1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
namespace System.IO.Compression
{
using System;
using System.Diagnostics;
// Strictly speaking this class is not a HuffmanTree, this class is
// a lookup table combined with a HuffmanTree. The idea is to speed up
// the lookup for short symbols (they should appear more frequently ideally.)
// However we don't want to create a huge table since it might take longer to
// build the table than decoding (Deflate usually generates new tables frequently.)
//
// Jean-loup Gailly and Mark Adler gave a very good explanation about this.
// The full text (algorithm.txt) can be found inside
// ftp://ftp.uu.net/pub/archiving/zip/zlib/zlib.zip.
//
// Following paper explains decoding in details:
// Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
// Comm. ACM, 33,4, April 1990, pp. 449-459.
//
internal class HuffmanTree {
internal const int MaxLiteralTreeElements = 288;
internal const int MaxDistTreeElements = 32;
internal const int EndOfBlockCode = 256;
internal const int NumberOfCodeLengthTreeElements = 19;
int tableBits;
short[] table;
short[] left;
short[] right;
byte[] codeLengthArray;
#if DEBUG
uint[] codeArrayDebug;
#endif
int tableMask;
// huffman tree for static block
static HuffmanTree staticLiteralLengthTree;
static HuffmanTree staticDistanceTree;
static HuffmanTree() {
// construct the static literal tree and distance tree
staticLiteralLengthTree = new HuffmanTree(GetStaticLiteralTreeLength());
staticDistanceTree = new HuffmanTree(GetStaticDistanceTreeLength());
}
static public HuffmanTree StaticLiteralLengthTree {
get {
return staticLiteralLengthTree;
}
}
static public HuffmanTree StaticDistanceTree {
get {
return staticDistanceTree;
}
}
public HuffmanTree(byte[] codeLengths) {
Debug.Assert( codeLengths.Length == MaxLiteralTreeElements
|| codeLengths.Length == MaxDistTreeElements
|| codeLengths.Length == NumberOfCodeLengthTreeElements,
"we only expect three kinds of Length here");
codeLengthArray = codeLengths;
if (codeLengthArray.Length == MaxLiteralTreeElements) { // bits for Literal/Length tree table
tableBits = 9;
}
else { // bits for distance tree table and code length tree table
tableBits = 7;
}
tableMask = (1 << tableBits) -1;
CreateTable();
}
// Generate the array contains huffman codes lengths for static huffman tree.
// The data is in RFC 1951.
static byte[] GetStaticLiteralTreeLength() {
byte[] literalTreeLength = new byte[MaxLiteralTreeElements];
for (int i = 0; i <= 143; i++)
literalTreeLength[i] = 8;
for (int i = 144; i <= 255; i++)
literalTreeLength[i] = 9;
for (int i = 256; i <= 279; i++)
literalTreeLength[i] = 7;
for (int i = 280; i <= 287; i++)
literalTreeLength[i] = 8;
return literalTreeLength;
}
static byte[] GetStaticDistanceTreeLength() {
byte[] staticDistanceTreeLength = new byte[MaxDistTreeElements];
for (int i = 0; i < MaxDistTreeElements; i++) {
staticDistanceTreeLength[i] = 5;
}
return staticDistanceTreeLength;
}
// Calculate the huffman code for each character based on the code length for each character.
// This algorithm is described in standard RFC 1951
uint[] CalculateHuffmanCode() {
uint[] bitLengthCount = new uint[17];
foreach( int codeLength in codeLengthArray) {
bitLengthCount[codeLength]++;
}
bitLengthCount[0] = 0; // clear count for length 0
uint[] nextCode = new uint[17];
uint tempCode = 0;
for (int bits = 1; bits <= 16; bits++) {
tempCode = (tempCode + bitLengthCount[bits-1]) << 1;
nextCode[bits] = tempCode;
}
uint[] code = new uint[MaxLiteralTreeElements];
for (int i = 0; i < codeLengthArray.Length; i++) {
int len = codeLengthArray[i];
if (len > 0) {
code[i] = FastEncoderStatics.BitReverse(nextCode[len], len);
nextCode[len]++;
}
}
return code;
}
private void CreateTable() {
uint[] codeArray = CalculateHuffmanCode();
table = new short[ 1 << tableBits];
#if DEBUG
codeArrayDebug = codeArray;
#endif
// I need to find proof that left and right array will always be
// enough. I think they are.
left = new short[2* codeLengthArray.Length];
right = new short[2* codeLengthArray.Length];
short avail = (short)codeLengthArray.Length;
for (int ch = 0; ch < codeLengthArray.Length; ch++) {
// length of this code
int len = codeLengthArray[ch];
if (len > 0) {
// start value (bit reversed)
int start = (int)codeArray[ch];
if (len <= tableBits) {
// If a particular symbol is shorter than nine bits,
// then that symbol's translation is duplicated
// in all those entries that start with that symbol's bits.
