns>true, if the types are "equal"</returns>
internal static bool EqualTypes(EdmType x, EdmType y)
{
return PlanCompiler.TypeUsageEqualityComparer.Equals(x, y);
}
#endregion
#region Builder Methods
/// <summary>
/// Builds out a UNION-ALL ladder from a sequence of node,var pairs.
/// Assumption: Each node produces exactly one Var
///
/// If the input sequence has zero elements, we return null
/// If the input sequence has one element, we return that single element
/// Otherwise, we build out a UnionAll ladder from each of the inputs. If the input sequence was {A,B,C,D},
/// we build up a union-all ladder that looks like
/// (((A UA B) UA C) UA D)
/// </summary>
/// <param name="inputNodes">list of input nodes - one for each branch</param>
/// <param name="inputVars">list of input vars - N for each branch</param>
/// <param name="resultNode">the resulting union-all subtree</param>
/// <param name="resultVar">the output vars from the union-all subtree</param>
internal void BuildUnionAllLadder(
IList<Node> inputNodes, IList<Var> inputVars,
out Node resultNode, out IList<Var> resultVars)
{
if (inputNodes.Count == 0)
{
resultNode = null;
resultVars = null;
return;
}
int varPerNode = inputVars.Count / inputNodes.Count;
Debug.Assert((inputVars.Count % inputNodes.Count == 0) && (varPerNode >= 1), "Inconsistent nodes/vars count:" + inputNodes.Count + "," + inputVars.Count);
if (inputNodes.Count == 1)
{
resultNode = inputNodes[0];
resultVars = inputVars;
return;
}
List<Var> unionAllVars = new List<Var>();
Node unionAllNode = inputNodes[0];
for (int j = 0; j < varPerNode; j++)
{
unionAllVars.Add(inputVars[j]);
}
for (int i = 1; i < inputNodes.Count; i++)
{
VarMap leftVarMap = this.CreateVarMap();
VarMap rightVarMap = this.CreateVarMap();
List<Var> setOpVars = new List<Var>();
for (int j = 0; j < varPerNode; j++)
{
SetOpVar newVar = this.CreateSetOpVar(unionAllVars[j].Type);
setOpVars.Add(newVar);
leftVarMap.Add(newVar, unionAllVars[j]);
rightVarMap.Add(newVar, inputVars[i * varPerNode + j]);
}
Op unionAllOp = this.CreateUnionAllOp(leftVarMap, rightVarMap);
unionAllNode = this.CreateNode(unionAllOp, unionAllNode, inputNodes[i]);
unionAllVars = setOpVars;
}
resultNode = unionAllNode;
resultVars = unionAllVars;
}
/// <summary>
/// A simplified version of the method above - each branch can produce only one var
/// </summary>
/// <param name="inputNodes"></param>
/// <param name="inputVars"></param>
/// <param name="resultNode"></param>
/// <param name="resultVar"></param>
internal void BuildUnionAllLadder(IList<Node> inputNodes, IList<Var> inputVars,
out Node resultNode, out Var resultVar)
{
Debug.Assert(inputNodes.Count == inputVars.Count, "Count mismatch:" + inputNodes.Count + "," + inputVars.Count);
IList<Var> varList;
BuildUnionAllLadder(inputNodes, inputVars, out resultNode, out varList);
if (varList != null && varList.Count > 0)
{
resultVar = varList[0];
}
else
{
resultVar = null;
}
}
/// <summary>
/// Build a projectOp tree over the input.
/// This function builds a projectOp tree over the input. The Outputs (vars) of the project are the
/// list of vars from the input (inputVars), plus one computed Var for each of the computed expressions
/// (computedExpressions)
/// </summary>
/// <param name="inputNode">the input relop to the project</param>
/// <param name="inputVars">List of vars from the input that need to be projected</param>
/// <param name="computedExpressions">list (possibly empty) of any computed expressions</param>
/// <returns></returns>
internal Node BuildProject(Node inputNode, IEnumerable<Var> inputVars,
IEnumerable<Node> computedExpressions)
{
Debug.Assert(inputNode.Op.IsRelOp, "Expected a RelOp. Found " + inputNode.Op.OpType);
VarDefListOp varDefListOp = this.CreateVarDefListOp();
Node varDefListNode = this.CreateNode(varDefListOp);
VarVec projectVars = this.CreateVarVec(inputVars);
foreach (Node expr in computedExpressions)
{
Var v = this.CreateComputedVar(expr.Op.Type);
projectVars.Set(v);
VarDefOp varDefOp = this.CreateVarDefOp(v);
Node varDefNode = this.CreateNode(varDefOp, expr);
varDefListNode.Children.Add(varDefNode);
}
Node projectNode = this.CreateNode(
this.CreateProjectOp(projectVars),
inputNode,
varDefListNode);
return projectNode;
}
/// <summary>
/// A "simpler" builder method for ProjectOp. The assumption is that the only output is the
/// (var corresponding to) the computedExpression. None of the Vars of the "input" are projected out
///
/// The single output Var is returned in the "outputVar" parameter
/// </summary>
/// <param name="input">the input relop</param>
/// <param name="computedExpression">the computed expression</param>
/// <param name="projectVar">(output) the computed var corresponding to the computed expression</param>
/// <returns>the new project subtree node</returns>
internal Node BuildProject(Node input, Node computedExpression, out Var projectVar)
{
Node projectNode = BuildProject(input, new Var[] { }, new Node[] { computedExpression });
projectVar = ((ProjectOp)projectNode.Op).Outputs.First;
return projectNode;
}
/// <summary>
/// Build the equivalent of an OfTypeExpression over the input (ie) produce the set of values from the
/// input that are of the desired type (exactly of the desired type, if the "includeSubtypes" parameter is false).
