1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
|
//
// PKCS1.cs - Implements PKCS#1 primitives.
//
// Author:
// Sebastien Pouliot <sebastien@xamarin.com>
//
// (C) 2002, 2003 Motus Technologies Inc. (http://www.motus.com)
// Copyright (C) 2004 Novell, Inc (http://www.novell.com)
// Copyright 2013 Xamarin Inc. (http://www.xamarin.com)
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Security.Cryptography;
namespace Mono.Security.Cryptography {
// References:
// a. PKCS#1: RSA Cryptography Standard
// http://www.rsasecurity.com/rsalabs/pkcs/pkcs-1/index.html
#if INSIDE_CORLIB
internal
#else
public
#endif
sealed class PKCS1 {
private PKCS1 ()
{
}
private static bool Compare (byte[] array1, byte[] array2)
{
bool result = (array1.Length == array2.Length);
if (result) {
for (int i=0; i < array1.Length; i++)
if (array1[i] != array2[i])
return false;
}
return result;
}
private static byte[] xor (byte[] array1, byte[] array2)
{
byte[] result = new byte [array1.Length];
for (int i=0; i < result.Length; i++)
result[i] = (byte) (array1[i] ^ array2[i]);
return result;
}
private static byte[] emptySHA1 = { 0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d, 0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90, 0xaf, 0xd8, 0x07, 0x09 };
private static byte[] emptySHA256 = { 0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55 };
private static byte[] emptySHA384 = { 0x38, 0xb0, 0x60, 0xa7, 0x51, 0xac, 0x96, 0x38, 0x4c, 0xd9, 0x32, 0x7e, 0xb1, 0xb1, 0xe3, 0x6a, 0x21, 0xfd, 0xb7, 0x11, 0x14, 0xbe, 0x07, 0x43, 0x4c, 0x0c, 0xc7, 0xbf, 0x63, 0xf6, 0xe1, 0xda, 0x27, 0x4e, 0xde, 0xbf, 0xe7, 0x6f, 0x65, 0xfb, 0xd5, 0x1a, 0xd2, 0xf1, 0x48, 0x98, 0xb9, 0x5b };
private static byte[] emptySHA512 = { 0xcf, 0x83, 0xe1, 0x35, 0x7e, 0xef, 0xb8, 0xbd, 0xf1, 0x54, 0x28, 0x50, 0xd6, 0x6d, 0x80, 0x07, 0xd6, 0x20, 0xe4, 0x05, 0x0b, 0x57, 0x15, 0xdc, 0x83, 0xf4, 0xa9, 0x21, 0xd3, 0x6c, 0xe9, 0xce, 0x47, 0xd0, 0xd1, 0x3c, 0x5d, 0x85, 0xf2, 0xb0, 0xff, 0x83, 0x18, 0xd2, 0x87, 0x7e, 0xec, 0x2f, 0x63, 0xb9, 0x31, 0xbd, 0x47, 0x41, 0x7a, 0x81, 0xa5, 0x38, 0x32, 0x7a, 0xf9, 0x27, 0xda, 0x3e };
private static byte[] GetEmptyHash (HashAlgorithm hash)
{
if (hash is SHA1)
return emptySHA1;
else if (hash is SHA256)
return emptySHA256;
else if (hash is SHA384)
return emptySHA384;
else if (hash is SHA512)
return emptySHA512;
else
return hash.ComputeHash ((byte[])null);
}
// PKCS #1 v.2.1, Section 4.1
// I2OSP converts a non-negative integer to an octet string of a specified length.
public static byte[] I2OSP (int x, int size)
{
byte[] array = BitConverterLE.GetBytes (x);
Array.Reverse (array, 0, array.Length);
return I2OSP (array, size);
}
public static byte[] I2OSP (byte[] x, int size)
{
byte[] result = new byte [size];
Buffer.BlockCopy (x, 0, result, (result.Length - x.Length), x.Length);
return result;
}
// PKCS #1 v.2.1, Section 4.2
// OS2IP converts an octet string to a nonnegative integer.
