1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
|
//
// RSAManaged.cs - Implements the RSA algorithm.
//
// Authors:
// Sebastien Pouliot (sebastien@ximian.com)
// Ben Maurer (bmaurer@users.sf.net)
//
// (C) 2002, 2003 Motus Technologies Inc. (http://www.motus.com)
// Portions (C) 2003 Ben Maurer
// Copyright (C) 2004,2006 Novell, Inc (http://www.novell.com)
//
// Key generation translated from Bouncy Castle JCE (http://www.bouncycastle.org/)
// See bouncycastle.txt for license.
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to
// the following conditions:
//
// The above copyright notice and this permission notice shall be
// included in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
using System;
using System.Security.Cryptography;
using System.Text;
using Mono.Math;
// Big chunks of code are coming from the original RSACryptoServiceProvider class.
// The class was refactored to :
// a. ease integration of new hash algorithm (like MD2, RIPEMD160, ...);
// b. provide better support for the coming SSL implementation (requires
// EncryptValue/DecryptValue) with, or without, Mono runtime/corlib;
// c. provide an alternative RSA implementation for all Windows (like using
// OAEP without Windows XP).
namespace Mono.Security.Cryptography {
#if INSIDE_CORLIB
internal
#else
public
#endif
class RSAManaged : RSA {
private const int defaultKeySize = 1024;
private bool isCRTpossible = false;
private bool keyBlinding = true;
private bool keypairGenerated = false;
private bool m_disposed = false;
private BigInteger d;
private BigInteger p;
private BigInteger q;
private BigInteger dp;
private BigInteger dq;
private BigInteger qInv;
private BigInteger n; // modulus
private BigInteger e;
public RSAManaged () : this (defaultKeySize)
{
}
public RSAManaged (int keySize)
{
LegalKeySizesValue = new KeySizes [1];
LegalKeySizesValue [0] = new KeySizes (384, 16384, 8);
base.KeySize = keySize;
}
~RSAManaged ()
{
// Zeroize private key
Dispose (false);
}
private void GenerateKeyPair ()
{
// p and q values should have a length of half the strength in bits
int pbitlength = ((KeySize + 1) >> 1);
int qbitlength = (KeySize - pbitlength);
const uint uint_e = 65537;
e = uint_e; // fixed
// generate p, prime and (p-1) relatively prime to e
for (;;) {
p = BigInteger.GeneratePseudoPrime (pbitlength);
if (p % uint_e != 1)
break;
}
// generate a modulus of the required length
for (;;) {
// generate q, prime and (q-1) relatively prime to e,
// and not equal to p
for (;;) {
q = BigInteger.GeneratePseudoPrime (qbitlength);
if ((q % uint_e != 1) && (p != q))
break;
}
// calculate the modulus
n = p * q;
if (n.BitCount () == KeySize)
break;
// if we get here our primes aren't big enough, make the largest
// of the two p and try again
if (p < q)
p = q;
}
BigInteger pSub1 = (p - 1);
BigInteger qSub1 = (q - 1);
BigInteger phi = pSub1 * qSub1;
// calculate the private exponent
d = e.ModInverse (phi);
// calculate the CRT factors
dp = d % pSub1;
dq = d % qSub1;
qInv = q.ModInverse (p);
keypairGenerated = true;
isCRTpossible = true;
if (KeyGenerated != null)
KeyGenerated (this, null);
}
// overrides from RSA class
public override int KeySize {
get {
if (m_disposed)
throw new ObjectDisposedException (Locale.GetText ("Keypair was disposed"));
// in case keypair hasn't been (yet) generated
if (keypairGenerated) {
int ks = n.BitCount ();
if ((ks & 7) != 0)
ks = ks + (8 - (ks & 7));
return ks;
}
else
return base.KeySize;
}
}
public override string KeyExchangeAlgorithm {
get { return "RSA-PKCS1-KeyEx"; }
}
// note: when (if) we generate a keypair then it will have both
// the public and private keys
public bool PublicOnly {
get { return (keypairGenerated && ((d == null) || (n == null))); }
}
public override string SignatureAlgorithm {
get { return "http://www.w3.org/2000/09/xmldsig#rsa-sha1"; }
}
public override byte[] DecryptValue (byte[] rgb)
{
if (m_disposed)
throw new ObjectDisposedException ("private key");
// decrypt operation is used for signature
if (!keypairGenerated)
GenerateKeyPair ();
BigInteger input = new BigInteger (rgb);
BigInteger r = null;
// we use key blinding (by default) against timing attacks
if (keyBlinding) {
// x = (r^e * g) mod n
// *new* random number (so it's timing is also random)
r = BigInteger.GenerateRandom (n.BitCount ());
input = r.ModPow (e, n) * input % n;
}
BigInteger output;
// decrypt (which uses the private key) can be
// optimized by using CRT (Chinese Remainder Theorem)
if (isCRTpossible) {
// m1 = c^dp mod p
BigInteger m1 = input.ModPow (dp, p);
// m2 = c^dq mod q
BigInteger m2 = input.ModPow (dq, q);
BigInteger h;
if (m2 > m1) {
// thanks to benm!
