File: Decimal.cs

package info (click to toggle)
mono 6.8.0.105%2Bdfsg-3.3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,284,512 kB
  • sloc: cs: 11,172,132; xml: 2,850,069; ansic: 671,653; cpp: 122,091; perl: 59,366; javascript: 30,841; asm: 22,168; makefile: 20,093; sh: 15,020; python: 4,827; pascal: 925; sql: 859; sed: 16; php: 1
file content (3913 lines) | stat: -rw-r--r-- 150,655 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
// See the LICENSE file in the project root for more information.

using System.Diagnostics;
using System.Globalization;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Serialization;

namespace System
{
    // Implements the Decimal data type. The Decimal data type can
    // represent values ranging from -79,228,162,514,264,337,593,543,950,335 to
    // 79,228,162,514,264,337,593,543,950,335 with 28 significant digits. The
    // Decimal data type is ideally suited to financial calculations that
    // require a large number of significant digits and no round-off errors.
    //
    // The finite set of values of type Decimal are of the form m
    // / 10e, where m is an integer such that
    // -296 <; m <; 296, and e is an integer
    // between 0 and 28 inclusive.
    //
    // Contrary to the float and double data types, decimal
    // fractional numbers such as 0.1 can be represented exactly in the
    // Decimal representation. In the float and double
    // representations, such numbers are often infinite fractions, making those
    // representations more prone to round-off errors.
    //
    // The Decimal class implements widening conversions from the
    // ubyte, char, short, int, and long types
    // to Decimal. These widening conversions never loose any information
    // and never throw exceptions. The Decimal class also implements
    // narrowing conversions from Decimal to ubyte, char,
    // short, int, and long. These narrowing conversions round
    // the Decimal value towards zero to the nearest integer, and then
    // converts that integer to the destination type. An OverflowException
    // is thrown if the result is not within the range of the destination type.
    //
    // The Decimal class provides a widening conversion from
    // Currency to Decimal. This widening conversion never loses any
    // information and never throws exceptions. The Currency class provides
    // a narrowing conversion from Decimal to Currency. This
    // narrowing conversion rounds the Decimal to four decimals and then
    // converts that number to a Currency. An OverflowException
    // is thrown if the result is not within the range of the Currency type.
    //
    // The Decimal class provides narrowing conversions to and from the
    // float and double types. A conversion from Decimal to
    // float or double may loose precision, but will not loose
    // information about the overall magnitude of the numeric value, and will never
    // throw an exception. A conversion from float or double to
    // Decimal throws an OverflowException if the value is not within
    // the range of the Decimal type.
    [Serializable]
    [StructLayout(LayoutKind.Explicit)]
#if !MONO
    [System.Runtime.CompilerServices.TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")]
#endif
    public readonly partial struct Decimal : IFormattable, IComparable, IConvertible, IComparable<decimal>, IEquatable<decimal>, IDeserializationCallback, ISpanFormattable
    {
        // Sign mask for the flags field. A value of zero in this bit indicates a
        // positive Decimal value, and a value of one in this bit indicates a
        // negative Decimal value.
        // 
        // Look at OleAut's DECIMAL_NEG constant to check for negative values
        // in native code.
        private const int SignMask = unchecked((int)0x80000000);

        // Scale mask for the flags field. This byte in the flags field contains
        // the power of 10 to divide the Decimal value by. The scale byte must
        // contain a value between 0 and 28 inclusive.
        private const int ScaleMask = 0x00FF0000;

        // Number of bits scale is shifted by.
        private const int ScaleShift = 16;

        // Constant representing the Decimal value 0.
        public const decimal Zero = 0m;

        // Constant representing the Decimal value 1.
        public const decimal One = 1m;

        // Constant representing the Decimal value -1.
        public const decimal MinusOne = -1m;

        // Constant representing the largest possible Decimal value. The value of
        // this constant is 79,228,162,514,264,337,593,543,950,335.
        public const decimal MaxValue = 79228162514264337593543950335m;

        // Constant representing the smallest possible Decimal value. The value of
        // this constant is -79,228,162,514,264,337,593,543,950,335.
        public const decimal MinValue = -79228162514264337593543950335m;

        // The lo, mid, hi, and flags fields contain the representation of the
        // Decimal value. The lo, mid, and hi fields contain the 96-bit integer
        // part of the Decimal. Bits 0-15 (the lower word) of the flags field are
        // unused and must be zero; bits 16-23 contain must contain a value between
        // 0 and 28, indicating the power of 10 to divide the 96-bit integer part
        // by to produce the Decimal value; bits 24-30 are unused and must be zero;
        // and finally bit 31 indicates the sign of the Decimal value, 0 meaning
        // positive and 1 meaning negative.
        //
        // NOTE: Do not change the order in which these fields are declared. The
        // native methods in this class rely on this particular order. 
        // Do not rename (binary serialization).
        [FieldOffset(0)]
        private readonly int flags;
        [FieldOffset(4)]
        private readonly int hi;
        [FieldOffset(8)]
        private readonly int lo;
        [FieldOffset(12)]
        private readonly int mid;

        /// <summary>
        /// The low and mid fields combined in little-endian order
        /// </summary>
        [FieldOffset(8), NonSerialized]
        private readonly ulong ulomidLE;

        // Constructs a Decimal from an integer value.
        //
        public Decimal(int value)
#if __MonoCS__
        : this()
#endif
        {
            if (value >= 0)
            {
                flags = 0;
            }
            else
            {
                flags = SignMask;
                value = -value;
            }
            lo = value;
            mid = 0;
            hi = 0;
        }

        // Constructs a Decimal from an unsigned integer value.
        //
        [CLSCompliant(false)]
        public Decimal(uint value)
#if __MonoCS__
        : this()
#endif
        {
            flags = 0;
            lo = (int)value;
            mid = 0;
            hi = 0;
        }

        // Constructs a Decimal from a long value.
        //
        public Decimal(long value)
#if __MonoCS__
        : this()
#endif
        {
            if (value >= 0)
            {
                flags = 0;
            }
            else
            {
                flags = SignMask;
                value = -value;
            }
            lo = (int)value;
            mid = (int)(value >> 32);
            hi = 0;
        }

        // Constructs a Decimal from an unsigned long value.
        //
        [CLSCompliant(false)]
        public Decimal(ulong value)
#if __MonoCS__
        : this()
#endif
        {
            flags = 0;
            lo = (int)value;
            mid = (int)(value >> 32);
            hi = 0;
        }

        // Constructs a Decimal from a float value.
        //
        public Decimal(float value)
#if __MonoCS__
        : this()
#endif
        {
            DecCalc.VarDecFromR4(value, out AsMutable(ref this));
        }

        // Constructs a Decimal from a double value.
        //
        public Decimal(double value)
#if __MonoCS__
        : this()
#endif
        {
            DecCalc.VarDecFromR8(value, out AsMutable(ref this));
        }

        //
        // Decimal <==> Currency conversion.
        //
        // A Currency represents a positive or negative decimal value with 4 digits past the decimal point. The actual Int64 representation used by these methods
        // is the currency value multiplied by 10,000. For example, a currency value of $12.99 would be represented by the Int64 value 129,900.
        //
        public static decimal FromOACurrency(long cy)
        {
            ulong absoluteCy; // has to be ulong to accommodate the case where cy == long.MinValue.
            bool isNegative = false;
            if (cy < 0)
            {
                isNegative = true;
                absoluteCy = (ulong)(-cy);
            }
            else
            {
                absoluteCy = (ulong)cy;
            }

            // In most cases, FromOACurrency() produces a Decimal with Scale set to 4. Unless, that is, some of the trailing digits past the decimal point are zero,
            // in which case, for compatibility with .Net, we reduce the Scale by the number of zeros. While the result is still numerically equivalent, the scale does
            // affect the ToString() value. In particular, it prevents a converted currency value of $12.95 from printing uglily as "12.9500".
            int scale = 4;
            if (absoluteCy != 0)  // For compatibility, a currency of 0 emits the Decimal "0.0000" (scale set to 4).
            {
                while (scale != 0 && ((absoluteCy % 10) == 0))
                {
                    scale--;
                    absoluteCy /= 10;
                }
            }

            return new decimal((int)absoluteCy, (int)(absoluteCy >> 32), 0, isNegative, (byte)scale);
        }

        public static long ToOACurrency(decimal value)
        {
            return DecCalc.VarCyFromDec(ref AsMutable(ref value));
        }

        private static bool IsValid(int flags) => (flags & ~(SignMask | ScaleMask)) == 0 && ((uint)(flags & ScaleMask) <= (28 << ScaleShift));

        // Constructs a Decimal from an integer array containing a binary
        // representation. The bits argument must be a non-null integer
        // array with four elements. bits[0], bits[1], and
        // bits[2] contain the low, middle, and high 32 bits of the 96-bit
        // integer part of the Decimal. bits[3] contains the scale factor
        // and sign of the Decimal: bits 0-15 (the lower word) are unused and must
        // be zero; bits 16-23 must contain a value between 0 and 28, indicating
        // the power of 10 to divide the 96-bit integer part by to produce the
        // Decimal value; bits 24-30 are unused and must be zero; and finally bit
        // 31 indicates the sign of the Decimal value, 0 meaning positive and 1
        // meaning negative.
        //
        // Note that there are several possible binary representations for the
        // same numeric value. For example, the value 1 can be represented as {1,
        // 0, 0, 0} (integer value 1 with a scale factor of 0) and equally well as
        // {1000, 0, 0, 0x30000} (integer value 1000 with a scale factor of 3).
        // The possible binary representations of a particular value are all
        // equally valid, and all are numerically equivalent.
        //
        public Decimal(int[] bits)
#if __MonoCS__
        : this()
#endif
        {
            if (bits == null)
                throw new ArgumentNullException(nameof(bits));
            if (bits.Length == 4)
            {
                int f = bits[3];
                if (IsValid(f))
                {
                    lo = bits[0];
                    mid = bits[1];
                    hi = bits[2];
                    flags = f;
                    return;
                }
            }
            throw new ArgumentException(SR.Arg_DecBitCtor);
        }

        // Constructs a Decimal from its constituent parts.
        // 
        public Decimal(int lo, int mid, int hi, bool isNegative, byte scale)
#if __MonoCS__
        : this()
#endif
        {
            if (scale > 28)
                throw new ArgumentOutOfRangeException(nameof(scale), SR.ArgumentOutOfRange_DecimalScale);
            this.lo = lo;
            this.mid = mid;
            this.hi = hi;
            flags = ((int)scale) << 16;
            if (isNegative)
                flags |= SignMask;
        }

        void IDeserializationCallback.OnDeserialization(object sender)
        {
            // OnDeserialization is called after each instance of this class is deserialized.
            // This callback method performs decimal validation after being deserialized.
            if (!IsValid(flags))
                throw new SerializationException(SR.Overflow_Decimal);
        }

        // Constructs a Decimal from its constituent parts.
        private Decimal(int lo, int mid, int hi, int flags)
        {
            if (IsValid(flags))
            {
#if __MonoCS__
                this.ulomidLE = 0;
#endif
                this.lo = lo;
                this.mid = mid;
                this.hi = hi;
                this.flags = flags;
                return;
            }
            throw new ArgumentException(SR.Arg_DecBitCtor);
        }

        private Decimal(in decimal d, int flags)
        {
            this = d;
            this.flags = flags;
        }

        // Returns the absolute value of the given Decimal. If d is
        // positive, the result is d. If d is negative, the result
        // is -d.
        //
        internal static decimal Abs(ref decimal d)
        {
            return new decimal(d, d.flags & ~SignMask);
        }

        // Adds two Decimal values.
        //
        public static decimal Add(decimal d1, decimal d2)
        {
            DecCalc.DecAddSub(ref AsMutable(ref d1), ref AsMutable(ref d2), false);
            return d1;
        }

        // Rounds a Decimal to an integer value. The Decimal argument is rounded
        // towards positive infinity.
        public static decimal Ceiling(decimal d)
        {
            int flags = d.flags;
            if ((flags & ScaleMask) != 0)
                DecCalc.InternalRound(ref AsMutable(ref d), (byte)(flags >> ScaleShift), DecCalc.RoundingMode.Ceiling);
            return d;
        }

        // Compares two Decimal values, returning an integer that indicates their
        // relationship.
        //
        public static int Compare(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2);
        }

        // Compares this object to another object, returning an integer that
        // indicates the relationship. 
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance.
        // If object is not of type Decimal, this method throws an ArgumentException.
        // 
        public int CompareTo(object value)
        {
            if (value == null)
                return 1;
            if (!(value is decimal))
                throw new ArgumentException(SR.Arg_MustBeDecimal);

            decimal other = (decimal)value;
            return DecCalc.VarDecCmp(in this, in other);
        }

        public int CompareTo(decimal value)
        {
            return DecCalc.VarDecCmp(in this, in value);
        }

        // Divides two Decimal values.
        //
        public static decimal Divide(decimal d1, decimal d2)
        {
            DecCalc.VarDecDiv(ref AsMutable(ref d1), ref AsMutable(ref d2));
            return d1;
        }

        // Checks if this Decimal is equal to a given object. Returns true
        // if the given object is a boxed Decimal and its value is equal to the
        // value of this Decimal. Returns false otherwise.
        //
        public override bool Equals(object value)
        {
            if (value is decimal)
            {
                decimal other = (decimal)value;
                return DecCalc.VarDecCmp(in this, in other) == 0;
            }
            return false;
        }

        public bool Equals(decimal value)
        {
            return DecCalc.VarDecCmp(in this, in value) == 0;
        }

        // Returns the hash code for this Decimal.
        //
        public override int GetHashCode() => DecCalc.GetHashCode(in this);

        // Compares two Decimal values for equality. Returns true if the two
        // Decimal values are equal, or false if they are not equal.
        //
        public static bool Equals(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) == 0;
        }

        // Rounds a Decimal to an integer value. The Decimal argument is rounded
        // towards negative infinity.
        //
        public static decimal Floor(decimal d)
        {
            int flags = d.flags;
            if ((flags & ScaleMask) != 0)
                DecCalc.InternalRound(ref AsMutable(ref d), (byte)(flags >> ScaleShift), DecCalc.RoundingMode.Floor);
            return d;
        }

        // Converts this Decimal to a string. The resulting string consists of an
        // optional minus sign ("-") followed to a sequence of digits ("0" - "9"),
        // optionally followed by a decimal point (".") and another sequence of
        // digits.
        //
        public override string ToString()
        {
            return Number.FormatDecimal(this, null, NumberFormatInfo.CurrentInfo);
        }

        public string ToString(string format)
        {
            return Number.FormatDecimal(this, format, NumberFormatInfo.CurrentInfo);
        }

        public string ToString(IFormatProvider provider)
        {
            return Number.FormatDecimal(this, null, NumberFormatInfo.GetInstance(provider));
        }

        public string ToString(string format, IFormatProvider provider)
        {
            return Number.FormatDecimal(this, format, NumberFormatInfo.GetInstance(provider));
        }

        public bool TryFormat(Span<char> destination, out int charsWritten, ReadOnlySpan<char> format = default, IFormatProvider provider = null)
        {
            return Number.TryFormatDecimal(this, format, NumberFormatInfo.GetInstance(provider), destination, out charsWritten);
        }