public static byte[] OS2IP (byte[] x)
{
int i = 0;
while ((x [i++] == 0x00) && (i < x.Length)) {
// confuse compiler into reporting a warning with {}
}
i--;
if (i > 0) {
byte[] result = new byte [x.Length - i];
Buffer.BlockCopy (x, i, result, 0, result.Length);
return result;
}
else
return x;
}
// PKCS #1 v.2.1, Section 5.1.1
public static byte[] RSAEP (RSA rsa, byte[] m)
{
// c = m^e mod n
return rsa.EncryptValue (m);
}
// PKCS #1 v.2.1, Section 5.1.2
public static byte[] RSADP (RSA rsa, byte[] c)
{
// m = c^d mod n
// Decrypt value may apply CRT optimizations
return rsa.DecryptValue (c);
}
// PKCS #1 v.2.1, Section 5.2.1
public static byte[] RSASP1 (RSA rsa, byte[] m)
{
// first form: s = m^d mod n
// Decrypt value may apply CRT optimizations
return rsa.DecryptValue (m);
}
// PKCS #1 v.2.1, Section 5.2.2
public static byte[] RSAVP1 (RSA rsa, byte[] s)
{
// m = s^e mod n
return rsa.EncryptValue (s);
}
// PKCS #1 v.2.1, Section 7.1.1
// RSAES-OAEP-ENCRYPT ((n, e), M, L)
public static byte[] Encrypt_OAEP (RSA rsa, HashAlgorithm hash, RandomNumberGenerator rng, byte[] M)
{
int size = rsa.KeySize / 8;
int hLen = hash.HashSize / 8;
if (M.Length > size - 2 * hLen - 2)
throw new CryptographicException ("message too long");
// empty label L SHA1 hash
byte[] lHash = GetEmptyHash (hash);
int PSLength = (size - M.Length - 2 * hLen - 2);
// DB = lHash || PS || 0x01 || M
byte[] DB = new byte [lHash.Length + PSLength + 1 + M.Length];
Buffer.BlockCopy (lHash, 0, DB, 0, lHash.Length);
DB [(lHash.Length + PSLength)] = 0x01;
Buffer.BlockCopy (M, 0, DB, (DB.Length - M.Length), M.Length);
byte[] seed = new byte [hLen];
rng.GetBytes (seed);
byte[] dbMask = MGF1 (hash, seed, size - hLen - 1);
byte[] maskedDB = xor (DB, dbMask);
byte[] seedMask = MGF1 (hash, maskedDB, hLen);
byte[] maskedSeed = xor (seed, seedMask);
// EM = 0x00 || maskedSeed || maskedDB
byte[] EM = new byte [maskedSeed.Length + maskedDB.Length + 1];
Buffer.BlockCopy (maskedSeed, 0, EM, 1, maskedSeed.Length);
Buffer.BlockCopy (maskedDB, 0, EM, maskedSeed.Length + 1, maskedDB.Length);
byte[] m = OS2IP (EM);
byte[] c = RSAEP (rsa, m);
return I2OSP (c, size);
}
// PKCS #1 v.2.1, Section 7.1.2
// RSAES-OAEP-DECRYPT (K, C, L)
public static byte[] Decrypt_OAEP (RSA rsa, HashAlgorithm hash, byte[] C)
{
int size = rsa.KeySize / 8;
int hLen = hash.HashSize / 8;
if ((size < (2 * hLen + 2)) || (C.Length != size))
throw new CryptographicException ("decryption error");
byte[] c = OS2IP (C);
byte[] m = RSADP (rsa, c);
byte[] EM = I2OSP (m, size);
// split EM = Y || maskedSeed || maskedDB
byte[] maskedSeed = new byte [hLen];
Buffer.BlockCopy (EM, 1, maskedSeed, 0, maskedSeed.Length);
byte[] maskedDB = new byte [size - hLen - 1];
Buffer.BlockCopy (EM, (EM.Length - maskedDB.Length), maskedDB, 0, maskedDB.Length);
byte[] seedMask = MGF1 (hash, maskedDB, hLen);
byte[] seed = xor (maskedSeed, seedMask);
byte[] dbMask = MGF1 (hash, seed, size - hLen - 1);
byte[] DB = xor (maskedDB, dbMask);
byte[] lHash = GetEmptyHash (hash);
// split DB = lHash' || PS || 0x01 || M
byte[] dbHash = new byte [lHash.Length];
Buffer.BlockCopy (DB, 0, dbHash, 0, dbHash.Length);
bool h = Compare (lHash, dbHash);
// find separator 0x01
int nPos = lHash.Length;
while (DB[nPos] == 0)
nPos++;
int Msize = DB.Length - nPos - 1;
byte[] M = new byte [Msize];
Buffer.BlockCopy (DB, (nPos + 1), M, 0, Msize);
// we could have returned EM[0] sooner but would be helping a timing attack
if ((EM[0] != 0) || (!h) || (DB[nPos] != 0x01))
return null;
return M;
}
// PKCS #1 v.2.1, Section 7.2.1
// RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)
public static byte[] Encrypt_v15 (RSA rsa, RandomNumberGenerator rng, byte[] M)
{
int size = rsa.KeySize / 8;
if (M.Length > size - 11)
throw new CryptographicException ("message too long");
int PSLength = System.Math.Max (8, (size - M.Length - 3));
byte[] PS = new byte [PSLength];
rng.GetNonZeroBytes (PS);
byte[] EM = new byte [size];
EM [1] = 0x02;
Buffer.BlockCopy (PS, 0, EM, 2, PSLength);
Buffer.BlockCopy (M, 0, EM, (size - M.Length), M.Length);
byte[] m = OS2IP (EM);
byte[] c = RSAEP (rsa, m);
