1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
|
//------------------------------------------------------------
// Copyright (c) Microsoft Corporation. All rights reserved.
//------------------------------------------------------------
namespace System.Runtime
{
using System.Collections.Generic;
using System.Security;
using System.Security.Permissions;
using System.Threading;
// A simple synchronized pool would simply lock a stack and push/pop on return/take.
//
// This implementation tries to reduce locking by exploiting the case where an item
// is taken and returned by the same thread, which turns out to be common in our
// scenarios.
//
// Initially, all the quota is allocated to a global (non-thread-specific) pool,
// which takes locks. As different threads take and return values, we record their IDs,
// and if we detect that a thread is taking and returning "enough" on the same thread,
// then we decide to "promote" the thread. When a thread is promoted, we decrease the
// quota of the global pool by one, and allocate a thread-specific entry for the thread
// to store it's value. Once this entry is allocated, the thread can take and return
// it's value from that entry without taking any locks. Not only does this avoid
// locks, but it affinitizes pooled items to a particular thread.
//
// There are a couple of additional things worth noting:
//
// It is possible for a thread that we have reserved an entry for to exit. This means
// we will still have a entry allocated for it, but the pooled item stored there
// will never be used. After a while, we could end up with a number of these, and
// as a result we would begin to exhaust the quota of the overall pool. To mitigate this
// case, we throw away the entire per-thread pool, and return all the quota back to
// the global pool if we are unable to promote a thread (due to lack of space). Then
// the set of active threads will be re-promoted as they take and return items.
//
// You may notice that the code does not immediately promote a thread, and does not
// immediately throw away the entire per-thread pool when it is unable to promote a
// thread. Instead, it uses counters (based on the number of calls to the pool)
// and a threshold to figure out when to do these operations. In the case where the
// pool to misconfigured to have too few items for the workload, this avoids constant
// promoting and rebuilding of the per thread entries.
//
// You may also notice that we do not use interlocked methods when adjusting statistics.
// Since the statistics are a heuristic as to how often something is happening, they
// do not need to be perfect.
//
[Fx.Tag.SynchronizationObject(Blocking = false)]
class SynchronizedPool<T> where T : class
{
const int maxPendingEntries = 128;
const int maxPromotionFailures = 64;
const int maxReturnsBeforePromotion = 64;
const int maxThreadItemsPerProcessor = 16;
Entry[] entries;
GlobalPool globalPool;
int maxCount;
PendingEntry[] pending;
int promotionFailures;
public SynchronizedPool(int maxCount)
{
int threadCount = maxCount;
int maxThreadCount = maxThreadItemsPerProcessor + SynchronizedPoolHelper.ProcessorCount;
if (threadCount > maxThreadCount)
{
threadCount = maxThreadCount;
}
this.maxCount = maxCount;
this.entries = new Entry[threadCount];
this.pending = new PendingEntry[4];
this.globalPool = new GlobalPool(maxCount);
}
object ThisLock
{
get
{
return this;
}
}
public void Clear()
{
Entry[] entries = this.entries;
for (int i = 0; i < entries.Length; i++)
{
entries[i].value = null;
}
globalPool.Clear();
}
void HandlePromotionFailure(int thisThreadID)
{
int newPromotionFailures = this.promotionFailures + 1;
if (newPromotionFailures >= maxPromotionFailures)
{
lock (ThisLock)
{
this.entries = new Entry[this.entries.Length];
globalPool.MaxCount = maxCount;
}
PromoteThread(thisThreadID);
}
else
{
this.promotionFailures = newPromotionFailures;
}
}
bool PromoteThread(int thisThreadID)
{
lock (ThisLock)
{
for (int i = 0; i < this.entries.Length; i++)
{
int threadID = this.entries[i].threadID;
if (threadID == thisThreadID)
{
return true;
}
else if (threadID == 0)
{