        // Converts a string to a Decimal. The string must consist of an optional
        // minus sign ("-") followed by a sequence of digits ("0" - "9"). The
        // sequence of digits may optionally contain a single decimal point (".")
        // character. Leading and trailing whitespace characters are allowed.
        // Parse also allows a currency symbol, a trailing negative sign, and
        // parentheses in the number.
        //
        public static decimal Parse(string s)
        {
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo);
        }

        public static decimal Parse(string s, NumberStyles style)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseDecimal(s, style, NumberFormatInfo.CurrentInfo);
        }

        public static decimal Parse(string s, IFormatProvider provider)
        {
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseDecimal(s, NumberStyles.Number, NumberFormatInfo.GetInstance(provider));
        }

        public static decimal Parse(string s, NumberStyles style, IFormatProvider provider)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            if (s == null) ThrowHelper.ThrowArgumentNullException(ExceptionArgument.s);
            return Number.ParseDecimal(s, style, NumberFormatInfo.GetInstance(provider));
        }

        public static decimal Parse(ReadOnlySpan<char> s, NumberStyles style = NumberStyles.Number, IFormatProvider provider = null)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Number.ParseDecimal(s, style, NumberFormatInfo.GetInstance(provider));
        }

        public static bool TryParse(string s, out decimal result)
        {
            if (s == null)
            {
                result = 0;
                return false;
            }

            return Number.TryParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo, out result);
        }

        public static bool TryParse(ReadOnlySpan<char> s, out decimal result)
        {
            return Number.TryParseDecimal(s, NumberStyles.Number, NumberFormatInfo.CurrentInfo, out result);
        }

        public static bool TryParse(string s, NumberStyles style, IFormatProvider provider, out decimal result)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);

            if (s == null)
            {
                result = 0;
                return false;
            }

            return Number.TryParseDecimal(s, style, NumberFormatInfo.GetInstance(provider), out result);
        }

        public static bool TryParse(ReadOnlySpan<char> s, NumberStyles style, IFormatProvider provider, out decimal result)
        {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Number.TryParseDecimal(s, style, NumberFormatInfo.GetInstance(provider), out result);
        }

        // Returns a binary representation of a Decimal. The return value is an
        // integer array with four elements. Elements 0, 1, and 2 contain the low,
        // middle, and high 32 bits of the 96-bit integer part of the Decimal.
        // Element 3 contains the scale factor and sign of the Decimal: bits 0-15
        // (the lower word) are unused; bits 16-23 contain a value between 0 and
        // 28, indicating the power of 10 to divide the 96-bit integer part by to
        // produce the Decimal value; bits 24-30 are unused; and finally bit 31
        // indicates the sign of the Decimal value, 0 meaning positive and 1
        // meaning negative.
        //
        public static int[] GetBits(decimal d)
        {
            return new int[] { d.lo, d.mid, d.hi, d.flags };
        }

        internal static void GetBytes(in decimal d, byte[] buffer)
        {
            Debug.Assert((buffer != null && buffer.Length >= 16), "[GetBytes]buffer != null && buffer.Length >= 16");
            buffer[0] = (byte)d.lo;
            buffer[1] = (byte)(d.lo >> 8);
            buffer[2] = (byte)(d.lo >> 16);
            buffer[3] = (byte)(d.lo >> 24);

            buffer[4] = (byte)d.mid;
            buffer[5] = (byte)(d.mid >> 8);
            buffer[6] = (byte)(d.mid >> 16);
            buffer[7] = (byte)(d.mid >> 24);

            buffer[8] = (byte)d.hi;
            buffer[9] = (byte)(d.hi >> 8);
            buffer[10] = (byte)(d.hi >> 16);
            buffer[11] = (byte)(d.hi >> 24);

            buffer[12] = (byte)d.flags;
            buffer[13] = (byte)(d.flags >> 8);
            buffer[14] = (byte)(d.flags >> 16);
            buffer[15] = (byte)(d.flags >> 24);
        }

        internal static decimal ToDecimal(byte[] buffer)
        {
            Debug.Assert((buffer != null && buffer.Length >= 16), "[ToDecimal]buffer != null && buffer.Length >= 16");
            int lo = ((int)buffer[0]) | ((int)buffer[1] << 8) | ((int)buffer[2] << 16) | ((int)buffer[3] << 24);
            int mid = ((int)buffer[4]) | ((int)buffer[5] << 8) | ((int)buffer[6] << 16) | ((int)buffer[7] << 24);
            int hi = ((int)buffer[8]) | ((int)buffer[9] << 8) | ((int)buffer[10] << 16) | ((int)buffer[11] << 24);
            int flags = ((int)buffer[12]) | ((int)buffer[13] << 8) | ((int)buffer[14] << 16) | ((int)buffer[15] << 24);
            return new decimal(lo, mid, hi, flags);
        }

        // Returns the larger of two Decimal values.
        //
        internal static ref readonly decimal Max(ref decimal d1, ref decimal d2)
        {
            return ref DecCalc.VarDecCmp(d1, d2) >= 0 ? ref d1 : ref d2;
        }

        // Returns the smaller of two Decimal values.
        //
        internal static ref readonly decimal Min(ref decimal d1, ref decimal d2)
        {
            return ref DecCalc.VarDecCmp(d1, d2) < 0 ? ref d1 : ref d2;
        }

        public static decimal Remainder(decimal d1, decimal d2)
        {
            DecCalc.VarDecMod(ref AsMutable(ref d1), ref AsMutable(ref d2));
            return d1;
        }

        // Multiplies two Decimal values.
        //
        public static decimal Multiply(decimal d1, decimal d2)
        {
            DecCalc.VarDecMul(ref AsMutable(ref d1), ref AsMutable(ref d2));
            return d1;
        }

        // Returns the negated value of the given Decimal. If d is non-zero,
        // the result is -d. If d is zero, the result is zero.
        //
        public static decimal Negate(decimal d)
        {
            return new decimal(in d, d.flags ^ SignMask);
        }

        // Rounds a Decimal value to a given number of decimal places. The value
        // given by d is rounded to the number of decimal places given by
        // decimals. The decimals argument must be an integer between
        // 0 and 28 inclusive.
        //
        // By default a mid-point value is rounded to the nearest even number. If the mode is
        // passed in, it can also round away from zero.

        public static decimal Round(decimal d) => Round(ref d, 0, MidpointRounding.ToEven);
        public static decimal Round(decimal d, int decimals) => Round(ref d, decimals, MidpointRounding.ToEven);
        public static decimal Round(decimal d, MidpointRounding mode) => Round(ref d, 0, mode);
        public static decimal Round(decimal d, int decimals, MidpointRounding mode) => Round(ref d, decimals, mode);

        private static decimal Round(ref decimal d, int decimals, MidpointRounding mode)
        {
            if ((uint)decimals > 28)
                throw new ArgumentOutOfRangeException(nameof(decimals), SR.ArgumentOutOfRange_DecimalRound);
            if ((uint)mode > (uint)MidpointRounding.AwayFromZero)
                throw new ArgumentException(SR.Format(SR.Argument_InvalidEnumValue, mode, nameof(MidpointRounding)), nameof(mode));

            int scale = d.Scale - decimals;
            if (scale > 0)
                DecCalc.InternalRound(ref AsMutable(ref d), (uint)scale, (DecCalc.RoundingMode)mode);
            return d;
        }

        internal static int Sign(ref decimal d) => (d.lo | d.mid | d.hi) == 0 ? 0 : (d.flags >> 31) | 1;

        // Subtracts two Decimal values.
        //
        public static decimal Subtract(decimal d1, decimal d2)
        {
            DecCalc.DecAddSub(ref AsMutable(ref d1), ref AsMutable(ref d2), true);
            return d1;
        }

        // Converts a Decimal to an unsigned byte. The Decimal value is rounded
        // towards zero to the nearest integer value, and the result of this
        // operation is returned as a byte.
        //
        public static byte ToByte(decimal value)
        {
            uint temp;
            try
            {
                temp = ToUInt32(value);
            }
            catch (OverflowException e)
            {
                throw new OverflowException(SR.Overflow_Byte, e);
            }
            if (temp != (byte)temp) throw new OverflowException(SR.Overflow_Byte);
            return (byte)temp;
        }

        // Converts a Decimal to a signed byte. The Decimal value is rounded
        // towards zero to the nearest integer value, and the result of this
        // operation is returned as a byte.
        //
        [CLSCompliant(false)]
        public static sbyte ToSByte(decimal value)
        {
            int temp;
            try
            {
                temp = ToInt32(value);
            }
            catch (OverflowException e)
            {
                throw new OverflowException(SR.Overflow_SByte, e);
            }
            if (temp != (sbyte)temp) throw new OverflowException(SR.Overflow_SByte);
            return (sbyte)temp;
        }

        // Converts a Decimal to a short. The Decimal value is
        // rounded towards zero to the nearest integer value, and the result of
        // this operation is returned as a short.
        //
        public static short ToInt16(decimal value)
        {
            int temp;
            try
            {
                temp = ToInt32(value);
            }
            catch (OverflowException e)
            {
                throw new OverflowException(SR.Overflow_Int16, e);
            }
            if (temp != (short)temp) throw new OverflowException(SR.Overflow_Int16);
            return (short)temp;
        }

        // Converts a Decimal to a double. Since a double has fewer significant
        // digits than a Decimal, this operation may produce round-off errors.
        //
        public static double ToDouble(decimal d)
        {
            return DecCalc.VarR8FromDec(in d);
        }

        // Converts a Decimal to an integer. The Decimal value is rounded towards
        // zero to the nearest integer value, and the result of this operation is
        // returned as an integer.
        //
        public static int ToInt32(decimal d)
        {
            Truncate(ref d);
            if ((d.hi | d.mid) == 0)
            {
                int i = d.lo;
                if (!d.IsNegative)
                {
                    if (i >= 0) return i;
                }
                else
                {
                    i = -i;
                    if (i <= 0) return i;
                }
            }
            throw new OverflowException(SR.Overflow_Int32);
        }

        // Converts a Decimal to a long. The Decimal value is rounded towards zero
        // to the nearest integer value, and the result of this operation is
        // returned as a long.
        //
        public static long ToInt64(decimal d)
        {
            Truncate(ref d);
            if (d.hi == 0)
            {
                long l = (long)d.Low64;
                if (!d.IsNegative)
                {
                    if (l >= 0) return l;
                }
                else
                {
                    l = -l;
                    if (l <= 0) return l;
                }
            }
            throw new OverflowException(SR.Overflow_Int64);
        }

        // Converts a Decimal to an ushort. The Decimal 
        // value is rounded towards zero to the nearest integer value, and the 
        // result of this operation is returned as an ushort.
        //
        [CLSCompliant(false)]
        public static ushort ToUInt16(decimal value)
        {
            uint temp;
            try
            {
                temp = ToUInt32(value);
            }
            catch (OverflowException e)
            {
                throw new OverflowException(SR.Overflow_UInt16, e);
            }
            if (temp != (ushort)temp) throw new OverflowException(SR.Overflow_UInt16);
            return (ushort)temp;
        }

        // Converts a Decimal to an unsigned integer. The Decimal 
        // value is rounded towards zero to the nearest integer value, and the 
        // result of this operation is returned as an unsigned integer.
        //
        [CLSCompliant(false)]
        public static uint ToUInt32(decimal d)
        {
            Truncate(ref d);
            if ((d.hi | d.mid) == 0)
            {
                uint i = d.Low;
                if (!d.IsNegative || i == 0)
                    return i;
            }
            throw new OverflowException(SR.Overflow_UInt32);
        }

        // Converts a Decimal to an unsigned long. The Decimal 
        // value is rounded towards zero to the nearest integer value, and the 
        // result of this operation is returned as a long.
        //
        [CLSCompliant(false)]
        public static ulong ToUInt64(decimal d)
        {
            Truncate(ref d);
            if (d.hi == 0)
            {
                ulong l = d.Low64;
                if (!d.IsNegative || l == 0)
                    return l;
            }
            throw new OverflowException(SR.Overflow_UInt64);
        }

        // Converts a Decimal to a float. Since a float has fewer significant
        // digits than a Decimal, this operation may produce round-off errors.
        //
        public static float ToSingle(decimal d)
        {
            return DecCalc.VarR4FromDec(in d);
        }

        // Truncates a Decimal to an integer value. The Decimal argument is rounded
        // towards zero to the nearest integer value, corresponding to removing all
        // digits after the decimal point.
        //
        public static decimal Truncate(decimal d)
        {
            Truncate(ref d);
            return d;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        private static void Truncate(ref decimal d)
        {
            int flags = d.flags;
            if ((flags & ScaleMask) != 0)
                DecCalc.InternalRound(ref AsMutable(ref d), (byte)(flags >> ScaleShift), DecCalc.RoundingMode.Truncate);
        }

        public static implicit operator decimal(byte value)
        {
            return new decimal((uint)value);
        }

        [CLSCompliant(false)]
        public static implicit operator decimal(sbyte value)
        {
            return new decimal(value);
        }

        public static implicit operator decimal(short value)
        {
            return new decimal(value);
        }

        [CLSCompliant(false)]
        public static implicit operator decimal(ushort value)
        {
            return new decimal((uint)value);
        }

        public static implicit operator decimal(char value)
        {
            return new decimal((uint)value);
        }

        public static implicit operator decimal(int value)
        {
            return new decimal(value);
        }

        [CLSCompliant(false)]
        public static implicit operator decimal(uint value)
        {
            return new decimal(value);
        }

        public static implicit operator decimal(long value)
        {
            return new decimal(value);
        }

        [CLSCompliant(false)]
        public static implicit operator decimal(ulong value)
        {
            return new decimal(value);
        }


        public static explicit operator decimal(float value)
        {
            return new decimal(value);
        }

        public static explicit operator decimal(double value)
        {
            return new decimal(value);
        }

        public static explicit operator byte(decimal value)
        {
            return ToByte(value);
        }

        [CLSCompliant(false)]
        public static explicit operator sbyte(decimal value)
        {
            return ToSByte(value);
        }

        public static explicit operator char(decimal value)
        {
            ushort temp;
            try
            {
                temp = ToUInt16(value);
            }
            catch (OverflowException e)
            {
                throw new OverflowException(SR.Overflow_Char, e);
            }
            return (char)temp;
        }

        public static explicit operator short(decimal value)
        {
            return ToInt16(value);
        }

        [CLSCompliant(false)]
        public static explicit operator ushort(decimal value)
        {
            return ToUInt16(value);
        }

        public static explicit operator int(decimal value)
        {
            return ToInt32(value);
        }