byte[] C = I2OSP (c, size);
return C;
}
// PKCS #1 v.2.1, Section 7.2.2
// RSAES-PKCS1-V1_5-DECRYPT (K, C)
public static byte[] Decrypt_v15 (RSA rsa, byte[] C)
{
int size = rsa.KeySize >> 3; // div by 8
if ((size < 11) || (C.Length > size))
throw new CryptographicException ("decryption error");
byte[] c = OS2IP (C);
byte[] m = RSADP (rsa, c);
byte[] EM = I2OSP (m, size);
if ((EM [0] != 0x00) || (EM [1] != 0x02))
return null;
int mPos = 10;
// PS is a minimum of 8 bytes + 2 bytes for header
while ((EM [mPos] != 0x00) && (mPos < EM.Length))
mPos++;
if (EM [mPos] != 0x00)
return null;
mPos++;
byte[] M = new byte [EM.Length - mPos];
Buffer.BlockCopy (EM, mPos, M, 0, M.Length);
return M;
}
// PKCS #1 v.2.1, Section 8.2.1
// RSASSA-PKCS1-V1_5-SIGN (K, M)
public static byte[] Sign_v15 (RSA rsa, HashAlgorithm hash, byte[] hashValue)
{
int size = (rsa.KeySize >> 3); // div 8
byte[] EM = Encode_v15 (hash, hashValue, size);
byte[] m = OS2IP (EM);
byte[] s = RSASP1 (rsa, m);
byte[] S = I2OSP (s, size);
return S;
}
internal static byte[] Sign_v15 (RSA rsa, string hashName, byte[] hashValue)
{
using (var hash = CreateFromName (hashName))
return Sign_v15 (rsa, hash, hashValue);
}
// PKCS #1 v.2.1, Section 8.2.2
// RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)
public static bool Verify_v15 (RSA rsa, HashAlgorithm hash, byte[] hashValue, byte[] signature)
{
return Verify_v15 (rsa, hash, hashValue, signature, false);
}
internal static bool Verify_v15 (RSA rsa, string hashName, byte[] hashValue, byte[] signature)
{
using (var hash = CreateFromName (hashName))
return Verify_v15 (rsa, hash, hashValue, signature, false);
}
// DO NOT USE WITHOUT A VERY GOOD REASON
public static bool Verify_v15 (RSA rsa, HashAlgorithm hash, byte [] hashValue, byte [] signature, bool tryNonStandardEncoding)
{
int size = (rsa.KeySize >> 3); // div 8
byte[] s = OS2IP (signature);
byte[] m = RSAVP1 (rsa, s);
byte[] EM2 = I2OSP (m, size);
byte[] EM = Encode_v15 (hash, hashValue, size);
bool result = Compare (EM, EM2);
if (result || !tryNonStandardEncoding)
return result;
// NOTE: some signatures don't include the hash OID (pretty lame but real)
// and compatible with MS implementation. E.g. Verisign Authenticode Timestamps
// we're making this "as safe as possible"
if ((EM2 [0] != 0x00) || (EM2 [1] != 0x01))
return false;
int i;
for (i = 2; i < EM2.Length - hashValue.Length - 1; i++) {
if (EM2 [i] != 0xFF)
return false;
}
if (EM2 [i++] != 0x00)
return false;
byte [] decryptedHash = new byte [hashValue.Length];
Buffer.BlockCopy (EM2, i, decryptedHash, 0, decryptedHash.Length);
return Compare (decryptedHash, hashValue);
}
// PKCS #1 v.2.1, Section 9.2
// EMSA-PKCS1-v1_5-Encode
public static byte[] Encode_v15 (HashAlgorithm hash, byte[] hashValue, int emLength)
{
if (hashValue.Length != (hash.HashSize >> 3))
throw new CryptographicException ("bad hash length for " + hash.ToString ());
// DigestInfo ::= SEQUENCE {
// digestAlgorithm AlgorithmIdentifier,
// digest OCTET STRING
// }
byte[] t = null;
string oid = CryptoConfig.MapNameToOID (hash.ToString ());
if (oid != null)
{
ASN1 digestAlgorithm = new ASN1 (0x30);
digestAlgorithm.Add (new ASN1 (CryptoConfig.EncodeOID (oid)));
digestAlgorithm.Add (new ASN1 (0x05)); // NULL
ASN1 digest = new ASN1 (0x04, hashValue);
ASN1 digestInfo = new ASN1 (0x30);
digestInfo.Add (digestAlgorithm);
digestInfo.Add (digest);
t = digestInfo.GetBytes ();
}
else
{
// There are no valid OID, in this case t = hashValue
// This is the case of the MD5SHA hash algorithm
t = hashValue;
}
Buffer.BlockCopy (hashValue, 0, t, t.Length - hashValue.Length, hashValue.Length);
int PSLength = System.Math.Max (8, emLength - t.Length - 3);
// PS = PSLength of 0xff
// EM = 0x00 | 0x01 | PS | 0x00 | T
byte[] EM = new byte [PSLength + t.Length + 3];
EM [1] = 0x01;
for (int i=2; i < PSLength + 2; i++)
EM[i] = 0xff;
Buffer.BlockCopy (t, 0, EM, PSLength + 3, t.Length);
return EM;
}
// PKCS #1 v.2.1, Section B.2.1
public static byte[] MGF1 (HashAlgorithm hash, byte[] mgfSeed, int maskLen)
{
// 1. If maskLen > 2^32 hLen, output "mask too long" and stop.