globalPool.DecrementMaxCount();
this.entries[i].threadID = thisThreadID;
return true;
}
}
}
return false;
}
void RecordReturnToGlobalPool(int thisThreadID)
{
PendingEntry[] localPending = this.pending;
for (int i = 0; i < localPending.Length; i++)
{
int threadID = localPending[i].threadID;
if (threadID == thisThreadID)
{
int newReturnCount = localPending[i].returnCount + 1;
if (newReturnCount >= maxReturnsBeforePromotion)
{
localPending[i].returnCount = 0;
if (!PromoteThread(thisThreadID))
{
HandlePromotionFailure(thisThreadID);
}
}
else
{
localPending[i].returnCount = newReturnCount;
}
break;
}
else if (threadID == 0)
{
break;
}
}
}
void RecordTakeFromGlobalPool(int thisThreadID)
{
PendingEntry[] localPending = this.pending;
for (int i = 0; i < localPending.Length; i++)
{
int threadID = localPending[i].threadID;
if (threadID == thisThreadID)
{
return;
}
else if (threadID == 0)
{
lock (localPending)
{
if (localPending[i].threadID == 0)
{
localPending[i].threadID = thisThreadID;
return;
}
}
}
}
if (localPending.Length >= maxPendingEntries)
{
this.pending = new PendingEntry[localPending.Length];
}
else
{
PendingEntry[] newPending = new PendingEntry[localPending.Length * 2];
Array.Copy(localPending, newPending, localPending.Length);
this.pending = newPending;
}
}
public bool Return(T value)
{
int thisThreadID = Thread.CurrentThread.ManagedThreadId;
if (thisThreadID == 0)
{
return false;
}
if (ReturnToPerThreadPool(thisThreadID, value))
{
return true;
}
return ReturnToGlobalPool(thisThreadID, value);
}
bool ReturnToPerThreadPool(int thisThreadID, T value)
{
Entry[] entries = this.entries;
for (int i = 0; i < entries.Length; i++)
{
int threadID = entries[i].threadID;
if (threadID == thisThreadID)
{
if (entries[i].value == null)
{
entries[i].value = value;
return true;
}
else
{
return false;
}
}
else if (threadID == 0)
{
break;
}
}
return false;
}
bool ReturnToGlobalPool(int thisThreadID, T value)
{
RecordReturnToGlobalPool(thisThreadID);
return globalPool.Return(value);
}
public T Take()
{
int thisThreadID = Thread.CurrentThread.ManagedThreadId;
if (thisThreadID == 0)
{
return null;
}
T value = TakeFromPerThreadPool(thisThreadID);
if (value != null)
{
return value;
}
return TakeFromGlobalPool(thisThreadID);
}
T TakeFromPerThreadPool(int thisThreadID)
{
Entry[] entries = this.entries;
for (int i = 0; i < entries.Length; i++)
{
int threadID = entries[i].threadID;
if (threadID == thisThreadID)
{
T value = entries[i].value;
if (value != null)
{
entries[i].value = null;
return value;
}
else
{
return null;
}
}
else if (threadID == 0)
{
break;
}
}
return null;
}
T TakeFromGlobalPool(int thisThreadID)
{
RecordTakeFromGlobalPool(thisThreadID);
return globalPool.Take();
}
struct Entry
{
public int threadID;
public T value;
}
struct PendingEntry
{
public int returnCount;
public int threadID;
}
static class SynchronizedPoolHelper
{
public static readonly int ProcessorCount = GetProcessorCount();
[Fx.Tag.SecurityNote(Critical = "Asserts in order to get the processor count from the environment", Safe = "This data isn't actually protected so it's ok to leak")]
[SecuritySafeCritical]
[EnvironmentPermission(SecurityAction.Assert, Read = "NUMBER_OF_PROCESSORS")]
static int GetProcessorCount()
{
return Environment.ProcessorCount;
}
}
[Fx.Tag.SynchronizationObject(Blocking = false)]
class GlobalPool
{
Stack<T> items;
int maxCount;
public GlobalPool(int maxCount)
{
this.items = new Stack<T>();
this.maxCount = maxCount;
}
public int MaxCount
{
get
{
return maxCount;
}
set
{
lock (ThisLock)
{
while (items.Count > value)
{
items.Pop();
}
maxCount = value;
}
}
}
object ThisLock
{
get
{
return this;
}
}
public void DecrementMaxCount()
{
lock (ThisLock)
{
if (items.Count == maxCount)
{
items.Pop();
}
maxCount--;
}
}
public T Take()
{
if (this.items.Count > 0)
{
lock (ThisLock)
{
if (this.items.Count > 0)
{
return this.items.Pop();
}
}
}
return null;
}
public bool Return(T value)
{
if (this.items.Count < this.MaxCount)
{
lock (ThisLock)
{
if (this.items.Count < this.MaxCount)
{
this.items.Push(value);
return true;
}
}
}
return false;
}
public void Clear()
{
lock (ThisLock)
{
this.items.Clear();
}
}
}
}
}
|