        [CLSCompliant(false)]
        public static explicit operator uint(decimal value)
        {
            return ToUInt32(value);
        }

        public static explicit operator long(decimal value)
        {
            return ToInt64(value);
        }

        [CLSCompliant(false)]
        public static explicit operator ulong(decimal value)
        {
            return ToUInt64(value);
        }

        public static explicit operator float(decimal value)
        {
            return ToSingle(value);
        }

        public static explicit operator double(decimal value)
        {
            return ToDouble(value);
        }

        public static decimal operator +(decimal d)
        {
            return d;
        }

        public static decimal operator -(decimal d)
        {
            return new decimal(in d, d.flags ^ SignMask);
        }

        public static decimal operator ++(decimal d)
        {
            return Add(d, One);
        }

        public static decimal operator --(decimal d)
        {
            return Subtract(d, One);
        }

        public static decimal operator +(decimal d1, decimal d2)
        {
            DecCalc.DecAddSub(ref AsMutable(ref d1), ref AsMutable(ref d2), false);
            return d1;
        }

        public static decimal operator -(decimal d1, decimal d2)
        {
            DecCalc.DecAddSub(ref AsMutable(ref d1), ref AsMutable(ref d2), true);
            return d1;
        }

        public static decimal operator *(decimal d1, decimal d2)
        {
            DecCalc.VarDecMul(ref AsMutable(ref d1), ref AsMutable(ref d2));
            return d1;
        }

        public static decimal operator /(decimal d1, decimal d2)
        {
            DecCalc.VarDecDiv(ref AsMutable(ref d1), ref AsMutable(ref d2));
            return d1;
        }

        public static decimal operator %(decimal d1, decimal d2)
        {
            DecCalc.VarDecMod(ref AsMutable(ref d1), ref AsMutable(ref d2));
            return d1;
        }

        public static bool operator ==(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) == 0;
        }

        public static bool operator !=(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) != 0;
        }

        public static bool operator <(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) < 0;
        }

        public static bool operator <=(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) <= 0;
        }

        public static bool operator >(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) > 0;
        }

        public static bool operator >=(decimal d1, decimal d2)
        {
            return DecCalc.VarDecCmp(in d1, in d2) >= 0;
        }

        //
        // IConvertible implementation
        //

        public TypeCode GetTypeCode()
        {
            return TypeCode.Decimal;
        }

        bool IConvertible.ToBoolean(IFormatProvider provider)
        {
            return Convert.ToBoolean(this);
        }

        char IConvertible.ToChar(IFormatProvider provider)
        {
            throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Decimal", "Char"));
        }

        sbyte IConvertible.ToSByte(IFormatProvider provider)
        {
            return Convert.ToSByte(this);
        }

        byte IConvertible.ToByte(IFormatProvider provider)
        {
            return Convert.ToByte(this);
        }

        short IConvertible.ToInt16(IFormatProvider provider)
        {
            return Convert.ToInt16(this);
        }

        ushort IConvertible.ToUInt16(IFormatProvider provider)
        {
            return Convert.ToUInt16(this);
        }

        int IConvertible.ToInt32(IFormatProvider provider)
        {
            return Convert.ToInt32(this);
        }

        uint IConvertible.ToUInt32(IFormatProvider provider)
        {
            return Convert.ToUInt32(this);
        }

        long IConvertible.ToInt64(IFormatProvider provider)
        {
            return Convert.ToInt64(this);
        }

        ulong IConvertible.ToUInt64(IFormatProvider provider)
        {
            return Convert.ToUInt64(this);
        }

        float IConvertible.ToSingle(IFormatProvider provider)
        {
            return Convert.ToSingle(this);
        }

        double IConvertible.ToDouble(IFormatProvider provider)
        {
            return Convert.ToDouble(this);
        }

        decimal IConvertible.ToDecimal(IFormatProvider provider)
        {
            return this;
        }

        DateTime IConvertible.ToDateTime(IFormatProvider provider)
        {
            throw new InvalidCastException(SR.Format(SR.InvalidCast_FromTo, "Decimal", "DateTime"));
        }

        object IConvertible.ToType(Type type, IFormatProvider provider)
        {
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }



#if __MonoCS__

        // Low level accessors used by a DecCalc and formatting
        internal uint High => (uint)hi;
        internal uint Low => (uint)lo;
        internal uint Mid => (uint)mid;

        internal bool IsNegative => flags < 0;

        internal int Scale => (byte)(flags >> ScaleShift);

        // Mono note: Mono doesn't use the BIGENDIAN define, as both endians consume the same bootstrap tarball.
        // As such, runtime checks should be used. Both Mono and CoreCLR will inline endianness checks as an intrinsic.
        private ulong Low64 => BitConverter.IsLittleEndian ? (ulong)ulomidLE : ((ulong)Mid << 32) | Low;

        private static ref DecCalc AsMutable(ref decimal d) => ref Unsafe.As<decimal, DecCalc>(ref d);

        #region APIs need by number formatting.

        internal static uint DecDivMod1E9(ref decimal value)
        {
            return DecCalc.DecDivMod1E9(ref AsMutable(ref value));
        }

        #endregion

        /// <summary>
        /// Class that contains all the mathematical calculations for decimal. Most of which have been ported from oleaut32.
        /// </summary>
        [StructLayout(LayoutKind.Explicit)]
        private struct DecCalc
        {
            // NOTE: Do not change the offsets of these fields. This structure must have the same layout as Decimal.
            [FieldOffset(0)]
            private uint uflags;
            [FieldOffset(4)]
            private uint uhi;
            [FieldOffset(8)]
            private uint ulo;
            [FieldOffset(12)]
            private uint umid;

            /// <summary>
            /// The low and mid fields combined in little-endian order
            /// </summary>
            [FieldOffset(8)]
            private ulong ulomidLE;

            private uint High
            {
                get => uhi;
                set => uhi = value;
            }

            private uint Low
            {
                get => ulo;
                set => ulo = value;
            }

            private uint Mid
            {
                get => umid;
                set => umid = value;
            }

            private bool IsNegative => (int)uflags < 0;

            private int Scale => (byte)(uflags >> ScaleShift);

            private ulong Low64
            {
                get { return BitConverter.IsLittleEndian ? ulomidLE : (((ulong)umid << 32) | ulo); }
                set
                {
                    if (BitConverter.IsLittleEndian)
                    {
                        ulomidLE = value;
                    }
                    else
                    {
                        umid = (uint)(value >> 32);
                        ulo = (uint)value;
                    }
                }
            }

            private const uint SignMask = 0x80000000;
            private const uint ScaleMask = 0x00FF0000;

            private const int DEC_SCALE_MAX = 28;

            private const uint TenToPowerNine = 1000000000;
            private const ulong TenToPowerEighteen = 1000000000000000000;

            // The maximum power of 10 that a 32 bit integer can store
            private const int MaxInt32Scale = 9;
            // The maximum power of 10 that a 64 bit integer can store
            private const int MaxInt64Scale = 19;

            // Fast access for 10^n where n is 0-9
            private static readonly uint[] s_powers10 = new uint[] {
                1,
                10,
                100,
                1000,
                10000,
                100000,
                1000000,
                10000000,
                100000000,
                1000000000
            };

            // Fast access for 10^n where n is 1-19
            private static readonly ulong[] s_ulongPowers10 = new ulong[] {
                10,
                100,
                1000,
                10000,
                100000,
                1000000,
                10000000,
                100000000,
                1000000000,
                10000000000,
                100000000000,
                1000000000000,
                10000000000000,
                100000000000000,
                1000000000000000,
                10000000000000000,
                100000000000000000,
                1000000000000000000,
                10000000000000000000,
            };

            private static readonly double[] s_doublePowers10 = new double[] {
                1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
                1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
                1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27, 1e28, 1e29,
                1e30, 1e31, 1e32, 1e33, 1e34, 1e35, 1e36, 1e37, 1e38, 1e39,
                1e40, 1e41, 1e42, 1e43, 1e44, 1e45, 1e46, 1e47, 1e48, 1e49,
                1e50, 1e51, 1e52, 1e53, 1e54, 1e55, 1e56, 1e57, 1e58, 1e59,
                1e60, 1e61, 1e62, 1e63, 1e64, 1e65, 1e66, 1e67, 1e68, 1e69,
                1e70, 1e71, 1e72, 1e73, 1e74, 1e75, 1e76, 1e77, 1e78, 1e79,
                1e80
            };

            #region Decimal Math Helpers

            private static unsafe uint GetExponent(float f)
            {
                // Based on pulling out the exp from this single struct layout
                //typedef struct {
                //    ULONG mant:23;
                //    ULONG exp:8;
                //    ULONG sign:1;
                //} SNGSTRUCT;

                return (byte)(*(uint*)&f >> 23);
            }

            private static unsafe uint GetExponent(double d)
            {
                // Based on pulling out the exp from this double struct layout
                //typedef struct {
                //   DWORDLONG mant:52;
                //   DWORDLONG signexp:12;
                // } DBLSTRUCT;

                return (uint)(*(ulong*)&d >> 52) & 0x7FFu;
            }

            private static ulong UInt32x32To64(uint a, uint b)
            {
                return (ulong)a * (ulong)b;
            }

            private static void UInt64x64To128(ulong a, ulong b, ref DecCalc result)
            {
                ulong low = UInt32x32To64((uint)a, (uint)b); // lo partial prod
                ulong mid = UInt32x32To64((uint)a, (uint)(b >> 32)); // mid 1 partial prod
                ulong high = UInt32x32To64((uint)(a >> 32), (uint)(b >> 32));
                high += mid >> 32;
                low += mid <<= 32;
                if (low < mid)  // test for carry
                    high++;

                mid = UInt32x32To64((uint)(a >> 32), (uint)b);
                high += mid >> 32;
                low += mid <<= 32;
                if (low < mid)  // test for carry
                    high++;

                if (high > uint.MaxValue)
                    throw new OverflowException(SR.Overflow_Decimal);
                result.Low64 = low;
                result.High = (uint)high;
            }

            /// <summary>
            /// Do full divide, yielding 96-bit result and 32-bit remainder.
            /// </summary>
            /// <param name="bufNum">96-bit dividend as array of uints, least-sig first</param>
            /// <param name="den">32-bit divisor</param>
            /// <returns>Returns remainder. Quotient overwrites dividend.</returns>
            private static uint Div96By32(ref Buf12 bufNum, uint den)
            {
                // TODO: https://github.com/dotnet/coreclr/issues/3439
                ulong tmp, div;
                if (bufNum.U2 != 0)
                {
                    tmp = bufNum.High64;
                    div = tmp / den;
                    bufNum.High64 = div;
                    tmp = ((tmp - (uint)div * den) << 32) | bufNum.U0;
                    if (tmp == 0)
                        return 0;
                    uint div32 = (uint)(tmp / den);
                    bufNum.U0 = div32;
                    return (uint)tmp - div32 * den;
                }

                tmp = bufNum.Low64;
                if (tmp == 0)
                    return 0;
                div = tmp / den;
                bufNum.Low64 = div;
                return (uint)(tmp - div * den);
            }

            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private static bool Div96ByConst(ref ulong high64, ref uint low, uint pow)
            {
#if BIT64
                ulong div64 = high64 / pow;
                uint div = (uint)((((high64 - div64 * pow) << 32) + low) / pow);
                if (low == div * pow)
                {
                    high64 = div64;
                    low = div;
                    return true;
                }
#else
                // 32-bit RyuJIT doesn't convert 64-bit division by constant into multiplication by reciprocal. Do half-width divisions instead.
                Debug.Assert(pow <= ushort.MaxValue);
                uint num, mid32, low16, div;
                if (high64 <= uint.MaxValue)
                {
                    num = (uint)high64;
                    mid32 = num / pow;
                    num = (num - mid32 * pow) << 16;

                    num += low >> 16;
                    low16 = num / pow;
                    num = (num - low16 * pow) << 16;

                    num += (ushort)low;
                    div = num / pow;
                    if (num == div * pow)
                    {
                        high64 = mid32;
                        low = (low16 << 16) + div;
                        return true;
                    }
                }
                else
                {
                    num = (uint)(high64 >> 32);
                    uint high32 = num / pow;
                    num = (num - high32 * pow) << 16;

                    num += (uint)high64 >> 16;
                    mid32 = num / pow;
                    num = (num - mid32 * pow) << 16;

                    num += (ushort)high64;
                    div = num / pow;
                    num = (num - div * pow) << 16;
                    mid32 = div + (mid32 << 16);

                    num += low >> 16;
                    low16 = num / pow;
                    num = (num - low16 * pow) << 16;

                    num += (ushort)low;
                    div = num / pow;
                    if (num == div * pow)
                    {
                        high64 = ((ulong)high32 << 32) | mid32;
                        low = (low16 << 16) + div;
                        return true;
                    }
                }
#endif
                return false;
            }

            /// <summary>
            /// Normalize (unscale) the number by trying to divide out 10^8, 10^4, 10^2, and 10^1.
            /// If a division by one of these powers returns a zero remainder, then we keep the quotient.
            /// </summary>
            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private static void Unscale(ref uint low, ref ulong high64, ref int scale)
            {
                // Since 10 = 2 * 5, there must be a factor of 2 for every power of 10 we can extract.
                // We use this as a quick test on whether to try a given power.

