1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
|
//------------------------------------------------------------------------------
// <copyright file="RegexNode.cs" company="Microsoft">
// Copyright (c) Microsoft Corporation. All rights reserved.
// </copyright>
//------------------------------------------------------------------------------
// This RegexNode class is internal to the Regex package.
// It is built into a parsed tree for a regular expression.
// Implementation notes:
//
// Since the node tree is a temporary data structure only used
// during compilation of the regexp to integer codes, it's
// designed for clarity and convenience rather than
// space efficiency.
//
// RegexNodes are built into a tree, linked by the _children list.
// Each node also has a _parent and _ichild member indicating
// its parent and which child # it is in its parent's list.
//
// RegexNodes come in as many types as there are constructs in
// a regular expression, for example, "concatenate", "alternate",
// "one", "rept", "group". There are also node types for basic
// peephole optimizations, e.g., "onerep", "notsetrep", etc.
//
// Because perl 5 allows "lookback" groups that scan backwards,
// each node also gets a "direction". Normally the value of
// boolean _backward = false.
//
// During parsing, top-level nodes are also stacked onto a parse
// stack (a stack of trees). For this purpose we have a _next
// pointer. [Note that to save a few bytes, we could overload the
// _parent pointer instead.]
//
// On the parse stack, each tree has a "role" - basically, the
// nonterminal in the grammar that the parser has currently
// assigned to the tree. That code is stored in _role.
//
// Finally, some of the different kinds of nodes have data.
// Two integers (for the looping constructs) are stored in
// _operands, an an object (either a string or a set)
// is stored in _data
namespace System.Text.RegularExpressions {
using System.Collections;
using System.Collections.Generic;
using System.Diagnostics;
using System.Globalization;
internal sealed class RegexNode {
/*
* RegexNode types
*/
// the following are leaves, and correspond to primitive operations
// static final int Onerep = RegexCode.Onerep; // c,n a {n}
// static final int Notonerep = RegexCode.Notonerep; // c,n .{n}
// static final int Setrep = RegexCode.Setrep; // set,n \d {n}
internal const int Oneloop = RegexCode.Oneloop; // c,n a*
internal const int Notoneloop = RegexCode.Notoneloop; // c,n .*
internal const int Setloop = RegexCode.Setloop; // set,n \d*
internal const int Onelazy = RegexCode.Onelazy; // c,n a*?
internal const int Notonelazy = RegexCode.Notonelazy; // c,n .*?
internal const int Setlazy = RegexCode.Setlazy; // set,n \d*?
internal const int One = RegexCode.One; // char a
internal const int Notone = RegexCode.Notone; // char . [^a]
internal const int Set = RegexCode.Set; // set [a-z] \w \s \d
internal const int Multi = RegexCode.Multi; // string abcdef
internal const int Ref = RegexCode.Ref; // index \1
internal const int Bol = RegexCode.Bol; // ^
internal const int Eol = RegexCode.Eol; // $
internal const int Boundary = RegexCode.Boundary; // \b
internal const int Nonboundary= RegexCode.Nonboundary;// \B
internal const int ECMABoundary = RegexCode.ECMABoundary; // \b
internal const int NonECMABoundary= RegexCode.NonECMABoundary; // \B
internal const int Beginning = RegexCode.Beginning; // \A
internal const int Start = RegexCode.Start; // \G
internal const int EndZ = RegexCode.EndZ; // \Z
internal const int End = RegexCode.End; // \z
// (note: End = 21;)
// interior nodes do not correpond to primitive operations, but
// control structures compositing other operations
// concat and alternate take n children, and can run forward or backwards
internal const int Nothing = 22; // []
internal const int Empty = 23; // ()
internal const int Alternate = 24; // a|b
internal const int Concatenate= 25; // ab
internal const int Loop = 26; // m,x * + ? {,}
internal const int Lazyloop = 27; // m,x *? +? ?? {,}?
internal const int Capture = 28; // n ()
internal const int Group = 29; // (?:)
internal const int Require = 30; // (?=) (?<=)
internal const int Prevent = 31; // (?!) (?<!)