h = p - ((m2 - m1) * qInv % p);
output = m2 + q * h;
} else {
// h = (m1 - m2) * qInv mod p
h = (m1 - m2) * qInv % p;
// m = m2 + q * h;
output = m2 + q * h;
}
} else if (!PublicOnly) {
// m = c^d mod n
output = input.ModPow (d, n);
} else {
throw new CryptographicException (Locale.GetText ("Missing private key to decrypt value."));
}
if (keyBlinding) {
// Complete blinding
// x^e / r mod n
output = output * r.ModInverse (n) % n;
r.Clear ();
}
// it's sometimes possible for the results to be a byte short
// and this can break some software (see #79502) so we 0x00 pad the result
byte[] result = GetPaddedValue (output, (KeySize >> 3));
// zeroize values
input.Clear ();
output.Clear ();
return result;
}
public override byte[] EncryptValue (byte[] rgb)
{
if (m_disposed)
throw new ObjectDisposedException ("public key");
if (!keypairGenerated)
GenerateKeyPair ();
BigInteger input = new BigInteger (rgb);
BigInteger output = input.ModPow (e, n);
// it's sometimes possible for the results to be a byte short
// and this can break some software (see #79502) so we 0x00 pad the result
byte[] result = GetPaddedValue (output, (KeySize >> 3));
// zeroize value
input.Clear ();
output.Clear ();
return result;
}
public override RSAParameters ExportParameters (bool includePrivateParameters)
{
if (m_disposed)
throw new ObjectDisposedException (Locale.GetText ("Keypair was disposed"));
if (!keypairGenerated)
GenerateKeyPair ();
RSAParameters param = new RSAParameters ();
param.Exponent = e.GetBytes ();
param.Modulus = n.GetBytes ();
if (includePrivateParameters) {
// some parameters are required for exporting the private key
if (d == null)
throw new CryptographicException ("Missing private key");
param.D = d.GetBytes ();
// hack for bugzilla #57941 where D wasn't provided
if (param.D.Length != param.Modulus.Length) {
byte[] normalizedD = new byte [param.Modulus.Length];
Buffer.BlockCopy (param.D, 0, normalizedD, (normalizedD.Length - param.D.Length), param.D.Length);
param.D = normalizedD;
}
// but CRT parameters are optionals
if ((p != null) && (q != null) && (dp != null) && (dq != null) && (qInv != null)) {
// and we include them only if we have them all
int length = (KeySize >> 4);
param.P = GetPaddedValue (p, length);
param.Q = GetPaddedValue (q, length);
param.DP = GetPaddedValue (dp, length);
param.DQ = GetPaddedValue (dq, length);
param.InverseQ = GetPaddedValue (qInv, length);
}
}
return param;
}
public override void ImportParameters (RSAParameters parameters)
{
if (m_disposed)
throw new ObjectDisposedException (Locale.GetText ("Keypair was disposed"));
// if missing "mandatory" parameters
if (parameters.Exponent == null)
throw new CryptographicException (Locale.GetText ("Missing Exponent"));
if (parameters.Modulus == null)
throw new CryptographicException (Locale.GetText ("Missing Modulus"));
e = new BigInteger (parameters.Exponent);
n = new BigInteger (parameters.Modulus);
//reset all private key values to null
d = dp = dq = qInv = p = q = null;
// only if the private key is present
if (parameters.D != null)
d = new BigInteger (parameters.D);
if (parameters.DP != null)
dp = new BigInteger (parameters.DP);
if (parameters.DQ != null)
dq = new BigInteger (parameters.DQ);
if (parameters.InverseQ != null)
qInv = new BigInteger (parameters.InverseQ);
if (parameters.P != null)
p = new BigInteger (parameters.P);
if (parameters.Q != null)
q = new BigInteger (parameters.Q);
// we now have a keypair
keypairGenerated = true;
bool privateKey = ((p != null) && (q != null) && (dp != null));
isCRTpossible = (privateKey && (dq != null) && (qInv != null));
// check if the public/private keys match
// the way the check is made allows a bad D to work if CRT is available (like MS does, see unit tests)
if (!privateKey)
return;
// always check n == p * q
bool ok = (n == (p * q));
if (ok) {
// we now know that p and q are correct, so (p - 1), (q - 1) and phi will be ok too
BigInteger pSub1 = (p - 1);
BigInteger qSub1 = (q - 1);
BigInteger phi = pSub1 * qSub1;
// e is fairly static but anyway we can ensure it makes sense by recomputing d
BigInteger dcheck = e.ModInverse (phi);
// now if our new d(check) is different than the d we're provided then we cannot
// be sure if 'd' or 'e' is invalid... (note that, from experience, 'd' is more
// likely to be invalid since it's twice as large as DP (or DQ) and sits at the
// end of the structure (e.g. truncation).