#if BIT64
                while ((byte)low == 0 && scale >= 8 && Div96ByConst(ref high64, ref low, 100000000))
                    scale -= 8;

                if ((low & 0xF) == 0 && scale >= 4 && Div96ByConst(ref high64, ref low, 10000))
                    scale -= 4;
#else
                while ((low & 0xF) == 0 && scale >= 4 && Div96ByConst(ref high64, ref low, 10000))
                    scale -= 4;
#endif

                if ((low & 3) == 0 && scale >= 2 && Div96ByConst(ref high64, ref low, 100))
                    scale -= 2;

                if ((low & 1) == 0 && scale >= 1 && Div96ByConst(ref high64, ref low, 10))
                    scale--;
            }

            /// <summary>
            /// Do partial divide, yielding 32-bit result and 64-bit remainder.
            /// Divisor must be larger than upper 64 bits of dividend.
            /// </summary>
            /// <param name="bufNum">96-bit dividend as array of uints, least-sig first</param>
            /// <param name="den">64-bit divisor</param>
            /// <returns>Returns quotient. Remainder overwrites lower 64-bits of dividend.</returns>
            private static uint Div96By64(ref Buf12 bufNum, ulong den)
            {
                Debug.Assert(den > bufNum.High64);
                uint quo;
                ulong num;
                uint num2 = bufNum.U2;
                if (num2 == 0)
                {
                    num = bufNum.Low64;
                    if (num < den)
                        // Result is zero.  Entire dividend is remainder.
                        return 0;

                    // TODO: https://github.com/dotnet/coreclr/issues/3439
                    quo = (uint)(num / den);
                    num -= quo * den; // remainder
                    bufNum.Low64 = num;
                    return quo;
                }

                uint denHigh32 = (uint)(den >> 32);
                if (num2 >= denHigh32)
                {
                    // Divide would overflow.  Assume a quotient of 2^32, and set
                    // up remainder accordingly.
                    //
                    num = bufNum.Low64;
                    num -= den << 32;
                    quo = 0;

                    // Remainder went negative.  Add divisor back in until it's positive,
                    // a max of 2 times.
                    //
                    do
                    {
                        quo--;
                        num += den;
                    } while (num >= den);

                    bufNum.Low64 = num;
                    return quo;
                }

                // Hardware divide won't overflow
                //
                ulong num64 = bufNum.High64;
                if (num64 < denHigh32)
                    // Result is zero.  Entire dividend is remainder.
                    //
                    return 0;

                // TODO: https://github.com/dotnet/coreclr/issues/3439
                quo = (uint)(num64 / denHigh32);
                num = bufNum.U0 | ((num64 - quo * denHigh32) << 32); // remainder

                // Compute full remainder, rem = dividend - (quo * divisor).
                //
                ulong prod = UInt32x32To64(quo, (uint)den); // quo * lo divisor
                num -= prod;

                if (num > ~prod)
                {
                    // Remainder went negative.  Add divisor back in until it's positive,
                    // a max of 2 times.
                    //
                    do
                    {
                        quo--;
                        num += den;
                    } while (num >= den);
                }

                bufNum.Low64 = num;
                return quo;
            }

            /// <summary>
            /// Do partial divide, yielding 32-bit result and 96-bit remainder.
            /// Top divisor uint must be larger than top dividend uint. This is
            /// assured in the initial call because the divisor is normalized
            /// and the dividend can't be. In subsequent calls, the remainder
            /// is multiplied by 10^9 (max), so it can be no more than 1/4 of
            /// the divisor which is effectively multiplied by 2^32 (4 * 10^9).
            /// </summary>
            /// <param name="bufNum">128-bit dividend as array of uints, least-sig first</param>
            /// <param name="bufDen">96-bit divisor</param>
            /// <returns>Returns quotient. Remainder overwrites lower 96-bits of dividend.</returns>
            private static uint Div128By96(ref Buf16 bufNum, ref Buf12 bufDen)
            {
                Debug.Assert(bufDen.U2 > bufNum.U3);
                ulong dividend = bufNum.High64;
                uint den = bufDen.U2;
                if (dividend < den)
                    // Result is zero.  Entire dividend is remainder.
                    //
                    return 0;

                // TODO: https://github.com/dotnet/coreclr/issues/3439
                uint quo = (uint)(dividend / den);
                uint remainder = (uint)dividend - quo * den;

                // Compute full remainder, rem = dividend - (quo * divisor).
                //
                ulong prod1 = UInt32x32To64(quo, bufDen.U0); // quo * lo divisor
                ulong prod2 = UInt32x32To64(quo, bufDen.U1); // quo * mid divisor
                prod2 += prod1 >> 32;
                prod1 = (uint)prod1 | (prod2 << 32);
                prod2 >>= 32;

                ulong num = bufNum.Low64;
                num -= prod1;
                remainder -= (uint)prod2;

                // Propagate carries
                //
                if (num > ~prod1)
                {
                    remainder--;
                    if (remainder < ~(uint)prod2)
                        goto PosRem;
                }
                else if (remainder <= ~(uint)prod2)
                    goto PosRem;
                {
                    // Remainder went negative.  Add divisor back in until it's positive,
                    // a max of 2 times.
                    //
                    prod1 = bufDen.Low64;

                    for (;;)
                    {
                        quo--;
                        num += prod1;
                        remainder += den;

                        if (num < prod1)
                        {
                            // Detected carry. Check for carry out of top
                            // before adding it in.
                            //
                            if (remainder++ < den)
                                break;
                        }
                        if (remainder < den)
                            break; // detected carry
                    }
                }
PosRem:

                bufNum.Low64 = num;
                bufNum.U2 = remainder;
                return quo;
            }

            /// <summary>
            /// Multiply the two numbers. The low 96 bits of the result overwrite
            /// the input. The last 32 bits of the product are the return value.
            /// </summary>
            /// <param name="bufNum">96-bit number as array of uints, least-sig first</param>
            /// <param name="power">Scale factor to multiply by</param>
            /// <returns>Returns highest 32 bits of product</returns>
            private static uint IncreaseScale(ref Buf12 bufNum, uint power)
            {
                ulong tmp = UInt32x32To64(bufNum.U0, power);
                bufNum.U0 = (uint)tmp;
                tmp >>= 32;
                tmp += UInt32x32To64(bufNum.U1, power);
                bufNum.U1 = (uint)tmp;
                tmp >>= 32;
                tmp += UInt32x32To64(bufNum.U2, power);
                bufNum.U2 = (uint)tmp;
                return (uint)(tmp >> 32);
            }

            private static void IncreaseScale64(ref Buf12 bufNum, uint power)
            {
                ulong tmp = UInt32x32To64(bufNum.U0, power);
                bufNum.U0 = (uint)tmp;
                tmp >>= 32;
                tmp += UInt32x32To64(bufNum.U1, power);
                bufNum.High64 = tmp;
            }

            /// <summary>
            /// See if we need to scale the result to fit it in 96 bits.
            /// Perform needed scaling. Adjust scale factor accordingly.
            /// </summary>
            /// <param name="bufRes">Array of uints with value, least-significant first</param>
            /// <param name="hiRes">Index of last non-zero value in bufRes
            /// <param name="scale">Scale factor for this value, range 0 - 2 * DEC_SCALE_MAX</param>
            /// <returns>Returns new scale factor. bufRes updated in place, always 3 uints.</returns>
            private static unsafe int ScaleResult(Buf24* bufRes, uint hiRes, int scale)
            {
                Debug.Assert(hiRes < bufRes->Length);
                uint* result = (uint*)bufRes;

                // See if we need to scale the result.  The combined scale must
                // be <= DEC_SCALE_MAX and the upper 96 bits must be zero.
                //
                // Start by figuring a lower bound on the scaling needed to make
                // the upper 96 bits zero.  hiRes is the index into result[]
                // of the highest non-zero uint.
                //
                int newScale = 0;
                if (hiRes > 2)
                {
                    newScale = (int)hiRes * 32 - 64 - 1;
                    newScale -= LeadingZeroCount(result[hiRes]);

                    // Multiply bit position by log10(2) to figure it's power of 10.
                    // We scale the log by 256.  log(2) = .30103, * 256 = 77.  Doing this
                    // with a multiply saves a 96-byte lookup table.  The power returned
                    // is <= the power of the number, so we must add one power of 10
                    // to make it's integer part zero after dividing by 256.
                    //
                    // Note: the result of this multiplication by an approximation of
                    // log10(2) have been exhaustively checked to verify it gives the
                    // correct result.  (There were only 95 to check...)
                    //
                    newScale = ((newScale * 77) >> 8) + 1;

                    // newScale = min scale factor to make high 96 bits zero, 0 - 29.
                    // This reduces the scale factor of the result.  If it exceeds the
                    // current scale of the result, we'll overflow.
                    //
                    if (newScale > scale)
                        goto ThrowOverflow;
                }

                // Make sure we scale by enough to bring the current scale factor
                // into valid range.
                //
                if (newScale < scale - DEC_SCALE_MAX)
                    newScale = scale - DEC_SCALE_MAX;

                if (newScale != 0)
                {
                    // Scale by the power of 10 given by newScale.  Note that this is
                    // NOT guaranteed to bring the number within 96 bits -- it could
                    // be 1 power of 10 short.
                    //
                    scale -= newScale;
                    uint sticky = 0;
                    uint quotient, remainder = 0;

                    for (;;)
                    {
                        sticky |= remainder; // record remainder as sticky bit

                        uint power;
                        // Scaling loop specialized for each power of 10 because division by constant is an order of magnitude faster (especially for 64-bit division that's actually done by 128bit DIV on x64)
                        switch (newScale)
                        {
                            case 1:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 10);
                                break;
                            case 2:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 100);
                                break;
                            case 3:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 1000);
                                break;
                            case 4:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 10000);
                                break;
#if BIT64
                            case 5:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 100000);
                                break;
                            case 6:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 1000000);
                                break;
                            case 7:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 10000000);
                                break;
                            case 8:
                                power = DivByConst(result, hiRes, out quotient, out remainder, 100000000);
                                break;
                            default:
                                power = DivByConst(result, hiRes, out quotient, out remainder, TenToPowerNine);
                                break;
#else
                            default:
                                goto case 4;
#endif
                        }
                        result[hiRes] = quotient;
                        // If first quotient was 0, update hiRes.
                        //
                        if (quotient == 0 && hiRes != 0)
                            hiRes--;

#if BIT64
                        newScale -= MaxInt32Scale;
#else
                        newScale -= 4;
#endif
                        if (newScale > 0)
                            continue; // scale some more

                        // If we scaled enough, hiRes would be 2 or less.  If not,
                        // divide by 10 more.
                        //
                        if (hiRes > 2)
                        {
                            if (scale == 0)
                                goto ThrowOverflow;
                            newScale = 1;
                            scale--;
                            continue; // scale by 10
                        }

                        // Round final result.  See if remainder >= 1/2 of divisor.
                        // If remainder == 1/2 divisor, round up if odd or sticky bit set.
                        //
                        power >>= 1;  // power of 10 always even
                        if (power <= remainder && (power < remainder || ((result[0] & 1) | sticky) != 0) && ++result[0] == 0)
                        {
                            uint cur = 0;
                            do
                            {
                                Debug.Assert(cur + 1 < bufRes->Length);
                            }
                            while (++result[++cur] == 0);

                            if (cur > 2)
                            {
                                // The rounding caused us to carry beyond 96 bits.
                                // Scale by 10 more.
                                //
                                if (scale == 0)
                                    goto ThrowOverflow;
                                hiRes = cur;
                                sticky = 0;    // no sticky bit
                                remainder = 0; // or remainder
                                newScale = 1;
                                scale--;
                                continue; // scale by 10
                            }
                        }

                        break;
                    } // for(;;)
                }
                return scale;

ThrowOverflow:
                throw new OverflowException(SR.Overflow_Decimal);
            }

            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private static unsafe uint DivByConst(uint* result, uint hiRes, out uint quotient, out uint remainder, uint power)
            {
                uint high = result[hiRes];
                remainder = high - (quotient = high / power) * power;
                for (uint i = hiRes - 1; (int)i >= 0; i--)
                {
#if BIT64
                    ulong num = result[i] + ((ulong)remainder << 32);
                    remainder = (uint)num - (result[i] = (uint)(num / power)) * power;
#else
                    // 32-bit RyuJIT doesn't convert 64-bit division by constant into multiplication by reciprocal. Do half-width divisions instead.
                    Debug.Assert(power <= ushort.MaxValue);
                    int low16 = BitConverter.IsLittleEndian ? 0 : 2, high16 = BitConverter.IsLittleEndian ? 2 : 0;
                    // byte* is used here because Roslyn doesn't do constant propagation for pointer arithmetic
                    uint num = *(ushort*)((byte*)result + i * 4 + high16) + (remainder << 16);
                    uint div = num / power;
                    remainder = num - div * power;
                    *(ushort*)((byte*)result + i * 4 + high16) = (ushort)div;

                    num = *(ushort*)((byte*)result + i * 4 + low16) + (remainder << 16);
                    div = num / power;
                    remainder = num - div * power;
                    *(ushort*)((byte*)result + i * 4 + low16) = (ushort)div;
#endif
                }
                return power;
            }

            [MethodImpl(MethodImplOptions.AggressiveInlining)]
            private static int LeadingZeroCount(uint value)
            {
                Debug.Assert(value > 0);
                int c = 1;
                if ((value & 0xFFFF0000) == 0)
                {
                    value <<= 16;
                    c += 16;
                }
                if ((value & 0xFF000000) == 0)
                {
                    value <<= 8;
                    c += 8;
                }
                if ((value & 0xF0000000) == 0)
                {
                    value <<= 4;
                    c += 4;
                }
                if ((value & 0xC0000000) == 0)
                {
                    value <<= 2;
                    c += 2;
                }
                return c + ((int)value >> 31);
            }

            /// <summary>
            /// Adjust the quotient to deal with an overflow.
            /// We need to divide by 10, feed in the high bit to undo the overflow and then round as required.
            /// </summary>
            private static int OverflowUnscale(ref Buf12 bufQuo, int scale, bool sticky)
            {
                if (--scale < 0)
                    throw new OverflowException(SR.Overflow_Decimal);

                Debug.Assert(bufQuo.U2 == 0);

                // We have overflown, so load the high bit with a one.
                const ulong highbit = 1UL << 32;
                bufQuo.U2 = (uint)(highbit / 10);
                ulong tmp = ((highbit % 10) << 32) + bufQuo.U1;
                uint div = (uint)(tmp / 10);
                bufQuo.U1 = div;
                tmp = ((tmp - div * 10) << 32) + bufQuo.U0;
                div = (uint)(tmp / 10);
                bufQuo.U0 = div;
                uint remainder = (uint)(tmp - div * 10);
                // The remainder is the last digit that does not fit, so we can use it to work out if we need to round up
                if (remainder > 5 || remainder == 5 && (sticky || (bufQuo.U0 & 1) != 0))
                    Add32To96(ref bufQuo, 1);
                return scale;
            }

            /// <summary>
            /// Determine the max power of 10, &lt;= 9, that the quotient can be scaled
            /// up by and still fit in 96 bits.
            /// </summary>
            /// <param name="bufQuo">96-bit quotient</param>
            /// <param name="scale ">Scale factor of quotient, range -DEC_SCALE_MAX to DEC_SCALE_MAX-1</param>
            /// <returns>power of 10 to scale by</returns>
            private static int SearchScale(ref Buf12 bufQuo, int scale)
            {
                const uint OVFL_MAX_9_HI = 4;
                const uint OVFL_MAX_8_HI = 42;
                const uint OVFL_MAX_7_HI = 429;
                const uint OVFL_MAX_6_HI = 4294;
                const uint OVFL_MAX_5_HI = 42949;
                const uint OVFL_MAX_4_HI = 429496;
                const uint OVFL_MAX_3_HI = 4294967;
                const uint OVFL_MAX_2_HI = 42949672;
                const uint OVFL_MAX_1_HI = 429496729;
                const ulong OVFL_MAX_9_MIDLO = 5441186219426131129;

                uint resHi = bufQuo.U2;
                ulong resMidLo = bufQuo.Low64;
                int curScale = 0;

                // Quick check to stop us from trying to scale any more.
                //
                if (resHi > OVFL_MAX_1_HI)
                {
                    goto HaveScale;
                }

                var powerOvfl = PowerOvflValues;
                if (scale > DEC_SCALE_MAX - 9)
                {
                    // We can't scale by 10^9 without exceeding the max scale factor.
                    // See if we can scale to the max.  If not, we'll fall into
                    // standard search for scale factor.
                    //
                    curScale = DEC_SCALE_MAX - scale;
                    if (resHi < powerOvfl[curScale - 1].Hi)
                        goto HaveScale;
                }
                else if (resHi < OVFL_MAX_9_HI || resHi == OVFL_MAX_9_HI && resMidLo <= OVFL_MAX_9_MIDLO)
                    return 9;

