File: NetFXCryptoService.cs

package info (click to toggle)
mono 6.8.0.105%2Bdfsg-3.3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,284,512 kB
  • sloc: cs: 11,172,132; xml: 2,850,069; ansic: 671,653; cpp: 122,091; perl: 59,366; javascript: 30,841; asm: 22,168; makefile: 20,093; sh: 15,020; python: 4,827; pascal: 925; sql: 859; sed: 16; php: 1
file content (186 lines) | stat: -rw-r--r-- 10,129 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
//------------------------------------------------------------------------------
// <copyright file="NetFXCryptoService.cs" company="Microsoft">
//     Copyright (c) Microsoft Corporation.  All rights reserved.
// </copyright>                                                                
//------------------------------------------------------------------------------

namespace System.Web.Security.Cryptography {
    using System;
    using System.IO;
    using System.Security.Cryptography;

    /******************************************************************
    * !! WARNING !!                                                  *
    * This class contains cryptographic code. If you make changes to *
    * this class, please have it reviewed by the appropriate people. *
    ******************************************************************/

    // Uses .NET Framework classes to encrypt (SymmetricAlgorithm) and sign (KeyedHashAlgorithm) data.
    //
    // [PROTECT]
    // INPUT: clearData
    // OUTPUT: protectedData
    // ALGORITHM:
    //   protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))
    //
    // [UNPROTECT]
    // INPUT: protectedData
    // OUTPUT: clearData
    // ALGORITHM:
    //   1) Assume protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))
    //   2) Validate the signature over the payload and strip it from the end
    //   3) Strip off the IV from the beginning of the payload
    //   4) Decrypt what remains of the payload, and return it as clearData

    internal sealed class NetFXCryptoService : ICryptoService {

        private readonly ICryptoAlgorithmFactory _cryptoAlgorithmFactory;
        private readonly CryptographicKey _encryptionKey;
        private readonly bool _predictableIV;
        private readonly CryptographicKey _validationKey;

        public NetFXCryptoService(ICryptoAlgorithmFactory cryptoAlgorithmFactory, CryptographicKey encryptionKey, CryptographicKey validationKey, bool predictableIV = false) {
            _cryptoAlgorithmFactory = cryptoAlgorithmFactory;
            _encryptionKey = encryptionKey;
            _validationKey = validationKey;
            _predictableIV = predictableIV;
        }

        public byte[] Protect(byte[] clearData) {
            // The entire operation is wrapped in a 'checked' block because any overflows should be treated as failures.
            checked {

                // These SymmetricAlgorithm instances are single-use; we wrap it in a 'using' block.
                using (SymmetricAlgorithm encryptionAlgorithm = _cryptoAlgorithmFactory.GetEncryptionAlgorithm()) {
                    // Initialize the algorithm with the specified key and an appropriate IV
                    encryptionAlgorithm.Key = _encryptionKey.GetKeyMaterial();

                    if (_predictableIV) {
                        // The caller wanted the output to be predictable (e.g. for caching), so we'll create an
                        // appropriate IV directly from the input buffer. The IV length is equal to the block size.
                        encryptionAlgorithm.IV = CryptoUtil.CreatePredictableIV(clearData, encryptionAlgorithm.BlockSize);
                    }
                    else {
                        // If the caller didn't ask for a predictable IV, just let the algorithm itself choose one.
                        encryptionAlgorithm.GenerateIV();
                    }
                    byte[] iv = encryptionAlgorithm.IV;

                    using (MemoryStream memStream = new MemoryStream()) {
                        memStream.Write(iv, 0, iv.Length);

                        // At this point:
                        // memStream := IV

                        // Write the encrypted payload to the memory stream.
                        using (ICryptoTransform encryptor = encryptionAlgorithm.CreateEncryptor()) {
                            using (CryptoStream cryptoStream = new CryptoStream(memStream, encryptor, CryptoStreamMode.Write)) {
                                cryptoStream.Write(clearData, 0, clearData.Length);
                                cryptoStream.FlushFinalBlock();

                                // At this point:
                                // memStream := IV || Enc(Kenc, IV, clearData)