ok = (d == dcheck);
// ... unless we have the pre-computed CRT parameters
if (!ok && isCRTpossible) {
// we can override the previous decision since Mono always prefer, for
// performance reasons, using the CRT algorithm
ok = (dp == (dcheck % pSub1)) && (dq == (dcheck % qSub1)) &&
(qInv == q.ModInverse (p));
}
}
if (!ok)
throw new CryptographicException (Locale.GetText ("Private/public key mismatch"));
}
protected override void Dispose (bool disposing)
{
if (!m_disposed) {
// Always zeroize private key
if (d != null) {
d.Clear ();
d = null;
}
if (p != null) {
p.Clear ();
p = null;
}
if (q != null) {
q.Clear ();
q = null;
}
if (dp != null) {
dp.Clear ();
dp = null;
}
if (dq != null) {
dq.Clear ();
dq = null;
}
if (qInv != null) {
qInv.Clear ();
qInv = null;
}
if (disposing) {
// clear public key
if (e != null) {
e.Clear ();
e = null;
}
if (n != null) {
n.Clear ();
n = null;
}
}
}
// call base class
// no need as they all are abstract before us
m_disposed = true;
}
public delegate void KeyGeneratedEventHandler (object sender, EventArgs e);
public event KeyGeneratedEventHandler KeyGenerated;
public override string ToXmlString (bool includePrivateParameters)
{
StringBuilder sb = new StringBuilder ();
RSAParameters rsaParams = ExportParameters (includePrivateParameters);
try {
sb.Append ("<RSAKeyValue>");
sb.Append ("<Modulus>");
sb.Append (Convert.ToBase64String (rsaParams.Modulus));
sb.Append ("</Modulus>");
sb.Append ("<Exponent>");
sb.Append (Convert.ToBase64String (rsaParams.Exponent));
sb.Append ("</Exponent>");
if (includePrivateParameters) {
if (rsaParams.P != null) {
sb.Append ("<P>");
sb.Append (Convert.ToBase64String (rsaParams.P));
sb.Append ("</P>");
}
if (rsaParams.Q != null) {
sb.Append ("<Q>");
sb.Append (Convert.ToBase64String (rsaParams.Q));
sb.Append ("</Q>");
}
if (rsaParams.DP != null) {
sb.Append ("<DP>");
sb.Append (Convert.ToBase64String (rsaParams.DP));
sb.Append ("</DP>");
}
if (rsaParams.DQ != null) {
sb.Append ("<DQ>");
sb.Append (Convert.ToBase64String (rsaParams.DQ));
sb.Append ("</DQ>");
}
if (rsaParams.InverseQ != null) {
sb.Append ("<InverseQ>");
sb.Append (Convert.ToBase64String (rsaParams.InverseQ));
sb.Append ("</InverseQ>");
}
sb.Append ("<D>");
sb.Append (Convert.ToBase64String (rsaParams.D));
sb.Append ("</D>");
}
sb.Append ("</RSAKeyValue>");
}
catch {
if (rsaParams.P != null)
Array.Clear (rsaParams.P, 0, rsaParams.P.Length);
if (rsaParams.Q != null)
Array.Clear (rsaParams.Q, 0, rsaParams.Q.Length);
if (rsaParams.DP != null)
Array.Clear (rsaParams.DP, 0, rsaParams.DP.Length);
if (rsaParams.DQ != null)
Array.Clear (rsaParams.DQ, 0, rsaParams.DQ.Length);
if (rsaParams.InverseQ != null)
Array.Clear (rsaParams.InverseQ, 0, rsaParams.InverseQ.Length);
if (rsaParams.D != null)
Array.Clear (rsaParams.D, 0, rsaParams.D.Length);
throw;
}
return sb.ToString ();
}
// internal for Mono 1.0.x in order to preserve public contract
// they are public for Mono 1.1.x (for 1.2) as the API isn't froze ATM
public bool UseKeyBlinding {
get { return keyBlinding; }
// you REALLY shoudn't touch this (true is fine ;-)
set { keyBlinding = value; }
}
public bool IsCrtPossible {
// either the key pair isn't generated (and will be
// generated with CRT parameters) or CRT is (or isn't)
// possible (in case the key was imported)
get { return (!keypairGenerated || isCRTpossible); }
}
private byte[] GetPaddedValue (BigInteger value, int length)
{
byte[] result = value.GetBytes ();
if (result.Length >= length)
return result;
// left-pad 0x00 value on the result (same integer, correct length)
byte[] padded = new byte[length];
Buffer.BlockCopy (result, 0, padded, (length - result.Length), result.Length);
// temporary result may contain decrypted (plaintext) data, clear it
Array.Clear (result, 0, result.Length);
return padded;
}
}
}
|