                // Search for a power to scale by < 9.  Do a binary search.
                //
                if (resHi > OVFL_MAX_5_HI)
                {
                    if (resHi > OVFL_MAX_3_HI)
                    {
                        curScale = 2;
                        if (resHi > OVFL_MAX_2_HI)
                            curScale--;
                    }
                    else
                    {
                        curScale = 4;
                        if (resHi > OVFL_MAX_4_HI)
                            curScale--;
                    }
                }
                else
                {
                    if (resHi > OVFL_MAX_7_HI)
                    {
                        curScale = 6;
                        if (resHi > OVFL_MAX_6_HI)
                            curScale--;
                    }
                    else
                    {
                        curScale = 8;
                        if (resHi > OVFL_MAX_8_HI)
                            curScale--;
                    }
                }

                // In all cases, we already found we could not use the power one larger.
                // So if we can use this power, it is the biggest, and we're done.  If
                // we can't use this power, the one below it is correct for all cases
                // unless it's 10^1 -- we might have to go to 10^0 (no scaling).
                //
                if (resHi == powerOvfl[curScale - 1].Hi && resMidLo > powerOvfl[curScale - 1].MidLo)
                    curScale--;

                HaveScale:
                // curScale = largest power of 10 we can scale by without overflow,
                // curScale < 9.  See if this is enough to make scale factor
                // positive if it isn't already.
                //
                if (curScale + scale < 0)
                    throw new OverflowException(SR.Overflow_Decimal);

                return curScale;
            }

            /// <summary>
            /// Add a 32-bit uint to an array of 3 uints representing a 96-bit integer.
            /// </summary>
            /// <returns>Returns false if there is an overflow</returns>
            private static bool Add32To96(ref Buf12 bufNum, uint value)
            {
                if ((bufNum.Low64 += value) < value)
                {
                    if (++bufNum.U2 == 0)
                        return false;
                }
                return true;
            }

            /// <summary>
            /// Adds or subtracts two decimal values.
            /// On return, d1 contains the result of the operation and d2 is trashed.
            /// </summary>
            /// <param name="sign">True means subtract and false means add.</param>
            internal static unsafe void DecAddSub(ref DecCalc d1, ref DecCalc d2, bool sign)
            {
                ulong low64 = d1.Low64;
                uint high = d1.High, flags = d1.uflags, d2flags = d2.uflags;

                uint xorflags = d2flags ^ flags;
                sign ^= (xorflags & SignMask) != 0;

                if ((xorflags & ScaleMask) == 0)
                {
                    // Scale factors are equal, no alignment necessary.
                    //
                    goto AlignedAdd;
                }
                else
                {
                    // Scale factors are not equal.  Assume that a larger scale
                    // factor (more decimal places) is likely to mean that number
                    // is smaller.  Start by guessing that the right operand has
                    // the larger scale factor.  The result will have the larger
                    // scale factor.
                    //
                    uint d1flags = flags;
                    flags = d2flags & ScaleMask | flags & SignMask; // scale factor of "smaller",  but sign of "larger"
                    int scale = (int)(flags - d1flags) >> ScaleShift;

                    if (scale < 0)
                    {
                        // Guessed scale factor wrong. Swap operands.
                        //
                        scale = -scale;
                        flags = d1flags;
                        if (sign)
                            flags ^= SignMask;
                        low64 = d2.Low64;
                        high = d2.High;
                        d2 = d1;
                    }

                    uint power;
                    ulong tmp64, tmpLow;

                    // d1 will need to be multiplied by 10^scale so
                    // it will have the same scale as d2.  We could be
                    // extending it to up to 192 bits of precision.

                    // Scan for zeros in the upper words.
                    //
                    if (high == 0)
                    {
                        if (low64 <= uint.MaxValue)
                        {
                            if ((uint)low64 == 0)
                            {
                                // Left arg is zero, return right.
                                //
                                uint signFlags = flags & SignMask;
                                if (sign)
                                    signFlags ^= SignMask;
                                d1 = d2;
                                d1.uflags = d2.uflags & ScaleMask | signFlags;
                                return;
                            }

                            do
                            {
                                if (scale <= MaxInt32Scale)
                                {
                                    low64 = UInt32x32To64((uint)low64, s_powers10[scale]);
                                    goto AlignedAdd;
                                }
                                scale -= MaxInt32Scale;
                                low64 = UInt32x32To64((uint)low64, TenToPowerNine);
                            } while (low64 <= uint.MaxValue);
                        }

                        do
                        {
                            power = TenToPowerNine;
                            if (scale < MaxInt32Scale)
                                power = s_powers10[scale];
                            tmpLow = UInt32x32To64((uint)low64, power);
                            tmp64 = UInt32x32To64((uint)(low64 >> 32), power) + (tmpLow >> 32);
                            low64 = (uint)tmpLow + (tmp64 << 32);
                            high = (uint)(tmp64 >> 32);
                            if ((scale -= MaxInt32Scale) <= 0)
                                goto AlignedAdd;
                        } while (high == 0);
                    }

                    while (true)
                    {
                        // Scaling won't make it larger than 4 uints
                        //
                        power = TenToPowerNine;
                        if (scale < MaxInt32Scale)
                            power = s_powers10[scale];
                        tmpLow = UInt32x32To64((uint)low64, power);
                        tmp64 = UInt32x32To64((uint)(low64 >> 32), power) + (tmpLow >> 32);
                        low64 = (uint)tmpLow + (tmp64 << 32);
                        tmp64 >>= 32;
                        tmp64 += UInt32x32To64(high, power);

                        scale -= MaxInt32Scale;
                        if (tmp64 > uint.MaxValue)
                            break;

                        high = (uint)tmp64;
                        // Result fits in 96 bits.  Use standard aligned add.
                        if (scale <= 0)
                            goto AlignedAdd;
                    }

                    // Have to scale by a bunch. Move the number to a buffer where it has room to grow as it's scaled.
                    //
                    Buf24 bufNum;
                    _ = &bufNum; // workaround for CS0165
                    bufNum.Low64 = low64;
                    bufNum.Mid64 = tmp64;
                    uint hiProd = 3;

                    // Scaling loop, up to 10^9 at a time. hiProd stays updated with index of highest non-zero uint.
                    //
                    for (; scale > 0; scale -= MaxInt32Scale)
                    {
                        power = TenToPowerNine;
                        if (scale < MaxInt32Scale)
                            power = s_powers10[scale];
                        tmp64 = 0;
                        uint* rgulNum = (uint*)&bufNum;
                        for (uint cur = 0; ;)
                        {
                            Debug.Assert(cur < bufNum.Length);
                            tmp64 += UInt32x32To64(rgulNum[cur], power);
                            rgulNum[cur] = (uint)tmp64;
                            cur++;
                            tmp64 >>= 32;
                            if (cur > hiProd)
                                break;
                        }

                        if ((uint)tmp64 != 0)
                        {
                            // We're extending the result by another uint.
                            Debug.Assert(hiProd + 1 < bufNum.Length);
                            rgulNum[++hiProd] = (uint)tmp64;
                        }
                    }

                    // Scaling complete, do the add.  Could be subtract if signs differ.
                    //
                    tmp64 = bufNum.Low64;
                    low64 = d2.Low64;
                    uint tmpHigh = bufNum.U2;
                    high = d2.High;

                    if (sign)
                    {
                        // Signs differ, subtract.
                        //
                        low64 = tmp64 - low64;
                        high = tmpHigh - high;

                        // Propagate carry
                        //
                        if (low64 > tmp64)
                        {
                            high--;
                            if (high < tmpHigh)
                                goto NoCarry;
                        }
                        else if (high <= tmpHigh)
                            goto NoCarry;

                        // Carry the subtraction into the higher bits.
                        // 
                        uint* number = (uint*)&bufNum;
                        uint cur = 3;
                        do
                        {
                            Debug.Assert(cur < bufNum.Length);
                        } while (number[cur++]-- == 0);
                        Debug.Assert(hiProd < bufNum.Length);
                        if (number[hiProd] == 0 && --hiProd <= 2)
                            goto ReturnResult;
                    }
                    else
                    {
                        // Signs the same, add.
                        //
                        low64 += tmp64;
                        high += tmpHigh;

                        // Propagate carry
                        //
                        if (low64 < tmp64)
                        {
                            high++;
                            if (high > tmpHigh)
                                goto NoCarry;
                        }
                        else if (high >= tmpHigh)
                            goto NoCarry;

                        uint* number = (uint*)&bufNum;
                        for (uint cur = 3; ++number[cur++] == 0;)
                        {
                            Debug.Assert(cur < bufNum.Length);
                            if (hiProd < cur)
                            {
                                number[cur] = 1;
                                hiProd = cur;
                                break;
                            }
                        }
                    }
NoCarry:

                    bufNum.Low64 = low64;
                    bufNum.U2 = high;
                    scale = ScaleResult(&bufNum, hiProd, (byte)(flags >> ScaleShift));
                    flags = (flags & ~ScaleMask) | ((uint)scale << ScaleShift);
                    low64 = bufNum.Low64;
                    high = bufNum.U2;
                    goto ReturnResult;
                }

SignFlip:
                {
                    // Got negative result.  Flip its sign.
                    flags ^= SignMask;
                    high = ~high;
                    low64 = (ulong)-(long)low64;
                    if (low64 == 0)
                        high++;
                    goto ReturnResult;
                }

AlignedScale:
                {
                    // The addition carried above 96 bits.
                    // Divide the value by 10, dropping the scale factor.
                    //
                    if ((flags & ScaleMask) == 0)
                        throw new OverflowException(SR.Overflow_Decimal);
                    flags -= 1 << ScaleShift;

                    const uint den = 10;
                    ulong num = high + (1UL << 32);
                    high = (uint)(num / den);
                    num = ((num - high * den) << 32) + (low64 >> 32);
                    uint div = (uint)(num / den);
                    num = ((num - div * den) << 32) + (uint)low64;
                    low64 = div;
                    low64 <<= 32;
                    div = (uint)(num / den);
                    low64 += div;
                    div = (uint)num - div * den;

                    // See if we need to round up.
                    //
                    if (div >= 5 && (div > 5 || (low64 & 1) != 0))
                    {
                        if (++low64 == 0)
                            high++;
                    }
                    goto ReturnResult;
                }

AlignedAdd:
                {
                    ulong d1Low64 = low64;
                    uint d1High = high;
                    if (sign)
                    {
                        // Signs differ - subtract
                        //
                        low64 = d1Low64 - d2.Low64;
                        high = d1High - d2.High;

                        // Propagate carry
                        //
                        if (low64 > d1Low64)
                        {
                            high--;
                            if (high >= d1High)
                                goto SignFlip;
                        }
                        else if (high > d1High)
                            goto SignFlip;
                    }
                    else
                    {
                        // Signs are the same - add
                        //
                        low64 = d1Low64 + d2.Low64;
                        high = d1High + d2.High;

                        // Propagate carry
                        //
                        if (low64 < d1Low64)
                        {
                            high++;
                            if (high <= d1High)
                                goto AlignedScale;
                        }
                        else if (high < d1High)
                            goto AlignedScale;
                    }
                    goto ReturnResult;
                }

ReturnResult:
                d1.uflags = flags;
                d1.High = high;
                d1.Low64 = low64;
                return;
            }

#endregion

            /// <summary>
            /// Convert Decimal to Currency (similar to OleAut32 api.)
            /// </summary>
            internal static long VarCyFromDec(ref DecCalc pdecIn)
            {
                long value;

                int scale = pdecIn.Scale - 4;
                // Need to scale to get 4 decimal places.  -4 <= scale <= 24.
                //
                if (scale < 0)
                {
                    if (pdecIn.High != 0)
                        goto ThrowOverflow;
                    uint pwr = s_powers10[-scale];
                    ulong high = UInt32x32To64(pwr, pdecIn.Mid);
                    if (high > uint.MaxValue)
                        goto ThrowOverflow;
                    ulong low = UInt32x32To64(pwr, pdecIn.Low);
                    low += high <<= 32;
                    if (low < high)
                        goto ThrowOverflow;
                    value = (long)low;
                }
                else
                {
                    if (scale != 0)
                        InternalRound(ref pdecIn, (uint)scale, RoundingMode.ToEven);
                    if (pdecIn.High != 0)
                        goto ThrowOverflow;
                    value = (long)pdecIn.Low64;
                }

                if (value < 0 && (value != long.MinValue || !pdecIn.IsNegative))
                    goto ThrowOverflow;

                if (pdecIn.IsNegative)
                    value = -value;

                return value;

ThrowOverflow:
                throw new OverflowException(SR.Overflow_Currency);
            }

            /// <summary>
            /// Decimal Compare updated to return values similar to ICompareTo
            /// </summary>
            internal static int VarDecCmp(in decimal d1, in decimal d2)
            {
                if ((d2.Low | d2.Mid | d2.High) == 0)
                {
                    if ((d1.Low | d1.Mid | d1.High) == 0)
                        return 0;
                    return (d1.flags >> 31) | 1;
                }
                if ((d1.Low | d1.Mid | d1.High) == 0)
                    return -((d2.flags >> 31) | 1);

                int sign = (d1.flags >> 31) - (d2.flags >> 31);
                if (sign != 0)
                    return sign;
                return VarDecCmpSub(in d1, in d2);
            }

            private static int VarDecCmpSub(in decimal d1, in decimal d2)
            {
                int flags = d2.flags;
                int sign = (flags >> 31) | 1;
                int scale = flags - d1.flags;

                ulong low64 = d1.Low64;
                uint high = d1.High;

                ulong d2Low64 = d2.Low64;
                uint d2High = d2.High;

                if (scale != 0)
                {
                    scale >>= ScaleShift;

                    // Scale factors are not equal. Assume that a larger scale factor (more decimal places) is likely to mean that number is smaller.
                    // Start by guessing that the right operand has the larger scale factor.
                    if (scale < 0)
                    {
                        // Guessed scale factor wrong. Swap operands.
                        scale = -scale;
                        sign = -sign;

                        ulong tmp64 = low64;
                        low64 = d2Low64;
                        d2Low64 = tmp64;

                        uint tmp = high;
                        high = d2High;
                        d2High = tmp;
                    }