internal const int Greedy = 32; // (?>) (?<)
internal const int Testref = 33; // (?(n) | )
internal const int Testgroup = 34; // (?(...) | )
/*
* RegexNode data members
*
*/
internal int _type;
internal List<RegexNode> _children;
internal String _str;
internal char _ch;
internal int _m;
internal int _n;
internal RegexOptions _options;
internal RegexNode _next;
internal RegexNode(int type, RegexOptions options) {
_type = type;
_options = options;
}
internal RegexNode(int type, RegexOptions options, char ch) {
_type = type;
_options = options;
_ch = ch;
}
internal RegexNode(int type, RegexOptions options, String str) {
_type = type;
_options = options;
_str = str;
}
internal RegexNode(int type, RegexOptions options, int m) {
_type = type;
_options = options;
_m = m;
}
internal RegexNode(int type, RegexOptions options, int m, int n) {
_type = type;
_options = options;
_m = m;
_n = n;
}
internal bool UseOptionR() {
return(_options & RegexOptions.RightToLeft) != 0;
}
internal RegexNode ReverseLeft() {
if (UseOptionR() && _type == Concatenate && _children != null) {
_children.Reverse(0, _children.Count);
}
return this;
}
// Pass type as OneLazy or OneLoop
internal void MakeRep(int type, int min, int max) {
_type += (type - One);
_m = min;
_n = max;
}
/*
* Reduce
*
* Removes redundant nodes from the subtree, and returns a reduced subtree.
*/
internal RegexNode Reduce() {
RegexNode n;
switch (Type()) {
case Alternate:
n = ReduceAlternation();
break;
case Concatenate:
n = ReduceConcatenation();
break;
case Loop:
case Lazyloop:
n = ReduceRep();
break;
case Group:
n = ReduceGroup();
break;
case Set:
case Setloop:
n = ReduceSet();
break;
default:
n = this;
break;
}
return n;
}
/*
* StripEnation:
*
* Simple optimization. If a concatenation or alternation has only
* one child strip out the intermediate node. If it has zero children,
* turn it into an empty.
*
*/
internal RegexNode StripEnation(int emptyType) {
switch (ChildCount()) {
case 0:
return new RegexNode(emptyType, _options);
case 1:
return Child(0);
default:
return this;
}
}
/*
* ReduceGroup:
*
* Simple optimization. Once parsed into a tree, noncapturing groups
* serve no function, so strip them out.
*/
internal RegexNode ReduceGroup() {
RegexNode u;
for (u = this; u.Type() == Group; )
u = u.Child(0);
return u;
}
/*
* ReduceRep:
*
* Nested repeaters just get multiplied with each other if they're not
* too lumpy
*/
internal RegexNode ReduceRep() {
RegexNode u;
RegexNode child;
int type;
int min;
int max;
u = this;
type = Type();
min = _m;
max = _n;
for (;;) {
if (u.ChildCount() == 0)
break;
child = u.Child(0);
// multiply reps of the same type only
if (child.Type() != type) {
int childType = child.Type();
if (!(childType >= Oneloop && childType <= Setloop && type == Loop ||
childType >= Onelazy && childType <= Setlazy && type == Lazyloop))
break;
}
// child can be too lumpy to blur, e.g., (a {100,105}) {3} or (a {2,})?
// [but things like (a {2,})+ are not too lumpy...]
if (u._m == 0 && child._m > 1 || child._n < child._m * 2)
break;
u = child;
if (u._m > 0)
u._m = min = ((Int32.MaxValue - 1) / u._m < min) ? Int32.MaxValue : u._m * min;
if (u._n > 0)
u._n = max = ((Int32.MaxValue - 1) / u._n < max) ? Int32.MaxValue : u._n * max;
}
return min == Int32.MaxValue ? new RegexNode(Nothing, _options) : u;
}
/*
* ReduceSet:
*
* Simple optimization. If a set is a singleton, an inverse singleton,
* or empty, it's transformed accordingly.
*/
internal RegexNode ReduceSet() {
// Extract empty-set, one and not-one case as special
if (RegexCharClass.IsEmpty(_str)) {
_type = Nothing;
_str = null;
}
else if (RegexCharClass.IsSingleton(_str)) {
_ch = RegexCharClass.SingletonChar(_str);
_str = null;
_type += (One - Set);
}
else if (RegexCharClass.IsSingletonInverse(_str)) {
_ch = RegexCharClass.SingletonChar(_str);
_str = null;
_type += (Notone - Set);
}
return this;
}
/*
* ReduceAlternation:
*
* Basic optimization. Single-letter alternations can be replaced
* by faster set specifications, and nested alternations with no
* intervening operators can be flattened:
*
* a|b|c|def|g|h -> [a-c]|def|[gh]
* apple|(?:orange|pear)|grape -> apple|orange|pear|grape
*
* <
*/
internal RegexNode ReduceAlternation() {
// Combine adjacent sets/chars
bool wasLastSet;
bool lastNodeCannotMerge;
RegexOptions optionsLast;
RegexOptions optionsAt;
int i;
int j;
RegexNode at;
RegexNode prev;
if (_children == null)
return new RegexNode(RegexNode.Nothing, _options);
wasLastSet = false;
lastNodeCannotMerge = false;
optionsLast = 0;
for (i = 0, j = 0; i < _children.Count; i++, j++) {
at = _children[i];
if (j < i)
_children[j] = at;
for (;;) {
if (at._type == Alternate) {
for (int k = 0; k < at._children.Count; k++)
at._children[k]._next = this;
_children.InsertRange(i + 1, at._children);
j--;
}
else if (at._type == Set || at._type == One) {
// Cannot merge sets if L or I options differ, or if either are negated.
