File: SynchronizedPool.cs

package info (click to toggle)
mono 6.14.1%2Bds2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,282,732 kB
  • sloc: cs: 11,182,461; xml: 2,850,281; ansic: 699,123; cpp: 122,919; perl: 58,604; javascript: 30,841; asm: 21,845; makefile: 19,602; sh: 10,973; python: 4,772; pascal: 925; sql: 859; sed: 16; php: 1
file content (438 lines) | stat: -rw-r--r-- 13,377 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
//------------------------------------------------------------
// Copyright (c) Microsoft Corporation.  All rights reserved.
//------------------------------------------------------------

namespace System.Runtime
{
    using System.Collections.Generic;
    using System.Security;
    using System.Security.Permissions;
    using System.Threading;

    // A simple synchronized pool would simply lock a stack and push/pop on return/take.
    //
    // This implementation tries to reduce locking by exploiting the case where an item
    // is taken and returned by the same thread, which turns out to be common in our 
    // scenarios.  
    //
    // Initially, all the quota is allocated to a global (non-thread-specific) pool, 
    // which takes locks.  As different threads take and return values, we record their IDs, 
    // and if we detect that a thread is taking and returning "enough" on the same thread, 
    // then we decide to "promote" the thread.  When a thread is promoted, we decrease the 
    // quota of the global pool by one, and allocate a thread-specific entry for the thread 
    // to store it's value.  Once this entry is allocated, the thread can take and return 
    // it's value from that entry without taking any locks.  Not only does this avoid 
    // locks, but it affinitizes pooled items to a particular thread.
    //
    // There are a couple of additional things worth noting:
    // 
    // It is possible for a thread that we have reserved an entry for to exit.  This means
    // we will still have a entry allocated for it, but the pooled item stored there 
    // will never be used.  After a while, we could end up with a number of these, and 
    // as a result we would begin to exhaust the quota of the overall pool.  To mitigate this
    // case, we throw away the entire per-thread pool, and return all the quota back to 
    // the global pool if we are unable to promote a thread (due to lack of space).  Then 
    // the set of active threads will be re-promoted as they take and return items.
    // 
    // You may notice that the code does not immediately promote a thread, and does not
    // immediately throw away the entire per-thread pool when it is unable to promote a 
    // thread.  Instead, it uses counters (based on the number of calls to the pool) 
    // and a threshold to figure out when to do these operations.  In the case where the
    // pool to misconfigured to have too few items for the workload, this avoids constant 
    // promoting and rebuilding of the per thread entries.
    //
    // You may also notice that we do not use interlocked methods when adjusting statistics.
    // Since the statistics are a heuristic as to how often something is happening, they 
    // do not need to be perfect.
    // 
    [Fx.Tag.SynchronizationObject(Blocking = false)]
    class SynchronizedPool<T> where T : class
    {
        const int maxPendingEntries = 128;
        const int maxPromotionFailures = 64;
        const int maxReturnsBeforePromotion = 64;
        const int maxThreadItemsPerProcessor = 16;
        Entry[] entries;
        GlobalPool globalPool;
        int maxCount;
        PendingEntry[] pending;
        int promotionFailures;

        public SynchronizedPool(int maxCount)
        {
            int threadCount = maxCount;
            int maxThreadCount = maxThreadItemsPerProcessor + SynchronizedPoolHelper.ProcessorCount;
            if (threadCount > maxThreadCount)
            {
                threadCount = maxThreadCount;
            }
            this.maxCount = maxCount;
            this.entries = new Entry[threadCount];
            this.pending = new PendingEntry[4];
            this.globalPool = new GlobalPool(maxCount);
        }

        object ThisLock
        {
            get
            {
                return this;
            }
        }

        public void Clear()
        {
            Entry[] entries = this.entries;

            for (int i = 0; i < entries.Length; i++)
            {
                entries[i].value = null;
            }

            globalPool.Clear();
        }

        void HandlePromotionFailure(int thisThreadID)
        {
            int newPromotionFailures = this.promotionFailures + 1;

            if (newPromotionFailures >= maxPromotionFailures)
            {
                lock (ThisLock)
                {
                    this.entries = new Entry[this.entries.Length];

                    globalPool.MaxCount = maxCount;
                }

                PromoteThread(thisThreadID);
            }
            else
            {
                this.promotionFailures = newPromotionFailures;
            }
        }

        bool PromoteThread(int thisThreadID)
        {
            lock (ThisLock)
            {
                for (int i = 0; i < this.entries.Length; i++)
                {
                    int threadID = this.entries[i].threadID;

                    if (threadID == thisThreadID)
                    {
                        return true;
                    }
                    else if (threadID == 0)
                    {
                        globalPool.DecrementMaxCount();
                        this.entries[i].threadID = thisThreadID;
                        return true;
                    }
                }
            }

            return false;
        }

        void RecordReturnToGlobalPool(int thisThreadID)
        {
            PendingEntry[] localPending = this.pending;

            for (int i = 0; i < localPending.Length; i++)
            {
                int threadID = localPending[i].threadID;

                if (threadID == thisThreadID)
                {
                    int newReturnCount = localPending[i].returnCount + 1;

                    if (newReturnCount >= maxReturnsBeforePromotion)
                    {
                        localPending[i].returnCount = 0;

