1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*=========================================================================
**
** Class: Complex
**
**
** Purpose:
** This feature is intended to create Complex Number as a type
** that can be a part of the .NET framework (base class libraries).
** A complex number z is a number of the form z = x + yi, where x and y
** are real numbers, and i is the imaginary unit, with the property i2= -1.
**
**
===========================================================================*/
using System;
using System.Globalization;
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Contracts;
namespace System.Numerics {
#if !SILVERLIGHT
[Serializable]
#endif // !SILVERLIGHT
public struct Complex : IEquatable<Complex>, IFormattable {
// --------------SECTION: Private Data members ----------- //
private Double m_real;
private Double m_imaginary;
// ---------------SECTION: Necessary Constants ----------- //
private const Double LOG_10_INV = 0.43429448190325;
// --------------SECTION: Public Properties -------------- //
public Double Real {
get {
return m_real;
}
}
public Double Imaginary {
get {
return m_imaginary;
}
}
public Double Magnitude {
get {
return Complex.Abs(this);
}
}
public Double Phase {
get {
return Math.Atan2(m_imaginary, m_real);
}
}
// --------------SECTION: Attributes -------------- //
public static readonly Complex Zero = new Complex(0.0, 0.0);
public static readonly Complex One = new Complex(1.0, 0.0);
public static readonly Complex ImaginaryOne = new Complex(0.0, 1.0);
// --------------SECTION: Constructors and factory methods -------------- //
public Complex(Double real, Double imaginary) /* Constructor to create a complex number with rectangular co-ordinates */
{
this.m_real = real;
this.m_imaginary = imaginary;
}
public static Complex FromPolarCoordinates(Double magnitude, Double phase) /* Factory method to take polar inputs and create a Complex object */
{
return new Complex((magnitude * Math.Cos(phase)), (magnitude * Math.Sin(phase)));
}
public static Complex Negate(Complex value) {
return -value;
}
public static Complex Add(Complex left, Complex right) {
return left + right;
}
public static Complex Subtract(Complex left, Complex right) {
return left - right;
}
public static Complex Multiply(Complex left, Complex right) {
return left * right;
}
public static Complex Divide(Complex dividend, Complex divisor) {
return dividend / divisor;
}
// --------------SECTION: Arithmetic Operator(unary) Overloading -------------- //
public static Complex operator -(Complex value) /* Unary negation of a complex number */
{
return (new Complex((-value.m_real), (-value.m_imaginary)));
}
// --------------SECTION: Arithmetic Operator(binary) Overloading -------------- //
public static Complex operator +(Complex left, Complex right) {
return (new Complex((left.m_real + right.m_real), (left.m_imaginary + right.m_imaginary)));
}
public static Complex operator -(Complex left, Complex right) {
return (new Complex((left.m_real - right.m_real), (left.m_imaginary - right.m_imaginary)));
}
public static Complex operator *(Complex left, Complex right) {
// Multiplication: (a + bi)(c + di) = (ac -bd) + (bc + ad)i
Double result_Realpart = (left.m_real * right.m_real) - (left.m_imaginary * right.m_imaginary);
Double result_Imaginarypart = (left.m_imaginary * right.m_real) + (left.m_real * right.m_imaginary);
return (new Complex(result_Realpart, result_Imaginarypart));
}
public static Complex operator /(Complex left, Complex right) {
// Division : Smith's formula.
double a = left.m_real;
double b = left.m_imaginary;
double c = right.m_real;
double d = right.m_imaginary;
if (Math.Abs(d) < Math.Abs(c)) {
double doc = d / c;
return new Complex((a + b * doc) / (c + d * doc), (b - a * doc) / (c + d * doc));
} else {
double cod = c / d;
return new Complex((b + a * cod) / (d + c * cod), (-a + b * cod) / (d + c * cod));
}
}
// --------------SECTION: Other arithmetic operations -------------- //
public static Double Abs(Complex value) {
if(Double.IsInfinity(value.m_real) || Double.IsInfinity(value.m_imaginary)) {
return double.PositiveInfinity;
}
// |value| == sqrt(a^2 + b^2)
// sqrt(a^2 + b^2) == a/a * sqrt(a^2 + b^2) = a * sqrt(a^2/a^2 + b^2/a^2)
// Using the above we can factor out the square of the larger component to dodge overflow.