// For example, if the symbol is four bits, then it's duplicated
// 32 times in a nine-bit table. If a symbol is nine bits long,
// it appears in the table once.
//
// Make sure that in the loop below, code is always
// less than table_size.
//
// On last iteration we store at array index:
// initial_start_at + (locs-1)*increment
// = initial_start_at + locs*increment - increment
// = initial_start_at + (1 << tableBits) - increment
// = initial_start_at + table_size - increment
//
// Therefore we must ensure:
// initial_start_at + table_size - increment < table_size
// or: initial_start_at < increment
//
int increment = 1 << len;
if (start >= increment) {
throw new InvalidDataException(SR.GetString(SR.InvalidHuffmanData));
}
// Note the bits in the table are reverted.
int locs = 1 << (tableBits - len);
for (int j = 0; j < locs; j++) {
table[start] = (short) ch;
start += increment;
}
} else {
// For any code which has length longer than num_elements,
// build a binary tree.
int overflowBits = len - tableBits; // the nodes we need to respent the data.
int codeBitMask = 1 << tableBits; // mask to get current bit (the bits can't fit in the table)
// the left, right table is used to repesent the
// the rest bits. When we got the first part (number bits.) and look at
// tbe table, we will need to follow the tree to find the real character.
// This is in place to avoid bloating the table if there are
// a few ones with long code.
int index = start & ((1 << tableBits) -1);
short[] array = table;
do {
short value = array[index];
if (value == 0) { // set up next pointer if this node is not used before.
array[index] = (short)-avail; // use next available slot.
value = (short)-avail;
avail++;
}
if (value > 0) { // prevent an IndexOutOfRangeException from array[index]
throw new InvalidDataException(SR.GetString(SR.InvalidHuffmanData));
}
Debug.Assert( value < 0, "CreateTable: Only negative numbers are used for tree pointers!");
if ((start & codeBitMask) == 0) { // if current bit is 0, go change the left array
array = left;
} else { // if current bit is 1, set value in the right array
array = right;
}
index = -value; // go to next node
codeBitMask <<= 1;
overflowBits--;
} while (overflowBits != 0);
array[index] = (short) ch;
}
}
}
}
//
// This function will try to get enough bits from input and
// try to decode the bits.
// If there are no enought bits in the input, this function will return -1.
//
public int GetNextSymbol(InputBuffer input) {
// Try to load 16 bits into input buffer if possible and get the bitBuffer value.
// If there aren't 16 bits available we will return all we have in the
// input buffer.
uint bitBuffer = input.TryLoad16Bits();
if( input.AvailableBits == 0) { // running out of input.
return -1;
}
// decode an element
int symbol = table[bitBuffer & tableMask];
if( symbol < 0) { // this will be the start of the binary tree
// navigate the tree
uint mask = (uint)1 << tableBits;
do
{
symbol = -symbol;
if ((bitBuffer & mask) == 0)
symbol = left[symbol];
else
symbol = right[symbol];
mask <<= 1;
} while (symbol < 0);
}
int codeLength = codeLengthArray[symbol];
// huffman code lengths must be at least 1 bit long
if (codeLength <= 0)
{
throw new InvalidDataException(SR.GetString(SR.InvalidHuffmanData));
}
//
// If this code is longer than the # bits we had in the bit buffer (i.e.
// we read only part of the code), we can hit the entry in the table or the tree
// for another symbol. However the length of another symbol will not match the
// available bits count.
if (codeLength > input.AvailableBits)
{
// We already tried to load 16 bits and maximum length is 15,
// so this means we are running out of input.
return -1;
}
input.SkipBits(codeLength);
return symbol;
}
}
}
|