                    // d1 will need to be multiplied by 10^scale so it will have the same scale as d2.
                    // Scaling loop, up to 10^9 at a time.
                    do
                    {
                        uint power = scale >= MaxInt32Scale ? TenToPowerNine : s_powers10[scale];
                        ulong tmpLow = UInt32x32To64((uint)low64, power);
                        ulong tmp = UInt32x32To64((uint)(low64 >> 32), power) + (tmpLow >> 32);
                        low64 = (uint)tmpLow + (tmp << 32);
                        tmp >>= 32;
                        tmp += UInt32x32To64(high, power);
                        // If the scaled value has more than 96 significant bits then it's greater than d2
                        if (tmp > uint.MaxValue)
                            return sign;
                        high = (uint)tmp;
                    } while ((scale -= MaxInt32Scale) > 0);
                }

                uint cmpHigh = high - d2High;
                if (cmpHigh != 0)
                {
                    // check for overflow
                    if (cmpHigh > high)
                        sign = -sign;
                    return sign;
                }

                ulong cmpLow64 = low64 - d2Low64;
                if (cmpLow64 == 0)
                    sign = 0;
                // check for overflow
                else if (cmpLow64 > low64)
                    sign = -sign;
                return sign;
            }

            /// <summary>
            /// Decimal Multiply
            /// </summary>
            internal static unsafe void VarDecMul(ref DecCalc d1, ref DecCalc d2)
            {
                int scale = (byte)(d1.uflags + d2.uflags >> ScaleShift);

                ulong tmp;
                uint hiProd;
                Buf24 bufProd;
                _ = &bufProd; // workaround for CS0165

                if ((d1.High | d1.Mid) == 0)
                {
                    if ((d2.High | d2.Mid) == 0)
                    {
                        // Upper 64 bits are zero.
                        //
                        ulong low64 = UInt32x32To64(d1.Low, d2.Low);
                        if (scale > DEC_SCALE_MAX)
                        {
                            // Result scale is too big.  Divide result by power of 10 to reduce it.
                            // If the amount to divide by is > 19 the result is guaranteed
                            // less than 1/2.  [max value in 64 bits = 1.84E19]
                            //
                            if (scale > DEC_SCALE_MAX + MaxInt64Scale)
                                goto ReturnZero;

                            scale -= DEC_SCALE_MAX + 1;
                            ulong power = s_ulongPowers10[scale];

                            // TODO: https://github.com/dotnet/coreclr/issues/3439
                            tmp = low64 / power;
                            ulong remainder = low64 - tmp * power;
                            low64 = tmp;

                            // Round result.  See if remainder >= 1/2 of divisor.
                            // Divisor is a power of 10, so it is always even.
                            //
                            power >>= 1;
                            if (remainder >= power && (remainder > power || ((uint)low64 & 1) > 0))
                                low64++;

                            scale = DEC_SCALE_MAX;
                        }
                        d1.Low64 = low64;
                        d1.uflags = ((d2.uflags ^ d1.uflags) & SignMask) | ((uint)scale << ScaleShift);
                        return;
                    }
                    else
                    {
                        // Left value is 32-bit, result fits in 4 uints
                        tmp = UInt32x32To64(d1.Low, d2.Low);
                        bufProd.U0 = (uint)tmp;

                        tmp = UInt32x32To64(d1.Low, d2.Mid) + (tmp >> 32);
                        bufProd.U1 = (uint)tmp;
                        tmp >>= 32;

                        if (d2.High != 0)
                        {
                            tmp += UInt32x32To64(d1.Low, d2.High);
                            if (tmp > uint.MaxValue)
                            {
                                bufProd.Mid64 = tmp;
                                hiProd = 3;
                                goto SkipScan;
                            }
                        }
                        if ((uint)tmp != 0)
                        {
                            bufProd.U2 = (uint)tmp;
                            hiProd = 2;
                            goto SkipScan;
                        }
                        hiProd = 1;
                    }
                }
                else if ((d2.High | d2.Mid) == 0)
                {
                    // Right value is 32-bit, result fits in 4 uints
                    tmp = UInt32x32To64(d2.Low, d1.Low);
                    bufProd.U0 = (uint)tmp;

                    tmp = UInt32x32To64(d2.Low, d1.Mid) + (tmp >> 32);
                    bufProd.U1 = (uint)tmp;
                    tmp >>= 32;

                    if (d1.High != 0)
                    {
                        tmp += UInt32x32To64(d2.Low, d1.High);
                        if (tmp > uint.MaxValue)
                        {
                            bufProd.Mid64 = tmp;
                            hiProd = 3;
                            goto SkipScan;
                        }
                    }
                    if ((uint)tmp != 0)
                    {
                        bufProd.U2 = (uint)tmp;
                        hiProd = 2;
                        goto SkipScan;
                    }
                    hiProd = 1;
                }
                else
                {
                    // Both operands have bits set in the upper 64 bits.
                    //
                    // Compute and accumulate the 9 partial products into a
                    // 192-bit (24-byte) result.
                    //
                    //        [l-h][l-m][l-l]      left high, middle, low
                    //         x    [r-h][r-m][r-l]      right high, middle, low
                    // ------------------------------
                    //
                    //             [0-h][0-l]      l-l * r-l
                    //        [1ah][1al]      l-l * r-m
                    //        [1bh][1bl]      l-m * r-l
                    //       [2ah][2al]          l-m * r-m
                    //       [2bh][2bl]          l-l * r-h
                    //       [2ch][2cl]          l-h * r-l
                    //      [3ah][3al]          l-m * r-h
                    //      [3bh][3bl]          l-h * r-m
                    // [4-h][4-l]              l-h * r-h
                    // ------------------------------
                    // [p-5][p-4][p-3][p-2][p-1][p-0]      prod[] array
                    //

                    tmp = UInt32x32To64(d1.Low, d2.Low);
                    bufProd.U0 = (uint)tmp;

                    ulong tmp2 = UInt32x32To64(d1.Low, d2.Mid) + (tmp >> 32);

                    tmp = UInt32x32To64(d1.Mid, d2.Low);
                    tmp += tmp2; // this could generate carry
                    bufProd.U1 = (uint)tmp;
                    if (tmp < tmp2) // detect carry
                        tmp2 = (tmp >> 32) | (1UL << 32);
                    else
                        tmp2 = tmp >> 32;

                    tmp = UInt32x32To64(d1.Mid, d2.Mid) + tmp2;

                    if ((d1.High | d2.High) > 0)
                    {
                        // Highest 32 bits is non-zero.     Calculate 5 more partial products.
                        //
                        tmp2 = UInt32x32To64(d1.Low, d2.High);
                        tmp += tmp2; // this could generate carry
                        uint tmp3 = 0;
                        if (tmp < tmp2) // detect carry
                            tmp3 = 1;

                        tmp2 = UInt32x32To64(d1.High, d2.Low);
                        tmp += tmp2; // this could generate carry
                        bufProd.U2 = (uint)tmp;
                        if (tmp < tmp2) // detect carry
                            tmp3++;
                        tmp2 = ((ulong)tmp3 << 32) | (tmp >> 32);

                        tmp = UInt32x32To64(d1.Mid, d2.High);
                        tmp += tmp2; // this could generate carry
                        tmp3 = 0;
                        if (tmp < tmp2) // detect carry
                            tmp3 = 1;

                        tmp2 = UInt32x32To64(d1.High, d2.Mid);
                        tmp += tmp2; // this could generate carry
                        bufProd.U3 = (uint)tmp;
                        if (tmp < tmp2) // detect carry
                            tmp3++;
                        tmp = ((ulong)tmp3 << 32) | (tmp >> 32);

                        bufProd.High64 = UInt32x32To64(d1.High, d2.High) + tmp;

                        hiProd = 5;
                    }
                    else if (tmp != 0)
                    {
                        bufProd.Mid64 = tmp;
                        hiProd = 3;
                    }
                    else
                        hiProd = 1;
                }

                // Check for leading zero uints on the product
                //
                uint* product = (uint*)&bufProd;
                while (product[(int)hiProd] == 0)
                {
                    if (hiProd == 0)
                        goto ReturnZero;
                    hiProd--;
                }

SkipScan:
                if (hiProd > 2 || scale > DEC_SCALE_MAX)
                {
                    scale = ScaleResult(&bufProd, hiProd, scale);
                }

                d1.Low64 = bufProd.Low64;
                d1.High = bufProd.U2;
                d1.uflags = ((d2.uflags ^ d1.uflags) & SignMask) | ((uint)scale << ScaleShift);
                return;

ReturnZero:
                d1 = default;
            }

            /// <summary>
            /// Convert float to Decimal
            /// </summary>
            internal static void VarDecFromR4(float input, out DecCalc result)
            {
                result = default;

                // The most we can scale by is 10^28, which is just slightly more
                // than 2^93.  So a float with an exponent of -94 could just
                // barely reach 0.5, but smaller exponents will always round to zero.
                //
                const uint SNGBIAS = 126;
                int exp = (int)(GetExponent(input) - SNGBIAS);
                if (exp < -94)
                    return; // result should be zeroed out

                if (exp > 96)
                    throw new OverflowException(SR.Overflow_Decimal);

                uint flags = 0;
                if (input < 0)
                {
                    input = -input;
                    flags = SignMask;
                }

                // Round the input to a 7-digit integer.  The R4 format has
                // only 7 digits of precision, and we want to keep garbage digits
                // out of the Decimal were making.
                //
                // Calculate max power of 10 input value could have by multiplying
                // the exponent by log10(2).  Using scaled integer multiplcation,
                // log10(2) * 2 ^ 16 = .30103 * 65536 = 19728.3.
                //
                double dbl = input;
                int power = 6 - ((exp * 19728) >> 16);
                // power is between -22 and 35

                if (power >= 0)
                {
                    // We have less than 7 digits, scale input up.
                    //
                    if (power > DEC_SCALE_MAX)
                        power = DEC_SCALE_MAX;

                    dbl *= s_doublePowers10[power];
                }
                else
                {
                    if (power != -1 || dbl >= 1E7)
                        dbl /= s_doublePowers10[-power];
                    else
                        power = 0; // didn't scale it
                }

                Debug.Assert(dbl < 1E7);
                if (dbl < 1E6 && power < DEC_SCALE_MAX)
                {
                    dbl *= 10;
                    power++;
                    Debug.Assert(dbl >= 1E6);
                }

                // Round to integer
                //
                uint mant;
                mant = (uint)(int)dbl;
                dbl -= (int)mant;  // difference between input & integer
                if (dbl > 0.5 || dbl == 0.5 && (mant & 1) != 0)
                    mant++;
                if (mant == 0)
                    return;  // result should be zeroed out

                if (power < 0)
                {
                    // Add -power factors of 10, -power <= (29 - 7) = 22.
                    //
                    power = -power;
                    if (power < 10)
                    {
                        result.Low64 = UInt32x32To64(mant, s_powers10[power]);
                    }
                    else
                    {
                        // Have a big power of 10.
                        //
                        if (power > 18)
                        {
                            ulong low64 = UInt32x32To64(mant, s_powers10[power - 18]);
                            UInt64x64To128(low64, TenToPowerEighteen, ref result);
                        }
                        else
                        {
                            ulong low64 = UInt32x32To64(mant, s_powers10[power - 9]);
                            ulong hi64 = UInt32x32To64(TenToPowerNine, (uint)(low64 >> 32));
                            low64 = UInt32x32To64(TenToPowerNine, (uint)low64);
                            result.Low = (uint)low64;
                            hi64 += low64 >> 32;
                            result.Mid = (uint)hi64;
                            hi64 >>= 32;
                            result.High = (uint)hi64;
                        }
                    }
                }
                else
                {
                    // Factor out powers of 10 to reduce the scale, if possible.
                    // The maximum number we could factor out would be 6.  This
                    // comes from the fact we have a 7-digit number, and the
                    // MSD must be non-zero -- but the lower 6 digits could be
                    // zero.  Note also the scale factor is never negative, so
                    // we can't scale by any more than the power we used to
                    // get the integer.
                    //
                    int lmax = power;
                    if (lmax > 6)
                        lmax = 6;

                    if ((mant & 0xF) == 0 && lmax >= 4)
                    {
                        const uint den = 10000;
                        uint div = mant / den;
                        if (mant == div * den)
                        {
                            mant = div;
                            power -= 4;
                            lmax -= 4;
                        }
                    }

                    if ((mant & 3) == 0 && lmax >= 2)
                    {
                        const uint den = 100;
                        uint div = mant / den;
                        if (mant == div * den)
                        {
                            mant = div;
                            power -= 2;
                            lmax -= 2;
                        }
                    }

                    if ((mant & 1) == 0 && lmax >= 1)
                    {
                        const uint den = 10;
                        uint div = mant / den;
                        if (mant == div * den)
                        {
                            mant = div;
                            power--;
                        }
                    }

                    flags |= (uint)power << ScaleShift;
                    result.Low = mant;
                }

                result.uflags = flags;
            }

            /// <summary>
            /// Convert double to Decimal
            /// </summary>
            internal static void VarDecFromR8(double input, out DecCalc result)
            {
                result = default;

                // The most we can scale by is 10^28, which is just slightly more
                // than 2^93.  So a float with an exponent of -94 could just
                // barely reach 0.5, but smaller exponents will always round to zero.
                //
                const uint DBLBIAS = 1022;
                int exp = (int)(GetExponent(input) - DBLBIAS);
                if (exp < -94)
                    return; // result should be zeroed out

                if (exp > 96)
                    throw new OverflowException(SR.Overflow_Decimal);

                uint flags = 0;
                if (input < 0)
                {
                    input = -input;
                    flags = SignMask;
                }

                // Round the input to a 15-digit integer.  The R8 format has
                // only 15 digits of precision, and we want to keep garbage digits
                // out of the Decimal were making.
                //
                // Calculate max power of 10 input value could have by multiplying
                // the exponent by log10(2).  Using scaled integer multiplcation,
                // log10(2) * 2 ^ 16 = .30103 * 65536 = 19728.3.
                //
                double dbl = input;
                int power = 14 - ((exp * 19728) >> 16);
                // power is between -14 and 43

                if (power >= 0)
                {
                    // We have less than 15 digits, scale input up.
                    //
                    if (power > DEC_SCALE_MAX)
                        power = DEC_SCALE_MAX;

                    dbl *= s_doublePowers10[power];
                }
                else
                {
                    if (power != -1 || dbl >= 1E15)
                        dbl /= s_doublePowers10[-power];
                    else
                        power = 0; // didn't scale it
                }

                Debug.Assert(dbl < 1E15);
                if (dbl < 1E14 && power < DEC_SCALE_MAX)
                {
                    dbl *= 10;
                    power++;
                    Debug.Assert(dbl >= 1E14);
                }