///
/// Further more, "update" the result element type to be the desired type.
///
/// We accomplish this by first building a FilterOp with an IsOf (or an IsOfOnly) predicate for the desired
/// type. We then build out a ProjectOp over the FilterOp, where we introduce a "Fake" TreatOp over the input
/// element to cast it to the right type. The "Fake" TreatOp is only there for "compile-time" typing reasons,
/// and will be ignored in the rest of the plan compiler
/// </summary>
/// <param name="inputNode">the input collection</param>
/// <param name="inputVar">the single Var produced by the input collection</param>
/// <param name="desiredType">the desired element type </param>
/// <param name="includeSubtypes">do we include subtypes of the desired element type</param>
/// <param name="resultNode">the result subtree</param>
/// <param name="resultVar">the single Var produced by the result subtree</param>
internal void BuildOfTypeTree(Node inputNode, Var inputVar, TypeUsage desiredType, bool includeSubtypes,
out Node resultNode, out Var resultVar)
{
Op isOfOp = includeSubtypes ? this.CreateIsOfOp(desiredType) : this.CreateIsOfOnlyOp(desiredType);
Node predicate = this.CreateNode(isOfOp, this.CreateNode(this.CreateVarRefOp(inputVar)));
Node filterNode = this.CreateNode(this.CreateFilterOp(), inputNode, predicate);
resultNode = BuildFakeTreatProject(filterNode, inputVar, desiredType, out resultVar);
}
/// Builds out a ProjectOp over the input that introduces a "Fake" TreatOp over the input Var to cast it to the desired type
/// The "Fake" TreatOp is only there for "compile-time" typing reasons, and will be ignored in the rest of the plan compiler.
/// </summary>
/// <param name="inputNode">the input collection</param>
/// <param name="inputVar">the single Var produced by the input collection</param>
/// <param name="desiredType">the desired element type </param>
/// <param name="resultVar">the single Var produced by the result subtree</param>
/// <returns>the result subtree</returns>
internal Node BuildFakeTreatProject(Node inputNode, Var inputVar, TypeUsage desiredType, out Var resultVar)
{
Node treatNode = this.CreateNode(this.CreateFakeTreatOp(desiredType),
this.CreateNode(this.CreateVarRefOp(inputVar)));
Node resultNode = this.BuildProject(inputNode, treatNode, out resultVar);
return resultNode;
}
/// <summary>
/// Build a comparisonOp over the input arguments. Build SoftCasts over the inputs, if we need
/// to.
/// </summary>
/// <param name="opType">the comparison optype</param>
/// <param name="arg0">Arg 0</param>
/// <param name="arg1">Arg 1</param>
/// <returns>the resulting comparison tree</returns>
internal Node BuildComparison(OpType opType, Node arg0, Node arg1)
{
if (!Command.EqualTypes(arg0.Op.Type, arg1.Op.Type))
{
TypeUsage commonType = TypeHelpers.GetCommonTypeUsage(arg0.Op.Type, arg1.Op.Type);
Debug.Assert(commonType != null, "No common type for " + arg0.Op.Type + " and " + arg1.Op.Type);
if (!EqualTypes(commonType, arg0.Op.Type))
{
arg0 = this.CreateNode(this.CreateSoftCastOp(commonType), arg0);
}
if (!EqualTypes(commonType, arg1.Op.Type))
{
arg1 = this.CreateNode(this.CreateSoftCastOp(commonType), arg1);
}
}
Node newNode = this.CreateNode(this.CreateComparisonOp(opType), arg0, arg1);
return newNode;
}
/// <summary>
/// Build up a CollectOp over a relop tree
/// </summary>
/// <param name="relOpNode">the relop tree</param>
/// <param name="relOpVar">the single output var from the relop tree</param>
/// <returns></returns>
internal Node BuildCollect(Node relOpNode, Var relOpVar)
{
Node physicalProjectNode = this.CreateNode(this.CreatePhysicalProjectOp(relOpVar), relOpNode);
TypeUsage collectOpType = TypeHelpers.CreateCollectionTypeUsage(relOpVar.Type);
Node collectNode = this.CreateNode(this.CreateCollectOp(collectOpType), physicalProjectNode);
return collectNode;
}
#endregion
#region Rel Properties
/// <summary>
/// Mark this rel-property as "referenced" in the current query, if the target
/// end has multiplicity of one (or zero_or_one)
/// </summary>
/// <param name="relProperty">the rel-property</param>
private void AddRelPropertyReference(RelProperty relProperty)
{
if (relProperty.ToEnd.RelationshipMultiplicity != RelationshipMultiplicity.Many &&
!m_referencedRelProperties.Contains(relProperty))
{
m_referencedRelProperties.Add(relProperty);
}
}
/// <summary>
/// The set of referenced rel properties in the current query
/// </summary>
internal HashSet<RelProperty> ReferencedRelProperties
{
get { return m_referencedRelProperties; }
}
/// <summary>
/// Is this rel-property referenced in the query so far
/// </summary>
/// <param name="relProperty">the rel-property</param>
/// <returns>true, if the rel property was referenced in the query</returns>
internal bool IsRelPropertyReferenced(RelProperty relProperty)
{
bool ret = m_referencedRelProperties.Contains(relProperty);
return ret;
}
#endregion
#endregion
}
}
|