1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
/*============================================================
**
** Class: Double
**
**
** Purpose: A representation of an IEEE double precision
** floating point number.
**
**
===========================================================*/
namespace System {
using System;
using System.Globalization;
///#if GENERICS_WORK
/// using System.Numerics;
///#endif
using System.Runtime.InteropServices;
using System.Runtime.CompilerServices;
using System.Runtime.ConstrainedExecution;
using System.Diagnostics.Contracts;
[Serializable]
[StructLayout(LayoutKind.Sequential)]
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK
public struct Double : IComparable, IFormattable, IConvertible
, IComparable<Double>, IEquatable<Double>
/// , IArithmetic<Double>
#else
public struct Double : IComparable, IFormattable, IConvertible
#endif
{
internal double m_value;
//
// Public Constants
//
public const double MinValue = -1.7976931348623157E+308;
public const double MaxValue = 1.7976931348623157E+308;
// Note Epsilon should be a double whose hex representation is 0x1
// on little endian machines.
public const double Epsilon = 4.9406564584124654E-324;
public const double NegativeInfinity = (double)-1.0 / (double)(0.0);
public const double PositiveInfinity = (double)1.0 / (double)(0.0);
public const double NaN = (double)0.0 / (double)0.0;
internal static double NegativeZero = BitConverter.Int64BitsToDouble(unchecked((long)0x8000000000000000));
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsInfinity(double d) {
return (*(long*)(&d) & 0x7FFFFFFFFFFFFFFF) == 0x7FF0000000000000;
}
[Pure]
[System.Runtime.Versioning.NonVersionable]
public static bool IsPositiveInfinity(double d) {
//Jit will generate inlineable code with this
if (d == double.PositiveInfinity)
{
return true;
}
else
{
return false;
}
}
[Pure]
[System.Runtime.Versioning.NonVersionable]
public static bool IsNegativeInfinity(double d) {
//Jit will generate inlineable code with this
if (d == double.NegativeInfinity)
{
return true;
}
else
{
return false;
}
}
[Pure]
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static bool IsNegative(double d) {
return (*(UInt64*)(&d) & 0x8000000000000000) == 0x8000000000000000;
}
[Pure]
[ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
[System.Security.SecuritySafeCritical]
[System.Runtime.Versioning.NonVersionable]
public unsafe static bool IsNaN(double d)
{
return (*(UInt64*)(&d) & 0x7FFFFFFFFFFFFFFFL) > 0x7FF0000000000000L;
}
#if MONO
[Pure]
[System.Runtime.Versioning.NonVersionable]
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public unsafe static bool IsFinite(double d)
{
var bits = BitConverter.DoubleToInt64Bits(d);
return (bits & 0x7FFFFFFFFFFFFFFF) < 0x7FF0000000000000;
}
#endif
// Compares this object to another object, returning an instance of System.Relation.
// Null is considered less than any instance.
//
// If object is not of type Double, this method throws an ArgumentException.
//
// Returns a value less than zero if this object
//
public int CompareTo(Object value) {
if (value == null) {
return 1;
}
if (value is Double) {
double d = (double)value;
if (m_value < d) return -1;
if (m_value > d) return 1;
if (m_value == d) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(d) ? 0 : -1);
else
return 1;
}
throw new ArgumentException(Environment.GetResourceString("Arg_MustBeDouble"));
}
public int CompareTo(Double value) {
if (m_value < value) return -1;
if (m_value > value) return 1;
if (m_value == value) return 0;
// At least one of the values is NaN.
if (IsNaN(m_value))
return (IsNaN(value) ? 0 : -1);
else
return 1;
}
// True if obj is another Double with the same value as the current instance. This is
// a method of object equality, that only returns true if obj is also a double.
public override bool Equals(Object obj) {
if (!(obj is Double)) {
return false;
}
double temp = ((Double)obj).m_value;
// This code below is written this way for performance reasons i.e the != and == check is intentional.