                // Round to int64
                //
                ulong mant;
                mant = (ulong)(long)dbl;
                dbl -= (long)mant;  // difference between input & integer
                if (dbl > 0.5 || dbl == 0.5 && (mant & 1) != 0)
                    mant++;

                if (mant == 0)
                    return;  // result should be zeroed out

                if (power < 0)
                {
                    // Add -power factors of 10, -power <= (29 - 15) = 14.
                    //
                    power = -power;
                    if (power < 10)
                    {
                        var pow10 = s_powers10[power];
                        ulong low64 = UInt32x32To64((uint)mant, pow10);
                        ulong hi64 = UInt32x32To64((uint)(mant >> 32), pow10);
                        result.Low = (uint)low64;
                        hi64 += low64 >> 32;
                        result.Mid = (uint)hi64;
                        hi64 >>= 32;
                        result.High = (uint)hi64;
                    }
                    else
                    {
                        // Have a big power of 10.
                        //
                        Debug.Assert(power <= 14);
                        UInt64x64To128(mant, s_ulongPowers10[power - 1], ref result);
                    }
                }
                else
                {
                    // Factor out powers of 10 to reduce the scale, if possible.
                    // The maximum number we could factor out would be 14.  This
                    // comes from the fact we have a 15-digit number, and the
                    // MSD must be non-zero -- but the lower 14 digits could be
                    // zero.  Note also the scale factor is never negative, so
                    // we can't scale by any more than the power we used to
                    // get the integer.
                    //
                    int lmax = power;
                    if (lmax > 14)
                        lmax = 14;

                    if ((byte)mant == 0 && lmax >= 8)
                    {
                        const uint den = 100000000;
                        ulong div = mant / den;
                        if ((uint)mant == (uint)(div * den))
                        {
                            mant = div;
                            power -= 8;
                            lmax -= 8;
                        }
                    }

                    if (((uint)mant & 0xF) == 0 && lmax >= 4)
                    {
                        const uint den = 10000;
                        ulong div = mant / den;
                        if ((uint)mant == (uint)(div * den))
                        {
                            mant = div;
                            power -= 4;
                            lmax -= 4;
                        }
                    }

                    if (((uint)mant & 3) == 0 && lmax >= 2)
                    {
                        const uint den = 100;
                        ulong div = mant / den;
                        if ((uint)mant == (uint)(div * den))
                        {
                            mant = div;
                            power -= 2;
                            lmax -= 2;
                        }
                    }

                    if (((uint)mant & 1) == 0 && lmax >= 1)
                    {
                        const uint den = 10;
                        ulong div = mant / den;
                        if ((uint)mant == (uint)(div * den))
                        {
                            mant = div;
                            power--;
                        }
                    }

                    flags |= (uint)power << ScaleShift;
                    result.Low64 = mant;
                }

                result.uflags = flags;
            }

            /// <summary>
            /// Convert Decimal to float
            /// </summary>
            internal static float VarR4FromDec(in decimal value)
            {
                return (float)VarR8FromDec(in value);
            }

            /// <summary>
            /// Convert Decimal to double
            /// </summary>
            internal static double VarR8FromDec(in decimal value)
            {
                // Value taken via reverse engineering the double that corresponds to 2^64. (oleaut32 has ds2to64 = DEFDS(0, 0, DBLBIAS + 65, 0))
                const double ds2to64 = 1.8446744073709552e+019;

                double dbl = ((double)value.Low64 +
                    (double)value.High * ds2to64) / s_doublePowers10[value.Scale];

                if (value.IsNegative)
                    dbl = -dbl;

                return dbl;
            }

            internal static int GetHashCode(in decimal d)
            {
                if ((d.Low | d.Mid | d.High) == 0)
                    return 0;

                uint flags = (uint)d.flags;
                if ((flags & ScaleMask) == 0 || (d.Low & 1) != 0)
                    return (int)(flags ^ d.High ^ d.Mid ^ d.Low);

                int scale = (byte)(flags >> ScaleShift);
                uint low = d.Low;
                ulong high64 = ((ulong)d.High << 32) | d.Mid;

                Unscale(ref low, ref high64, ref scale);

                flags = ((flags) & ~ScaleMask) | (uint)scale << ScaleShift;
                return (int)(flags ^ (uint)(high64 >> 32) ^ (uint)high64 ^ low);
            }

            /// <summary>
            /// Divides two decimal values.
            /// On return, d1 contains the result of the operation.
            /// </summary>
            internal static unsafe void VarDecDiv(ref DecCalc d1, ref DecCalc d2)
            {
                Buf12 bufQuo;
                _ = &bufQuo; // workaround for CS0165
                uint power;
                int curScale;

                int scale = (sbyte)(d1.uflags - d2.uflags >> ScaleShift);
                bool unscale = false;
                uint tmp;

                if ((d2.High | d2.Mid) == 0)
                {
                    // Divisor is only 32 bits.  Easy divide.
                    //
                    uint den = d2.Low;
                    if (den == 0)
                        throw new DivideByZeroException();

                    bufQuo.Low64 = d1.Low64;
                    bufQuo.U2 = d1.High;
                    uint remainder = Div96By32(ref bufQuo, den);

                    for (;;)
                    {
                        if (remainder == 0)
                        {
                            if (scale < 0)
                            {
                                curScale = Math.Min(9, -scale);
                                goto HaveScale;
                            }
                            break;
                        }

                        // We need to unscale if and only if we have a non-zero remainder
                        unscale = true;

                        // We have computed a quotient based on the natural scale
                        // ( <dividend scale> - <divisor scale> ).  We have a non-zero
                        // remainder, so now we should increase the scale if possible to
                        // include more quotient bits.
                        //
                        // If it doesn't cause overflow, we'll loop scaling by 10^9 and
                        // computing more quotient bits as long as the remainder stays
                        // non-zero.  If scaling by that much would cause overflow, we'll
                        // drop out of the loop and scale by as much as we can.
                        //
                        // Scaling by 10^9 will overflow if bufQuo[2].bufQuo[1] >= 2^32 / 10^9
                        // = 4.294 967 296.  So the upper limit is bufQuo[2] == 4 and
                        // bufQuo[1] == 0.294 967 296 * 2^32 = 1,266,874,889.7+.  Since
                        // quotient bits in bufQuo[0] could be all 1's, then 1,266,874,888
                        // is the largest value in bufQuo[1] (when bufQuo[2] == 4) that is
                        // assured not to overflow.
                        //
                        if (scale == DEC_SCALE_MAX || (curScale = SearchScale(ref bufQuo, scale)) == 0)
                        {
                            // No more scaling to be done, but remainder is non-zero.
                            // Round quotient.
                            //
                            tmp = remainder << 1;
                            if (tmp < remainder || tmp >= den && (tmp > den || (bufQuo.U0 & 1) != 0))
                                goto RoundUp;
                            break;
                        }

                        HaveScale:
                        power = s_powers10[curScale];
                        scale += curScale;

                        if (IncreaseScale(ref bufQuo, power) != 0)
                            goto ThrowOverflow;

                        ulong num = UInt32x32To64(remainder, power);
                        // TODO: https://github.com/dotnet/coreclr/issues/3439
                        uint div = (uint)(num / den);
                        remainder = (uint)num - div * den;

                        if (!Add32To96(ref bufQuo, div))
                        {
                            scale = OverflowUnscale(ref bufQuo, scale, remainder != 0);
                            break;
                        }
                    } // for (;;)
                }
                else
                {
                    // Divisor has bits set in the upper 64 bits.
                    //
                    // Divisor must be fully normalized (shifted so bit 31 of the most
                    // significant uint is 1).  Locate the MSB so we know how much to
                    // normalize by.  The dividend will be shifted by the same amount so
                    // the quotient is not changed.
                    //
                    tmp = d2.High;
                    if (tmp == 0)
                        tmp = d2.Mid;

                    curScale = LeadingZeroCount(tmp);

                    // Shift both dividend and divisor left by curScale.
                    //
                    Buf16 bufRem;
                    _ = &bufRem; // workaround for CS0165
                    bufRem.Low64 = d1.Low64 << curScale;
                    bufRem.High64 = (d1.Mid + ((ulong)d1.High << 32)) >> (32 - curScale);

                    ulong divisor = d2.Low64 << curScale;

                    if (d2.High == 0)
                    {
                        // Have a 64-bit divisor in sdlDivisor.  The remainder
                        // (currently 96 bits spread over 4 uints) will be < divisor.
                        //

                        bufQuo.U1 = Div96By64(ref *(Buf12*)&bufRem.U1, divisor);
                        bufQuo.U0 = Div96By64(ref *(Buf12*)&bufRem, divisor);

                        for (;;)
                        {
                            if (bufRem.Low64 == 0)
                            {
                                if (scale < 0)
                                {
                                    curScale = Math.Min(9, -scale);
                                    goto HaveScale64;
                                }
                                break;
                            }

                            // We need to unscale if and only if we have a non-zero remainder
                            unscale = true;

                            // Remainder is non-zero.  Scale up quotient and remainder by
                            // powers of 10 so we can compute more significant bits.
                            //
                            if (scale == DEC_SCALE_MAX || (curScale = SearchScale(ref bufQuo, scale)) == 0)
                            {
                                // No more scaling to be done, but remainder is non-zero.
                                // Round quotient.
                                //
                                ulong tmp64 = bufRem.Low64;
                                if ((long)tmp64 < 0 || (tmp64 <<= 1) > divisor ||
                                  (tmp64 == divisor && (bufQuo.U0 & 1) != 0))
                                    goto RoundUp;
                                break;
                            }

                            HaveScale64:
                            power = s_powers10[curScale];
                            scale += curScale;

                            if (IncreaseScale(ref bufQuo, power) != 0)
                                goto ThrowOverflow;

                            IncreaseScale64(ref *(Buf12*)&bufRem, power);
                            tmp = Div96By64(ref *(Buf12*)&bufRem, divisor);
                            if (!Add32To96(ref bufQuo, tmp))
                            {
                                scale = OverflowUnscale(ref bufQuo, scale, bufRem.Low64 != 0);
                                break;
                            }
                        } // for (;;)
                    }
                    else
                    {
                        // Have a 96-bit divisor in bufDivisor.
                        //
                        // Start by finishing the shift left by curScale.
                        //
                        Buf12 bufDivisor;
                        _ = &bufDivisor; // workaround for CS0165
                        bufDivisor.Low64 = divisor;
                        bufDivisor.U2 = (uint)((d2.Mid + ((ulong)d2.High << 32)) >> (32 - curScale));

                        // The remainder (currently 96 bits spread over 4 uints) will be < divisor.
                        //
                        bufQuo.Low64 = Div128By96(ref bufRem, ref bufDivisor);

                        for (;;)
                        {
                            if ((bufRem.Low64 | bufRem.U2) == 0)
                            {
                                if (scale < 0)
                                {
                                    curScale = Math.Min(9, -scale);
                                    goto HaveScale96;
                                }
                                break;
                            }

                            // We need to unscale if and only if we have a non-zero remainder
                            unscale = true;

                            // Remainder is non-zero.  Scale up quotient and remainder by
                            // powers of 10 so we can compute more significant bits.
                            //
                            if (scale == DEC_SCALE_MAX || (curScale = SearchScale(ref bufQuo, scale)) == 0)
                            {
                                // No more scaling to be done, but remainder is non-zero.
                                // Round quotient.
                                //
                                if ((int)bufRem.U2 < 0)
                                {
                                    goto RoundUp;
                                }

                                tmp = bufRem.U1 >> 31;
                                bufRem.Low64 <<= 1;
                                bufRem.U2 = (bufRem.U2 << 1) + tmp;

                                if (bufRem.U2 > bufDivisor.U2 || bufRem.U2 == bufDivisor.U2 &&
                                  (bufRem.Low64 > bufDivisor.Low64 || bufRem.Low64 == bufDivisor.Low64 &&
                                  (bufQuo.U0 & 1) != 0))
                                    goto RoundUp;
                                break;
                            }

                            HaveScale96:
                            power = s_powers10[curScale];
                            scale += curScale;

                            if (IncreaseScale(ref bufQuo, power) != 0)
                                goto ThrowOverflow;

                            bufRem.U3 = IncreaseScale(ref *(Buf12*)&bufRem, power);
                            tmp = Div128By96(ref bufRem, ref bufDivisor);
                            if (!Add32To96(ref bufQuo, tmp))
                            {
                                scale = OverflowUnscale(ref bufQuo, scale, (bufRem.Low64 | bufRem.High64) != 0);
                                break;
                            }
                        } // for (;;)
                    }
                }

Unscale:
                if (unscale)
                {
                    uint low = bufQuo.U0;
                    ulong high64 = bufQuo.High64;
                    Unscale(ref low, ref high64, ref scale);
                    d1.Low = low;
                    d1.Mid = (uint)high64;
                    d1.High = (uint)(high64 >> 32);
                }
                else
                {
                    d1.Low64 = bufQuo.Low64;
                    d1.High = bufQuo.U2;
                }

                d1.uflags = ((d1.uflags ^ d2.uflags) & SignMask) | ((uint)scale << ScaleShift);
                return;

RoundUp:
                {
                    if (++bufQuo.Low64 == 0 && ++bufQuo.U2 == 0)
                    {
                        scale = OverflowUnscale(ref bufQuo, scale, true);
                    }
                    goto Unscale;
                }

ThrowOverflow:
                throw new OverflowException(SR.Overflow_Decimal);
            }

            /// <summary>
            /// Computes the remainder between two decimals.
            /// On return, d1 contains the result of the operation and d2 is trashed.
            /// </summary>
            internal static void VarDecMod(ref DecCalc d1, ref DecCalc d2)
            {
                if ((d2.ulo | d2.umid | d2.uhi) == 0)
                    throw new DivideByZeroException();

                if ((d1.ulo | d1.umid | d1.uhi) == 0)
                    return;

                // In the operation x % y the sign of y does not matter. Result will have the sign of x.
                d2.uflags = (d2.uflags & ~SignMask) | (d1.uflags & SignMask);

                int cmp = VarDecCmpSub(in Unsafe.As<DecCalc, decimal>(ref d1), in Unsafe.As<DecCalc, decimal>(ref d2));
                if (cmp == 0)
                {
                    d1.ulo = 0;
                    d1.umid = 0;
                    d1.uhi = 0;
                    if (d2.uflags > d1.uflags)
                        d1.uflags = d2.uflags;
                    return;
                }
                if ((cmp ^ (int)(d1.uflags & SignMask)) < 0)
                    return;

                // The divisor is smaller than the dividend and both are non-zero. Calculate the integer remainder using the larger scaling factor. 

