1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
namespace System.Globalization {
using System;
using System.Runtime.CompilerServices;
using System.Globalization;
using System.Runtime.Versioning;
using System.Diagnostics.Contracts;
// This abstract class represents a calendar. A calendar reckons time in
// divisions such as weeks, months and years. The number, length and start of
// the divisions vary in each calendar.
//
// Any instant in time can be represented as an n-tuple of numeric values using
// a particular calendar. For example, the next vernal equinox occurs at (0.0, 0
// , 46, 8, 20, 3, 1999) in the Gregorian calendar. An implementation of
// Calendar can map any DateTime value to such an n-tuple and vice versa. The
// DateTimeFormat class can map between such n-tuples and a textual
// representation such as "8:46 AM Microsoft 20th 1999 AD".
//
// Most calendars identify a year which begins the current era. There may be any
// number of previous eras. The Calendar class identifies the eras as enumerated
// integers where the current era (CurrentEra) has the value zero.
//
// For consistency, the first unit in each interval, e.g. the first month, is
// assigned the value one.
// The calculation of hour/minute/second is moved to Calendar from GregorianCalendar,
// since most of the calendars (or all?) have the same way of calcuating hour/minute/second.
[Serializable]
[System.Runtime.InteropServices.ComVisible(true)]
public abstract class Calendar : ICloneable
{
// Number of 100ns (10E-7 second) ticks per time unit
internal const long TicksPerMillisecond = 10000;
internal const long TicksPerSecond = TicksPerMillisecond * 1000;
internal const long TicksPerMinute = TicksPerSecond * 60;
internal const long TicksPerHour = TicksPerMinute * 60;
internal const long TicksPerDay = TicksPerHour * 24;
// Number of milliseconds per time unit
internal const int MillisPerSecond = 1000;
internal const int MillisPerMinute = MillisPerSecond * 60;
internal const int MillisPerHour = MillisPerMinute * 60;
internal const int MillisPerDay = MillisPerHour * 24;
// Number of days in a non-leap year
internal const int DaysPerYear = 365;
// Number of days in 4 years
internal const int DaysPer4Years = DaysPerYear * 4 + 1;
// Number of days in 100 years
internal const int DaysPer100Years = DaysPer4Years * 25 - 1;
// Number of days in 400 years
internal const int DaysPer400Years = DaysPer100Years * 4 + 1;
// Number of days from 1/1/0001 to 1/1/10000
internal const int DaysTo10000 = DaysPer400Years * 25 - 366;
internal const long MaxMillis = (long)DaysTo10000 * MillisPerDay;
//
// Calendar ID Values. This is used to get data from calendar.nlp.
// The order of calendar ID means the order of data items in the table.
//
internal const int CAL_GREGORIAN = 1 ; // Gregorian (localized) calendar
internal const int CAL_GREGORIAN_US = 2 ; // Gregorian (U.S.) calendar
internal const int CAL_JAPAN = 3 ; // Japanese Emperor Era calendar
internal const int CAL_TAIWAN = 4 ; // Taiwan Era calendar
internal const int CAL_KOREA = 5 ; // Korean Tangun Era calendar
internal const int CAL_HIJRI = 6 ; // Hijri (Arabic Lunar) calendar
internal const int CAL_THAI = 7 ; // Thai calendar
internal const int CAL_HEBREW = 8 ; // Hebrew (Lunar) calendar
internal const int CAL_GREGORIAN_ME_FRENCH = 9 ; // Gregorian Middle East French calendar
internal const int CAL_GREGORIAN_ARABIC = 10; // Gregorian Arabic calendar
internal const int CAL_GREGORIAN_XLIT_ENGLISH = 11; // Gregorian Transliterated English calendar
internal const int CAL_GREGORIAN_XLIT_FRENCH = 12;
internal const int CAL_JULIAN = 13;
internal const int CAL_JAPANESELUNISOLAR = 14;
internal const int CAL_CHINESELUNISOLAR = 15;
internal const int CAL_SAKA = 16; // reserved to match Office but not implemented in our code
internal const int CAL_LUNAR_ETO_CHN = 17; // reserved to match Office but not implemented in our code
internal const int CAL_LUNAR_ETO_KOR = 18; // reserved to match Office but not implemented in our code
internal const int CAL_LUNAR_ETO_ROKUYOU = 19; // reserved to match Office but not implemented in our code
internal const int CAL_KOREANLUNISOLAR = 20;
internal const int CAL_TAIWANLUNISOLAR = 21;
internal const int CAL_PERSIAN = 22;
internal const int CAL_UMALQURA = 23;
internal int m_currentEraValue = -1;
[System.Runtime.Serialization.OptionalField(VersionAdded = 2)]
private bool m_isReadOnly = false;
// The minimum supported DateTime range for the calendar.
[System.Runtime.InteropServices.ComVisible(false)]
public virtual DateTime MinSupportedDateTime
{
get
{
return (DateTime.MinValue);
}
}
// The maximum supported DateTime range for the calendar.