double c = Math.Abs(value.m_real);
double d = Math.Abs(value.m_imaginary);
if (c > d) {
double r = d / c;
return c * Math.Sqrt(1.0 + r * r);
} else if (d == 0.0) {
return c; // c is either 0.0 or NaN
} else {
double r = c / d;
return d * Math.Sqrt(1.0 + r * r);
}
}
public static Complex Conjugate(Complex value) {
// Conjugate of a Complex number: the conjugate of x+i*y is x-i*y
return (new Complex(value.m_real, (-value.m_imaginary)));
}
public static Complex Reciprocal(Complex value) {
// Reciprocal of a Complex number : the reciprocal of x+i*y is 1/(x+i*y)
if ((value.m_real == 0) && (value.m_imaginary == 0)) {
return Complex.Zero;
}
return Complex.One / value;
}
// --------------SECTION: Comparison Operator(binary) Overloading -------------- //
public static bool operator ==(Complex left, Complex right) {
return ((left.m_real == right.m_real) && (left.m_imaginary == right.m_imaginary));
}
public static bool operator !=(Complex left, Complex right) {
return ((left.m_real != right.m_real) || (left.m_imaginary != right.m_imaginary));
}
// --------------SECTION: Comparison operations (methods implementing IEquatable<ComplexNumber>,IComparable<ComplexNumber>) -------------- //
public override bool Equals(object obj) {
if (!(obj is Complex)) return false;
return this == ((Complex)obj);
}
public bool Equals(Complex value) {
return ((this.m_real.Equals(value.m_real)) && (this.m_imaginary.Equals(value.m_imaginary)));
}
// --------------SECTION: Type-casting basic numeric data-types to ComplexNumber -------------- //
public static implicit operator Complex(Int16 value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Int32 value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Int64 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(UInt16 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(UInt32 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(UInt64 value) {
return (new Complex(value, 0.0));
}
[CLSCompliant(false)]
public static implicit operator Complex(SByte value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Byte value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Single value) {
return (new Complex(value, 0.0));
}
public static implicit operator Complex(Double value) {
return (new Complex(value, 0.0));
}
public static explicit operator Complex(BigInteger value) {
return (new Complex((Double)value, 0.0));
}
public static explicit operator Complex(Decimal value) {
return (new Complex((Double)value, 0.0));
}
// --------------SECTION: Formattig/Parsing options -------------- //
public override String ToString() {
return (String.Format(CultureInfo.CurrentCulture, "({0}, {1})", this.m_real, this.m_imaginary));
}
public String ToString(String format) {
return (String.Format(CultureInfo.CurrentCulture, "({0}, {1})", this.m_real.ToString(format, CultureInfo.CurrentCulture), this.m_imaginary.ToString(format, CultureInfo.CurrentCulture)));
}
public String ToString(IFormatProvider provider) {
return (String.Format(provider, "({0}, {1})", this.m_real, this.m_imaginary));
}
public String ToString(String format, IFormatProvider provider) {
return (String.Format(provider, "({0}, {1})", this.m_real.ToString(format, provider), this.m_imaginary.ToString(format, provider)));
}
public override Int32 GetHashCode() {
Int32 n1 = 99999997;
Int32 hash_real = this.m_real.GetHashCode() % n1;
Int32 hash_imaginary = this.m_imaginary.GetHashCode();
Int32 final_hashcode = hash_real ^ hash_imaginary;
return (final_hashcode);
}
// --------------SECTION: Trigonometric operations (methods implementing ITrigonometric) -------------- //
public static Complex Sin(Complex value) {
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Sin(a) * Math.Cosh(b), Math.Cos(a) * Math.Sinh(b));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Sinh", Justification = "Microsoft: Existing Name")]