                int scale = (sbyte)(d1.uflags - d2.uflags >> ScaleShift);
                if (scale > 0)
                {
                    // Divisor scale can always be increased to dividend scale for remainder calculation.
                    do
                    {
                        uint power = scale >= MaxInt32Scale ? TenToPowerNine : s_powers10[scale];
                        ulong tmp = UInt32x32To64(d2.Low, power);
                        d2.Low = (uint)tmp;
                        tmp >>= 32;
                        tmp += (d2.Mid + ((ulong)d2.High << 32)) * power;
                        d2.Mid = (uint)tmp;
                        d2.High = (uint)(tmp >> 32);
                    } while ((scale -= MaxInt32Scale) > 0);
                    scale = 0;
                }

                do
                {
                    if (scale < 0)
                    {
                        d1.uflags = d2.uflags;
                        // Try to scale up dividend to match divisor.
                        Buf12 bufQuo;
                        unsafe
                        { _ = &bufQuo; } // workaround for CS0165
                        bufQuo.Low64 = d1.Low64;
                        bufQuo.U2 = d1.High;
                        do
                        {
                            int iCurScale = SearchScale(ref bufQuo, DEC_SCALE_MAX + scale);
                            if (iCurScale == 0)
                                break;
                            uint power = iCurScale >= MaxInt32Scale ? TenToPowerNine : s_powers10[iCurScale];
                            scale += iCurScale;
                            ulong tmp = UInt32x32To64(bufQuo.U0, power);
                            bufQuo.U0 = (uint)tmp;
                            tmp >>= 32;
                            bufQuo.High64 = tmp + bufQuo.High64 * power;
                            if (power != TenToPowerNine)
                                break;
                        }
                        while (scale < 0);
                        d1.Low64 = bufQuo.Low64;
                        d1.High = bufQuo.U2;
                    }

                    if (d1.High == 0)
                    {
                        Debug.Assert(d2.High == 0);
                        Debug.Assert(scale == 0);
                        d1.Low64 %= d2.Low64;
                        return;
                    }
                    else if ((d2.High | d2.Mid) == 0)
                    {
                        uint den = d2.Low;
                        ulong tmp = ((ulong)d1.High << 32) | d1.Mid;
                        tmp = ((tmp % den) << 32) | d1.Low;
                        d1.Low64 = tmp % den;
                        d1.High = 0;
                    }
                    else
                    {
                        VarDecModFull(ref d1, ref d2, scale);
                        return;
                    }
                } while (scale < 0);
            }

            private static unsafe void VarDecModFull(ref DecCalc d1, ref DecCalc d2, int scale)
            {
                // Divisor has bits set in the upper 64 bits.
                //
                // Divisor must be fully normalized (shifted so bit 31 of the most significant uint is 1). 
                // Locate the MSB so we know how much to normalize by. 
                // The dividend will be shifted by the same amount so the quotient is not changed.
                //
                uint tmp = d2.High;
                if (tmp == 0)
                    tmp = d2.Mid;
                int shift = LeadingZeroCount(tmp);

                Buf28 b;
                _ = &b; // workaround for CS0165
                b.Buf24.Low64 = d1.Low64 << shift;
                b.Buf24.Mid64 = (d1.Mid + ((ulong)d1.High << 32)) >> (32 - shift);

                // The dividend might need to be scaled up to 221 significant bits.
                // Maximum scaling is required when the divisor is 2^64 with scale 28 and is left shifted 31 bits
                // and the dividend is decimal.MaxValue: (2^96 - 1) * 10^28 << 31 = 221 bits.
                uint high = 3;
                while (scale < 0)
                {
                    uint power = scale <= -MaxInt32Scale ? TenToPowerNine : s_powers10[-scale];
                    uint* buf = (uint*)&b;
                    ulong tmp64 = UInt32x32To64(b.Buf24.U0, power);
                    b.Buf24.U0 = (uint)tmp64;
                    for (int i = 1; i <= high; i++)
                    {
                        tmp64 >>= 32;
                        tmp64 += UInt32x32To64(buf[i], power);
                        buf[i] = (uint)tmp64;
                    }
                    // The high bit of the dividend must not be set.
                    if (tmp64 > int.MaxValue)
                    {
                        Debug.Assert(high + 1 < b.Length);
                        buf[++high] = (uint)(tmp64 >> 32);
                    }

                    scale += MaxInt32Scale;
                }

                if (d2.High == 0)
                {
                    ulong divisor = d2.Low64 << shift;
                    switch (high)
                    {
                        case 6:
                            Div96By64(ref *(Buf12*)&b.Buf24.U4, divisor);
                            goto case 5;
                        case 5:
                            Div96By64(ref *(Buf12*)&b.Buf24.U3, divisor);
                            goto case 4;
                        case 4:
                            Div96By64(ref *(Buf12*)&b.Buf24.U2, divisor);
                            break;
                    }
                    Div96By64(ref *(Buf12*)&b.Buf24.U1, divisor);
                    Div96By64(ref *(Buf12*)&b, divisor);

                    d1.Low64 = b.Buf24.Low64 >> shift;
                    d1.High = 0;
                }
                else
                {
                    Buf12 bufDivisor;
                    _ = &bufDivisor; // workaround for CS0165
                    bufDivisor.Low64 = d2.Low64 << shift;
                    bufDivisor.U2 = (uint)((d2.Mid + ((ulong)d2.High << 32)) >> (32 - shift));

                    switch (high)
                    {
                        case 6:
                            Div128By96(ref *(Buf16*)&b.Buf24.U3, ref bufDivisor);
                            goto case 5;
                        case 5:
                            Div128By96(ref *(Buf16*)&b.Buf24.U2, ref bufDivisor);
                            goto case 4;
                        case 4:
                            Div128By96(ref *(Buf16*)&b.Buf24.U1, ref bufDivisor);
                            break;
                    }
                    Div128By96(ref *(Buf16*)&b, ref bufDivisor);

                    d1.Low64 = (b.Buf24.Low64 >> shift) + ((ulong)b.Buf24.U2 << (32 - shift) << 32);
                    d1.High = b.Buf24.U2 >> shift;
                }
            }

            internal enum RoundingMode
            {
                ToEven = 0,
                AwayFromZero = 1,
                Truncate = 2,
                Floor = 3,
                Ceiling = 4,
            }

            /// <summary>
            /// Does an in-place round by the specified scale
            /// </summary>
            internal static void InternalRound(ref DecCalc d, uint scale, RoundingMode mode)
            {
                // the scale becomes the desired decimal count
                d.uflags -= scale << ScaleShift;

                uint remainder, sticky = 0, power;
                // First divide the value by constant 10^9 up to three times
                while (scale >= MaxInt32Scale)
                {
                    scale -= MaxInt32Scale;

                    const uint divisor = TenToPowerNine;
                    uint n = d.uhi;
                    if (n == 0)
                    {
                        ulong tmp = d.Low64;
                        ulong div = tmp / divisor;
                        d.Low64 = div;
                        remainder = (uint)(tmp - div * divisor);
                    }
                    else
                    {
                        uint q;
                        d.uhi = q = n / divisor;
                        remainder = n - q * divisor;
                        n = d.umid;
                        if ((n | remainder) != 0)
                        {
                            d.umid = q = (uint)((((ulong)remainder << 32) | n) / divisor);
                            remainder = n - q * divisor;
                        }
                        n = d.ulo;
                        if ((n | remainder) != 0)
                        {
                            d.ulo = q = (uint)((((ulong)remainder << 32) | n) / divisor);
                            remainder = n - q * divisor;
                        }
                    }
                    power = divisor;
                    if (scale == 0)
                        goto checkRemainder;
                    sticky |= remainder;
                }

                {
                    power = s_powers10[scale];
                    // TODO: https://github.com/dotnet/coreclr/issues/3439
                    uint n = d.uhi;
                    if (n == 0)
                    {
                        ulong tmp = d.Low64;
                        if (tmp == 0)
                        {
                            if (mode <= RoundingMode.Truncate)
                                goto done;
                            remainder = 0;
                            goto checkRemainder;
                        }
                        ulong div = tmp / power;
                        d.Low64 = div;
                        remainder = (uint)(tmp - div * power);
                    }
                    else
                    {
                        uint q;
                        d.uhi = q = n / power;
                        remainder = n - q * power;
                        n = d.umid;
                        if ((n | remainder) != 0)
                        {
                            d.umid = q = (uint)((((ulong)remainder << 32) | n) / power);
                            remainder = n - q * power;
                        }
                        n = d.ulo;
                        if ((n | remainder) != 0)
                        {
                            d.ulo = q = (uint)((((ulong)remainder << 32) | n) / power);
                            remainder = n - q * power;
                        }
                    }
                }

checkRemainder:
                if (mode == RoundingMode.Truncate)
                    goto done;
                else if (mode == RoundingMode.ToEven)
                {
                    // To do IEEE rounding, we add LSB of result to sticky bits so either causes round up if remainder * 2 == last divisor.
                    remainder <<= 1;
                    if ((sticky | d.ulo & 1) != 0)
                        remainder++;
                    if (power >= remainder)
                        goto done;
                }
                else if (mode == RoundingMode.AwayFromZero)
                {
                    // Round away from zero at the mid point.
                    remainder <<= 1;
                    if (power > remainder)
                        goto done;
                }
                else if (mode == RoundingMode.Floor)
                {
                    // Round toward -infinity if we have chopped off a non-zero amount from a negative value.
                    if ((remainder | sticky) == 0 || !d.IsNegative)
                        goto done;
                }
                else
                {
                    Debug.Assert(mode == RoundingMode.Ceiling);
                    // Round toward infinity if we have chopped off a non-zero amount from a positive value.
                    if ((remainder | sticky) == 0 || d.IsNegative)
                        goto done;
                }
                if (++d.Low64 == 0)
                    d.uhi++;
done:
                return;
            }

            internal static uint DecDivMod1E9(ref DecCalc value)
            {
                ulong high64 = ((ulong)value.uhi << 32) + value.umid;
                ulong div64 = high64 / TenToPowerNine;
                value.uhi = (uint)(div64 >> 32);
                value.umid = (uint)div64;

                ulong num = ((high64 - (uint)div64 * TenToPowerNine) << 32) + value.ulo;
                uint div = (uint)(num / TenToPowerNine);
                value.ulo = div;
                return (uint)num - div * TenToPowerNine;
            }

            struct PowerOvfl
            {
                public readonly uint Hi;
                public readonly ulong MidLo;

                public PowerOvfl(uint hi, uint mid, uint lo)
                {
                    Hi = hi;
                    MidLo = ((ulong)mid << 32) + lo;
                }
            }

            static readonly PowerOvfl[] PowerOvflValues = new[]
            {
                // This is a table of the largest values that can be in the upper two
                // uints of a 96-bit number that will not overflow when multiplied
                // by a given power.  For the upper word, this is a table of
                // 2^32 / 10^n for 1 <= n <= 8.  For the lower word, this is the
                // remaining fraction part * 2^32.  2^32 = 4294967296.
                //
                new PowerOvfl(429496729, 2576980377, 2576980377),  // 10^1 remainder 0.6
                new PowerOvfl(42949672,  4123168604, 687194767),   // 10^2 remainder 0.16
                new PowerOvfl(4294967,   1271310319, 2645699854),  // 10^3 remainder 0.616
                new PowerOvfl(429496,    3133608139, 694066715),   // 10^4 remainder 0.1616
                new PowerOvfl(42949,     2890341191, 2216890319),  // 10^5 remainder 0.51616
                new PowerOvfl(4294,      4154504685, 2369172679),  // 10^6 remainder 0.551616
                new PowerOvfl(429,       2133437386, 4102387834),  // 10^7 remainder 0.9551616
                new PowerOvfl(42,        4078814305, 410238783),   // 10^8 remainder 0.09991616
            };

            [StructLayout(LayoutKind.Explicit)]
            private struct Buf12
            {
                [FieldOffset(0 * 4)]
                public uint U0;
                [FieldOffset(1 * 4)]
                public uint U1;
                [FieldOffset(2 * 4)]
                public uint U2;

                [FieldOffset(0)]
                private ulong ulo64LE;
                [FieldOffset(4)]
                private ulong uhigh64LE;

                public ulong Low64
                {
                    get => BitConverter.IsLittleEndian ? ulo64LE : (((ulong)U1 << 32) | U0);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            ulo64LE = value;
                        }
                        else
                        {
                            U1 = (uint)(value >> 32);
                            U0 = (uint)value;
                        }
                    }
                }

                /// <summary>
                /// U1-U2 combined (overlaps with Low64)
                /// </summary>
                public ulong High64
                {
                    get => BitConverter.IsLittleEndian ? uhigh64LE : (((ulong)U2 << 32) | U1);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            uhigh64LE = value;
                        }
                        else
                        {
                            U2 = (uint)(value >> 32);
                            U1 = (uint)value;
                        }
                    }
                }
            }

            [StructLayout(LayoutKind.Explicit)]
            private struct Buf16
            {
                [FieldOffset(0 * 4)]
                public uint U0;
                [FieldOffset(1 * 4)]
                public uint U1;
                [FieldOffset(2 * 4)]
                public uint U2;
                [FieldOffset(3 * 4)]
                public uint U3;

                [FieldOffset(0 * 8)]
                private ulong ulo64LE;
                [FieldOffset(1 * 8)]
                private ulong uhigh64LE;

                public ulong Low64
                {
                    get => BitConverter.IsLittleEndian ? ulo64LE : (((ulong)U1 << 32) | U0);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            ulo64LE = value;
                        }
                        else
                        {
                            U1 = (uint)(value >> 32);
                            U0 = (uint)value;
                        }
                    }
                }

                public ulong High64
                {
                    get => BitConverter.IsLittleEndian ? uhigh64LE : (((ulong)U3 << 32) | U2);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            uhigh64LE = value;
                        }
                        else
                        {
                            U3 = (uint)(value >> 32);
                            U2 = (uint)value;
                        }
                    }
                }
            }

            [StructLayout(LayoutKind.Explicit)]
            private struct Buf24
            {
                [FieldOffset(0 * 4)]
                public uint U0;
                [FieldOffset(1 * 4)]
                public uint U1;
                [FieldOffset(2 * 4)]
                public uint U2;
                [FieldOffset(3 * 4)]
                public uint U3;
                [FieldOffset(4 * 4)]
                public uint U4;
                [FieldOffset(5 * 4)]
                public uint U5;

                [FieldOffset(0 * 8)]
                private ulong ulo64LE;
                [FieldOffset(1 * 8)]
                private ulong umid64LE;
                [FieldOffset(2 * 8)]
                private ulong uhigh64LE;

                public ulong Low64
                {
                    get => BitConverter.IsLittleEndian ? ulo64LE : (((ulong)U1 << 32) | U0);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            ulo64LE = value;
                        }
                        else
                        {
                            U1 = (uint)(value >> 32);
                            U0 = (uint)value;
                        }
                    }
                }

                public ulong Mid64
                {
                    get => BitConverter.IsLittleEndian ? umid64LE : (((ulong)U3 << 32) | U2);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            umid64LE = value;
                        }
                        else
                        {
                            U3 = (uint)(value >> 32);
                            U2 = (uint)value;
                        }
                    }
                }

                public ulong High64
                {
                    get => BitConverter.IsLittleEndian ? uhigh64LE : (((ulong)U5 << 32) | U4);
                    set
                    {
                        if (BitConverter.IsLittleEndian)
                        {
                            uhigh64LE = value;
                        }
                        else
                        {
                            U5 = (uint)(value >> 32);
                            U4 = (uint)value;
                        }
                    }
                }

                public int Length => 6;
            }

            private struct Buf28
            {
                public Buf24 Buf24;
                public uint U6;

                public int Length => 7;
            }
        }
#endif
    }
}