                                // These KeyedHashAlgorithm instances are single-use; we wrap it in a 'using' block.
                                using (KeyedHashAlgorithm signingAlgorithm = _cryptoAlgorithmFactory.GetValidationAlgorithm()) {
                                    // Initialize the algorithm with the specified key
                                    signingAlgorithm.Key = _validationKey.GetKeyMaterial();

                                    // Compute the signature
                                    byte[] signature = signingAlgorithm.ComputeHash(memStream.GetBuffer(), 0, (int)memStream.Length);

                                    // At this point:
                                    // memStream := IV || Enc(Kenc, IV, clearData)
                                    // signature := Sign(Kval, IV || Enc(Kenc, IV, clearData))

                                    // Append the signature to the encrypted payload
                                    memStream.Write(signature, 0, signature.Length);

                                    // At this point:
                                    // memStream := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))

                                    // Algorithm complete
                                    byte[] protectedData = memStream.ToArray();
                                    return protectedData;
                                }
                            }
                        }
                    }
                }
            }
        }

        public byte[] Unprotect(byte[] protectedData) {
            // The entire operation is wrapped in a 'checked' block because any overflows should be treated as failures.
            checked {

                // We want to check that the input is in the form:
                // protectedData := IV || Enc(Kenc, IV, clearData) || Sign(Kval, IV || Enc(Kenc, IV, clearData))

                // Definitions used in this method:
                // encryptedPayload := Enc(Kenc, IV, clearData)
                // signature := Sign(Kval, IV || encryptedPayload)

                // These SymmetricAlgorithm instances are single-use; we wrap it in a 'using' block.
                using (SymmetricAlgorithm decryptionAlgorithm = _cryptoAlgorithmFactory.GetEncryptionAlgorithm()) {
                    decryptionAlgorithm.Key = _encryptionKey.GetKeyMaterial();

                    // These KeyedHashAlgorithm instances are single-use; we wrap it in a 'using' block.
                    using (KeyedHashAlgorithm validationAlgorithm = _cryptoAlgorithmFactory.GetValidationAlgorithm()) {
                        validationAlgorithm.Key = _validationKey.GetKeyMaterial();

                        // First, we need to verify that protectedData is even long enough to contain
                        // the required components (IV, encryptedPayload, signature).

                        int ivByteCount = decryptionAlgorithm.BlockSize / 8; // IV length is equal to the block size
                        int signatureByteCount = validationAlgorithm.HashSize / 8;
                        int encryptedPayloadByteCount = protectedData.Length - ivByteCount - signatureByteCount;
                        if (encryptedPayloadByteCount <= 0) {
                            // protectedData doesn't meet minimum length requirements
                            return null;
                        }

                        // If that check passes, we need to detect payload tampering.

                        // Compute the signature over the IV and encrypted payload
                        // computedSignature := Sign(Kval, IV || encryptedPayload)
                        byte[] computedSignature = validationAlgorithm.ComputeHash(protectedData, 0, ivByteCount + encryptedPayloadByteCount);

                        if (!CryptoUtil.BuffersAreEqual(
                            buffer1: protectedData, buffer1Offset: ivByteCount + encryptedPayloadByteCount, buffer1Count: signatureByteCount,
                            buffer2: computedSignature, buffer2Offset: 0, buffer2Count: computedSignature.Length)) {

                            // the computed signature didn't match the incoming signature, which is a sign of payload tampering
                            return null;
                        }

                        // At this point, we're certain that we generated the signature over this payload,
                        // so we can go ahead with decryption.

                        // Populate the IV from the incoming stream
                        byte[] iv = new byte[ivByteCount];
                        Buffer.BlockCopy(protectedData, 0, iv, 0, iv.Length);
                        decryptionAlgorithm.IV = iv;

                        // Write the decrypted payload to the memory stream.
                        using (MemoryStream memStream = new MemoryStream()) {
                            using (ICryptoTransform decryptor = decryptionAlgorithm.CreateDecryptor()) {
                                using (CryptoStream cryptoStream = new CryptoStream(memStream, decryptor, CryptoStreamMode.Write)) {
                                    cryptoStream.Write(protectedData, ivByteCount, encryptedPayloadByteCount);
                                    cryptoStream.FlushFinalBlock();

                                    // At this point
                                    // memStream := clearData

                                    byte[] clearData = memStream.ToArray();
                                    return clearData;
                                }
                            }
                        }
                    }
                }
            }
        }

    }
}