if (temp == m_value) {
return true;
}
return IsNaN(temp) && IsNaN(m_value);
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator ==(Double left, Double right) {
return left == right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator !=(Double left, Double right) {
return left != right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator <(Double left, Double right) {
return left < right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator >(Double left, Double right) {
return left > right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator <=(Double left, Double right) {
return left <= right;
}
[System.Runtime.Versioning.NonVersionable]
public static bool operator >=(Double left, Double right) {
return left >= right;
}
public bool Equals(Double obj)
{
if (obj == m_value) {
return true;
}
return IsNaN(obj) && IsNaN(m_value);
}
//The hashcode for a double is the absolute value of the integer representation
//of that double.
//
[System.Security.SecuritySafeCritical]
public unsafe override int GetHashCode() {
double d = m_value;
if (d == 0) {
// Ensure that 0 and -0 have the same hash code
return 0;
}
long value = *(long*)(&d);
return unchecked((int)value) ^ ((int)(value >> 32));
}
[System.Security.SecuritySafeCritical] // auto-generated
public override String ToString() {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, null, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, format, NumberFormatInfo.CurrentInfo);
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, null, NumberFormatInfo.GetInstance(provider));
}
[System.Security.SecuritySafeCritical] // auto-generated
public String ToString(String format, IFormatProvider provider) {
Contract.Ensures(Contract.Result<String>() != null);
return Number.FormatDouble(m_value, format, NumberFormatInfo.GetInstance(provider));
}
public static double Parse(String s) {
return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
}
public static double Parse(String s, NumberStyles style) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Parse(s, style, NumberFormatInfo.CurrentInfo);
}
public static double Parse(String s, IFormatProvider provider) {
return Parse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
}
public static double Parse(String s, NumberStyles style, IFormatProvider provider) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return Parse(s, style, NumberFormatInfo.GetInstance(provider));
}
// Parses a double from a String in the given style. If
// a NumberFormatInfo isn't specified, the current culture's
// NumberFormatInfo is assumed.
//
// This method will not throw an OverflowException, but will return
// PositiveInfinity or NegativeInfinity for a number that is too
// large or too small.
//
private static double Parse(String s, NumberStyles style, NumberFormatInfo info) {
return Number.ParseDouble(s, style, info);
}
public static bool TryParse(String s, out double result) {
return TryParse(s, NumberStyles.Float| NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
}
public static bool TryParse(String s, NumberStyles style, IFormatProvider provider, out double result) {
NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
}
private static bool TryParse(String s, NumberStyles style, NumberFormatInfo info, out double result) {
if (s == null) {
result = 0;
return false;
}
bool success = Number.TryParseDouble(s, style, info, out result);
if (!success) {
String sTrim = s.Trim();
if (sTrim.Equals(info.PositiveInfinitySymbol)) {
result = PositiveInfinity;
} else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
result = NegativeInfinity;
} else if (sTrim.Equals(info.NaNSymbol)) {
result = NaN;
} else
return false; // We really failed
}
return true;
}
//
// IConvertible implementation
//
public TypeCode GetTypeCode() {
return TypeCode.Double;
}
/// <internalonly/>
bool IConvertible.ToBoolean(IFormatProvider provider) {
return Convert.ToBoolean(m_value);
}
/// <internalonly/>
char IConvertible.ToChar(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "Char"));
}
/// <internalonly/>
sbyte IConvertible.ToSByte(IFormatProvider provider) {
return Convert.ToSByte(m_value);
}
/// <internalonly/>
byte IConvertible.ToByte(IFormatProvider provider) {
return Convert.ToByte(m_value);
}
/// <internalonly/>