// easy - this is impossible by using a int (31bits) as parameter ;-)
// BUT with a signed int we do have to check for negative values!
if (maskLen < 0)
throw new OverflowException();
int mgfSeedLength = mgfSeed.Length;
int hLen = (hash.HashSize >> 3); // from bits to bytes
int iterations = (maskLen / hLen);
if (maskLen % hLen != 0)
iterations++;
// 2. Let T be the empty octet string.
byte[] T = new byte [iterations * hLen];
byte[] toBeHashed = new byte [mgfSeedLength + 4];
int pos = 0;
// 3. For counter from 0 to \ceil (maskLen / hLen) - 1, do the following:
for (int counter = 0; counter < iterations; counter++) {
// a. Convert counter to an octet string C of length 4 octets
byte[] C = I2OSP (counter, 4);
// b. Concatenate the hash of the seed mgfSeed and C to the octet string T:
// T = T || Hash (mgfSeed || C)
Buffer.BlockCopy (mgfSeed, 0, toBeHashed, 0, mgfSeedLength);
Buffer.BlockCopy (C, 0, toBeHashed, mgfSeedLength, 4);
byte[] output = hash.ComputeHash (toBeHashed);
Buffer.BlockCopy (output, 0, T, pos, hLen);
pos += hLen;
}
// 4. Output the leading maskLen octets of T as the octet string mask.
byte[] mask = new byte [maskLen];
Buffer.BlockCopy (T, 0, mask, 0, maskLen);
return mask;
}
static internal string HashNameFromOid (string oid, bool throwOnError = true)
{
switch (oid) {
case "1.2.840.113549.1.1.2": // MD2 with RSA encryption
return "MD2";
case "1.2.840.113549.1.1.3": // MD4 with RSA encryption
return "MD4";
case "1.2.840.113549.1.1.4": // MD5 with RSA encryption
return "MD5";
case "1.2.840.113549.1.1.5": // SHA-1 with RSA Encryption
case "1.3.14.3.2.29": // SHA1 with RSA signature
case "1.2.840.10040.4.3": // SHA1-1 with DSA
return "SHA1";
case "1.2.840.113549.1.1.11": // SHA-256 with RSA Encryption
return "SHA256";
case "1.2.840.113549.1.1.12": // SHA-384 with RSA Encryption
return "SHA384";
case "1.2.840.113549.1.1.13": // SHA-512 with RSA Encryption
return "SHA512";
case "1.3.36.3.3.1.2":
return "RIPEMD160";
default:
if (throwOnError)
throw new CryptographicException ("Unsupported hash algorithm: " + oid);
return null;
}
}
static internal HashAlgorithm CreateFromOid (string oid)
{
return CreateFromName (HashNameFromOid (oid));
}
static internal HashAlgorithm CreateFromName (string name)
{
#if FULL_AOT_RUNTIME
switch (name) {
case "MD2":
return MD2.Create ();
case "MD4":
return MD4.Create ();
case "MD5":
return MD5.Create ();
case "SHA1":
return SHA1.Create ();
case "SHA256":
return SHA256.Create ();
case "SHA384":
return SHA384.Create ();
case "SHA512":
return SHA512.Create ();
case "RIPEMD160":
return RIPEMD160.Create ();
default:
try {
return (HashAlgorithm) Activator.CreateInstance (Type.GetType (name));
}
catch {
throw new CryptographicException ("Unsupported hash algorithm: " + name);
}
}
#else
return HashAlgorithm.Create (name);
#endif
}
}
}
|