optionsAt = at._options & (RegexOptions.RightToLeft | RegexOptions.IgnoreCase);
if (at._type == Set) {
if (!wasLastSet || optionsLast != optionsAt || lastNodeCannotMerge || !RegexCharClass.IsMergeable(at._str)) {
wasLastSet = true;
lastNodeCannotMerge = !RegexCharClass.IsMergeable(at._str);
optionsLast = optionsAt;
break;
}
}
else if (!wasLastSet || optionsLast != optionsAt || lastNodeCannotMerge) {
wasLastSet = true;
lastNodeCannotMerge = false;
optionsLast = optionsAt;
break;
}
// The last node was a Set or a One, we're a Set or One and our options are the same.
// Merge the two nodes.
j--;
prev = _children[j];
RegexCharClass prevCharClass;
if (prev._type == RegexNode.One) {
prevCharClass = new RegexCharClass();
prevCharClass.AddChar(prev._ch);
}
else {
prevCharClass = RegexCharClass.Parse(prev._str);
}
if (at._type == RegexNode.One) {
prevCharClass.AddChar(at._ch);
}
else {
RegexCharClass atCharClass = RegexCharClass.Parse(at._str);
prevCharClass.AddCharClass(atCharClass);
}
prev._type = RegexNode.Set;
prev._str = prevCharClass.ToStringClass();
}
else if (at._type == RegexNode.Nothing) {
j--;
}
else {
wasLastSet = false;
lastNodeCannotMerge = false;
}
break;
}
}
if (j < i)
_children.RemoveRange(j, i - j);
return StripEnation(RegexNode.Nothing);
}
/*
* ReduceConcatenation:
*
* Basic optimization. Adjacent strings can be concatenated.
*
* (?:abc)(?:def) -> abcdef
*/
internal RegexNode ReduceConcatenation() {
// Eliminate empties and concat adjacent strings/chars
bool wasLastString;
RegexOptions optionsLast;
RegexOptions optionsAt;
int i;
int j;
if (_children == null)
return new RegexNode(RegexNode.Empty, _options);
wasLastString = false;
optionsLast = 0;
for (i = 0, j = 0; i < _children.Count; i++, j++) {
RegexNode at;
RegexNode prev;
at = _children[i];
if (j < i)
_children[j] = at;
if (at._type == RegexNode.Concatenate &&
((at._options & RegexOptions.RightToLeft) == (_options & RegexOptions.RightToLeft))) {
for (int k = 0; k < at._children.Count; k++)
at._children[k]._next = this;
_children.InsertRange(i + 1, at._children);
j--;
}
else if (at._type == RegexNode.Multi ||
at._type == RegexNode.One) {
// Cannot merge strings if L or I options differ
optionsAt = at._options & (RegexOptions.RightToLeft | RegexOptions.IgnoreCase);
if (!wasLastString || optionsLast != optionsAt) {
wasLastString = true;
optionsLast = optionsAt;
continue;
}
prev = _children[--j];
if (prev._type == RegexNode.One) {
prev._type = RegexNode.Multi;
prev._str = Convert.ToString(prev._ch, CultureInfo.InvariantCulture);
}
if ((optionsAt & RegexOptions.RightToLeft) == 0) {
if (at._type == RegexNode.One)
prev._str += at._ch.ToString();
else
prev._str += at._str;
}
else {
if (at._type == RegexNode.One)
prev._str = at._ch.ToString() + prev._str;
else
prev._str = at._str + prev._str;
}
}
else if (at._type == RegexNode.Empty) {
j--;
}
else {
wasLastString = false;
}
}
if (j < i)
_children.RemoveRange(j, i - j);
return StripEnation(RegexNode.Empty);
}
internal RegexNode MakeQuantifier(bool lazy, int min, int max) {
RegexNode result;
if (min == 0 && max == 0)
return new RegexNode(RegexNode.Empty, _options);
if (min == 1 && max == 1)
return this;
switch (_type) {
case RegexNode.One:
case RegexNode.Notone:
case RegexNode.Set:
MakeRep(lazy ? RegexNode.Onelazy : RegexNode.Oneloop, min, max);
return this;
default:
result = new RegexNode(lazy ? RegexNode.Lazyloop : RegexNode.Loop, _options, min, max);
result.AddChild(this);
return result;
}
}
internal void AddChild(RegexNode newChild) {
RegexNode reducedChild;
if (_children == null)
_children = new List<RegexNode>(4);
reducedChild = newChild.Reduce();
_children.Add(reducedChild);
reducedChild._next = this;
}
internal RegexNode Child(int i) {
return _children[i];
}
internal int ChildCount() {
return _children == null ? 0 : _children.Count;
}
internal int Type() {
return _type;
}
#if DBG
internal static String[] TypeStr = new String[] {
"Onerep", "Notonerep", "Setrep",
"Oneloop", "Notoneloop", "Setloop",
"Onelazy", "Notonelazy", "Setlazy",
"One", "Notone", "Set",
"Multi", "Ref",
"Bol", "Eol", "Boundary", "Nonboundary",
"ECMABoundary", "NonECMABoundary",
"Beginning", "Start", "EndZ", "End",
"Nothing", "Empty",
"Alternate", "Concatenate",
"Loop", "Lazyloop",
"Capture", "Group", "Require", "Prevent", "Greedy",
"Testref", "Testgroup"};
internal String Description() {
StringBuilder ArgSb = new StringBuilder();
ArgSb.Append(TypeStr[_type]);
if ((_options & RegexOptions.ExplicitCapture) != 0)
ArgSb.Append("-C");
if ((_options & RegexOptions.IgnoreCase) != 0)
ArgSb.Append("-I");
if ((_options & RegexOptions.RightToLeft) != 0)
ArgSb.Append("-L");
if ((_options & RegexOptions.Multiline) != 0)
ArgSb.Append("-M");
if ((_options & RegexOptions.Singleline) != 0)
ArgSb.Append("-S");
if ((_options & RegexOptions.IgnorePatternWhitespace) != 0)
ArgSb.Append("-X");
if ((_options & RegexOptions.ECMAScript) != 0)
ArgSb.Append("-E");
switch (_type) {
case Oneloop:
case Notoneloop:
case Onelazy:
case Notonelazy:
case One:
case Notone:
ArgSb.Append("(Ch = " + RegexCharClass.CharDescription(_ch) + ")");
break;
case Capture:
ArgSb.Append("(index = " + _m.ToString(CultureInfo.InvariantCulture) + ", unindex = " + _n.ToString(CultureInfo.InvariantCulture) + ")");
break;
case Ref:
case Testref:
ArgSb.Append("(index = " + _m.ToString(CultureInfo.InvariantCulture) + ")");
break;
case Multi:
ArgSb.Append("(String = " + _str + ")");
break;
case Set:
case Setloop:
case Setlazy:
ArgSb.Append("(Set = " + RegexCharClass.SetDescription(_str) + ")");
break;
}
switch (_type) {
case Oneloop:
case Notoneloop:
case Onelazy:
case Notonelazy:
case Setloop:
case Setlazy:
case Loop:
case Lazyloop:
ArgSb.Append("(Min = " + _m.ToString(CultureInfo.InvariantCulture) + ", Max = " + (_n == Int32.MaxValue ? "inf" : Convert.ToString(_n, CultureInfo.InvariantCulture)) + ")");
break;
}
return ArgSb.ToString();
}
internal const String Space = " ";
internal void Dump() {
List<int> Stack = new List<int>();
RegexNode CurNode;
int CurChild;
CurNode = this;
CurChild = 0;
Debug.WriteLine(CurNode.Description());
for (;;) {
if (CurNode._children != null && CurChild < CurNode._children.Count) {
Stack.Add(CurChild + 1);
CurNode = CurNode._children[CurChild];
CurChild = 0;
int Depth = Stack.Count;
if (Depth > 32)
Depth = 32;
Debug.WriteLine(Space.Substring(0, Depth) + CurNode.Description());
}
else {
if (Stack.Count == 0)
break;
CurChild = Stack[Stack.Count - 1];
Stack.RemoveAt(Stack.Count - 1);
CurNode = CurNode._next;
}
}
}
#endif
}
}
|