public static Complex Sinh(Complex value) /* Hyperbolic sin */
{
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Sinh(a) * Math.Cos(b), Math.Cosh(a) * Math.Sin(b));
}
public static Complex Asin(Complex value) /* Arcsin */
{
if ((value.m_imaginary == 0 && value.m_real < 0) || value.m_imaginary > 0)
{
return -Asin(-value);
}
return (-ImaginaryOne) * Log(ImaginaryOne * value + Sqrt(One - value * value));
}
public static Complex Cos(Complex value) {
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Cos(a) * Math.Cosh(b), - (Math.Sin(a) * Math.Sinh(b)));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Cosh", Justification = "Microsoft: Existing Name")]
public static Complex Cosh(Complex value) /* Hyperbolic cos */
{
double a = value.m_real;
double b = value.m_imaginary;
return new Complex(Math.Cosh(a) * Math.Cos(b), Math.Sinh(a) * Math.Sin(b));
}
public static Complex Acos(Complex value) /* Arccos */
{
if ((value.m_imaginary == 0 && value.m_real > 0) || value.m_imaginary < 0)
{
return System.Math.PI - Acos(-value);
}
return (-ImaginaryOne) * Log(value + ImaginaryOne*Sqrt(One - (value * value)));
}
public static Complex Tan(Complex value) {
return (Sin(value) / Cos(value));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Tanh", Justification = "Microsoft: Existing Name")]
public static Complex Tanh(Complex value) /* Hyperbolic tan */
{
return (Sinh(value) / Cosh(value));
}
public static Complex Atan(Complex value) /* Arctan */
{
Complex Two = new Complex(2.0, 0.0);
return (ImaginaryOne / Two) * (Log(One - ImaginaryOne * value) - Log(One + ImaginaryOne * value));
}
// --------------SECTION: Other numerical functions -------------- //
public static Complex Log(Complex value) /* Log of the complex number value to the base of 'e' */
{
return (new Complex((Math.Log(Abs(value))), (Math.Atan2(value.m_imaginary, value.m_real))));
}
public static Complex Log(Complex value, Double baseValue) /* Log of the complex number to a the base of a double */
{
return (Log(value) / Log(baseValue));
}
public static Complex Log10(Complex value) /* Log to the base of 10 of the complex number */
{
Complex temp_log = Log(value);
return (Scale(temp_log, (Double)LOG_10_INV));
}
public static Complex Exp(Complex value) /* The complex number raised to e */
{
Double temp_factor = Math.Exp(value.m_real);
Double result_re = temp_factor * Math.Cos(value.m_imaginary);
Double result_im = temp_factor * Math.Sin(value.m_imaginary);
return (new Complex(result_re, result_im));
}
[SuppressMessage("Microsoft.Naming", "CA1704:IdentifiersShouldBeSpelledCorrectly", MessageId = "Sqrt", Justification = "Microsoft: Existing Name")]
public static Complex Sqrt(Complex value) /* Square root ot the complex number */
{
return Complex.FromPolarCoordinates(Math.Sqrt(value.Magnitude), value.Phase / 2.0);
}
public static Complex Pow(Complex value, Complex power) /* A complex number raised to another complex number */
{
if (power == Complex.Zero) {
return Complex.One;
}
if (value == Complex.Zero) {
return Complex.Zero;
}
double a = value.m_real;
double b = value.m_imaginary;
double c = power.m_real;
double d = power.m_imaginary;
double rho = Complex.Abs(value);
double theta = Math.Atan2(b, a);
double newRho = c * theta + d * Math.Log(rho);
double t = Math.Pow(rho, c) * Math.Pow(Math.E, -d * theta);
return new Complex(t * Math.Cos(newRho), t * Math.Sin(newRho));
}
public static Complex Pow(Complex value, Double power) // A complex number raised to a real number
{
return Pow(value, new Complex(power, 0));
}
//--------------- SECTION: Private member functions for internal use -----------------------------------//
private static Complex Scale(Complex value, Double factor) {
Double result_re = factor * value.m_real;
Double result_im = factor * value.m_imaginary;
return (new Complex(result_re, result_im));
}
}
}
|