                        if (!PromoteThread(thisThreadID))
                        {
                            HandlePromotionFailure(thisThreadID);
                        }
                    }
                    else
                    {
                        localPending[i].returnCount = newReturnCount;
                    }
                    break;
                }
                else if (threadID == 0)
                {
                    break;
                }
            }
        }

        void RecordTakeFromGlobalPool(int thisThreadID)
        {
            PendingEntry[] localPending = this.pending;

            for (int i = 0; i < localPending.Length; i++)
            {
                int threadID = localPending[i].threadID;

                if (threadID == thisThreadID)
                {
                    return;
                }
                else if (threadID == 0)
                {
                    lock (localPending)
                    {
                        if (localPending[i].threadID == 0)
                        {
                            localPending[i].threadID = thisThreadID;
                            return;
                        }
                    }
                }
            }

            if (localPending.Length >= maxPendingEntries)
            {
                this.pending = new PendingEntry[localPending.Length];
            }
            else
            {
                PendingEntry[] newPending = new PendingEntry[localPending.Length * 2];
                Array.Copy(localPending, newPending, localPending.Length);
                this.pending = newPending;
            }
        }

        public bool Return(T value)
        {
            int thisThreadID = Thread.CurrentThread.ManagedThreadId;

            if (thisThreadID == 0)
            {
                return false;
            }

            if (ReturnToPerThreadPool(thisThreadID, value))
            {
                return true;
            }

            return ReturnToGlobalPool(thisThreadID, value);
        }

        bool ReturnToPerThreadPool(int thisThreadID, T value)
        {
            Entry[] entries = this.entries;

            for (int i = 0; i < entries.Length; i++)
            {
                int threadID = entries[i].threadID;

                if (threadID == thisThreadID)
                {
                    if (entries[i].value == null)
                    {
                        entries[i].value = value;
                        return true;
                    }
                    else
                    {
                        return false;
                    }
                }
                else if (threadID == 0)
                {
                    break;
                }
            }

            return false;
        }

        bool ReturnToGlobalPool(int thisThreadID, T value)
        {
            RecordReturnToGlobalPool(thisThreadID);

            return globalPool.Return(value);
        }

        public T Take()
        {
            int thisThreadID = Thread.CurrentThread.ManagedThreadId;

            if (thisThreadID == 0)
            {
                return null;
            }

            T value = TakeFromPerThreadPool(thisThreadID);

            if (value != null)
            {
                return value;
            }

            return TakeFromGlobalPool(thisThreadID);
        }

        T TakeFromPerThreadPool(int thisThreadID)
        {
            Entry[] entries = this.entries;

            for (int i = 0; i < entries.Length; i++)
            {
                int threadID = entries[i].threadID;

                if (threadID == thisThreadID)
                {
                    T value = entries[i].value;

                    if (value != null)
                    {
                        entries[i].value = null;
                        return value;
                    }
                    else
                    {
                        return null;
                    }
                }
                else if (threadID == 0)
                {
                    break;
                }
            }

            return null;
        }

        T TakeFromGlobalPool(int thisThreadID)
        {
            RecordTakeFromGlobalPool(thisThreadID);

            return globalPool.Take();
        }

        struct Entry
        {
            public int threadID;
            public T value;
        }

        struct PendingEntry
        {
            public int returnCount;
            public int threadID;
        }

        static class SynchronizedPoolHelper
        {
            public static readonly int ProcessorCount = GetProcessorCount();

            [Fx.Tag.SecurityNote(Critical = "Asserts in order to get the processor count from the environment", Safe = "This data isn't actually protected so it's ok to leak")]
            [SecuritySafeCritical]
            [EnvironmentPermission(SecurityAction.Assert, Read = "NUMBER_OF_PROCESSORS")]
            static int GetProcessorCount()
            {
                return Environment.ProcessorCount;
            }
        }

        [Fx.Tag.SynchronizationObject(Blocking = false)]
        class GlobalPool
        {
            Stack<T> items;

            int maxCount;

            public GlobalPool(int maxCount)
            {
                this.items = new Stack<T>();
                this.maxCount = maxCount;
            }

            public int MaxCount
            {
                get
                {
                    return maxCount;
                }
                set
                {
                    lock (ThisLock)
                    {
                        while (items.Count > value)
                        {
                            items.Pop();
                        }
                        maxCount = value;
                    }
                }
            }

            object ThisLock
            {
                get
                {
                    return this;
                }
            }

            public void DecrementMaxCount()
            {
                lock (ThisLock)
                {
                    if (items.Count == maxCount)
                    {
                        items.Pop();
                    }
                    maxCount--;
                }
            }

            public T Take()
            {
                if (this.items.Count > 0)
                {
                    lock (ThisLock)
                    {
                        if (this.items.Count > 0)
                        {
                            return this.items.Pop();
                        }
                    }
                }
                return null;
            }

            public bool Return(T value)
            {
                if (this.items.Count < this.MaxCount)
                {
                    lock (ThisLock)
                    {
                        if (this.items.Count < this.MaxCount)
                        {
                            this.items.Push(value);
                            return true;
                        }
                    }
                }
                return false;
            }

            public void Clear()
            {
                lock (ThisLock)
                {
                    this.items.Clear();
                }
            }
        }
    }
}