short IConvertible.ToInt16(IFormatProvider provider) {
return Convert.ToInt16(m_value);
}
/// <internalonly/>
ushort IConvertible.ToUInt16(IFormatProvider provider) {
return Convert.ToUInt16(m_value);
}
/// <internalonly/>
int IConvertible.ToInt32(IFormatProvider provider) {
return Convert.ToInt32(m_value);
}
/// <internalonly/>
uint IConvertible.ToUInt32(IFormatProvider provider) {
return Convert.ToUInt32(m_value);
}
/// <internalonly/>
long IConvertible.ToInt64(IFormatProvider provider) {
return Convert.ToInt64(m_value);
}
/// <internalonly/>
ulong IConvertible.ToUInt64(IFormatProvider provider) {
return Convert.ToUInt64(m_value);
}
/// <internalonly/>
float IConvertible.ToSingle(IFormatProvider provider) {
return Convert.ToSingle(m_value);
}
/// <internalonly/>
double IConvertible.ToDouble(IFormatProvider provider) {
return m_value;
}
/// <internalonly/>
Decimal IConvertible.ToDecimal(IFormatProvider provider) {
return Convert.ToDecimal(m_value);
}
/// <internalonly/>
DateTime IConvertible.ToDateTime(IFormatProvider provider) {
throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Double", "DateTime"));
}
/// <internalonly/>
Object IConvertible.ToType(Type type, IFormatProvider provider) {
return Convert.DefaultToType((IConvertible)this, type, provider);
}
///#if GENERICS_WORK
/// //
/// // IArithmetic<Double> implementation
/// //
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.AbsoluteValue(out bool overflowed) {
/// Double abs = (m_value < 0 ? -m_value : m_value);
/// overflowed = IsInfinity(abs) || IsNaN(abs);
/// return abs;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Negate(out bool overflowed) {
/// Double neg= -m_value;
/// overflowed = IsInfinity(neg) || IsNaN(neg);
/// return neg;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Sign(out bool overflowed) {
/// overflowed = IsNaN(m_value);
/// if (overflowed) {
/// return m_value;
/// }
/// return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Add(Double addend, out bool overflowed) {
/// Double s = m_value + addend;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Subtract(Double subtrahend, out bool overflowed) {
/// Double s = m_value - subtrahend;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Multiply(Double multiplier, out bool overflowed) {
/// Double s = m_value * multiplier;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Divide(Double divisor, out bool overflowed) {
/// Double s = m_value / divisor;
/// overflowed = IsInfinity(s) || IsNaN(s);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.DivideRemainder(Double divisor, out Double remainder, out bool overflowed) {
/// remainder = m_value % divisor;
/// Double s = m_value / divisor;
/// overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder);
/// return s;
/// }
///
/// /// <internalonly/>
/// Double IArithmetic<Double>.Remainder(Double divisor, out bool overflowed) {
/// Double d = m_value % divisor;
/// overflowed = IsInfinity(d) || IsNaN(d);
/// return d;
/// }
///
/// /// <internalonly/>
/// ArithmeticDescriptor<Double> IArithmetic<Double>.GetDescriptor() {
/// if (s_descriptor == null) {
/// s_descriptor = new DoubleArithmeticDescriptor( ArithmeticCapabilities.One
/// | ArithmeticCapabilities.Zero
/// | ArithmeticCapabilities.MaxValue
/// | ArithmeticCapabilities.MinValue
/// | ArithmeticCapabilities.PositiveInfinity
/// | ArithmeticCapabilities.NegativeInfinity);
/// }
/// return s_descriptor;
/// }
///
/// private static DoubleArithmeticDescriptor s_descriptor;
///
/// class DoubleArithmeticDescriptor : ArithmeticDescriptor<Double> {
/// public DoubleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///
/// public override Double One {
/// get {
/// return (Double) 1;
/// }
/// }
///
/// public override Double Zero {
/// get {
/// return (Double) 0;
/// }
/// }
///
/// public override Double MinValue {
/// get {
/// return Double.MinValue;
/// }
/// }
///
/// public override Double MaxValue {
/// get {
/// return Double.MaxValue;
/// }
/// }
///
/// public override Double PositiveInfinity {
/// get {
/// return Double.PositiveInfinity;
/// }
/// }
///
/// public override Double NegativeInfinity {
/// get {
/// return Double.NegativeInfinity;
/// }
/// }
///
/// }
///#endif // #if GENERICS_WORK
}
}
|