[System.Runtime.InteropServices.ComVisible(false)]
public virtual DateTime MaxSupportedDateTime
{
get
{
return (DateTime.MaxValue);
}
}
protected Calendar() {
//Do-nothing constructor.
}
///
// This can not be abstract, otherwise no one can create a subclass of Calendar.
//
internal virtual int ID {
get {
return (-1);
}
}
///
// Return the Base calendar ID for calendars that didn't have defined data in calendarData
//
internal virtual int BaseCalendarID
{
get { return ID; }
}
// Returns the type of the calendar.
//
[System.Runtime.InteropServices.ComVisible(false)]
public virtual CalendarAlgorithmType AlgorithmType
{
get
{
return CalendarAlgorithmType.Unknown;
}
}
////////////////////////////////////////////////////////////////////////
//
// IsReadOnly
//
// Detect if the object is readonly.
//
////////////////////////////////////////////////////////////////////////
[System.Runtime.InteropServices.ComVisible(false)]
public bool IsReadOnly
{
get { return (m_isReadOnly); }
}
////////////////////////////////////////////////////////////////////////
//
// Clone
//
// Is the implementation of IColnable.
//
////////////////////////////////////////////////////////////////////////
[System.Runtime.InteropServices.ComVisible(false)]
public virtual Object Clone()
{
object o = MemberwiseClone();
((Calendar) o).SetReadOnlyState(false);
return (o);
}
////////////////////////////////////////////////////////////////////////
//
// ReadOnly
//
// Create a cloned readonly instance or return the input one if it is
// readonly.
//
////////////////////////////////////////////////////////////////////////
[System.Runtime.InteropServices.ComVisible(false)]
public static Calendar ReadOnly(Calendar calendar)
{
if (calendar == null) { throw new ArgumentNullException("calendar"); }
Contract.EndContractBlock();
if (calendar.IsReadOnly) { return (calendar); }
Calendar clonedCalendar = (Calendar)(calendar.MemberwiseClone());
clonedCalendar.SetReadOnlyState(true);
return (clonedCalendar);
}
internal void VerifyWritable()
{
if (m_isReadOnly)
{
throw new InvalidOperationException(Environment.GetResourceString("InvalidOperation_ReadOnly"));
}
}
internal void SetReadOnlyState(bool readOnly)
{
m_isReadOnly = readOnly;
}
/*=================================CurrentEraValue==========================
**Action: This is used to convert CurretEra(0) to an appropriate era value.
**Returns:
**Arguments:
**Exceptions:
**Notes:
** The value is from calendar.nlp.
============================================================================*/
internal virtual int CurrentEraValue {
get {
// The following code assumes that the current era value can not be -1.
if (m_currentEraValue == -1) {
Contract.Assert(BaseCalendarID > 0, "[Calendar.CurrentEraValue] Expected ID > 0");
m_currentEraValue = CalendarData.GetCalendarData(BaseCalendarID).iCurrentEra;
}
return (m_currentEraValue);
}
}
// The current era for a calendar.
public const int CurrentEra = 0;
internal int twoDigitYearMax = -1;
internal static void CheckAddResult(long ticks, DateTime minValue, DateTime maxValue) {
if (ticks < minValue.Ticks || ticks > maxValue.Ticks) {
throw new ArgumentException(
String.Format(CultureInfo.InvariantCulture, Environment.GetResourceString("Argument_ResultCalendarRange"),
minValue, maxValue));
}
Contract.EndContractBlock();
}
internal DateTime Add(DateTime time, double value, int scale) {
// From ECMA CLI spec, Partition III, section 3.27:
//
// If overflow occurs converting a floating-point type to an integer, or if the floating-point value
// being converted to an integer is a NaN, the value returned is unspecified.
//
// Based upon this, this method should be performing the comparison against the double
// before attempting a cast. Otherwise, the result is undefined.
double tempMillis = (value * scale + (value >= 0 ? 0.5 : -0.5));
if (!((tempMillis > -(double)MaxMillis) && (tempMillis < (double)MaxMillis)))
{
throw new ArgumentOutOfRangeException("value", Environment.GetResourceString("ArgumentOutOfRange_AddValue"));
}
long millis = (long)tempMillis;
long ticks = time.Ticks + millis * TicksPerMillisecond;
CheckAddResult(ticks, MinSupportedDateTime, MaxSupportedDateTime);
return (new DateTime(ticks));
}
// Returns the DateTime resulting from adding the given number of
// milliseconds to the specified DateTime. The result is computed by rounding
// the number of milliseconds given by value to the nearest integer,
// and adding that interval to the specified DateTime. The value
// argument is permitted to be negative.
//
public virtual DateTime AddMilliseconds(DateTime time, double milliseconds) {
return (Add(time, milliseconds, 1));
}
// Returns the DateTime resulting from adding a fractional number of
// days to the specified DateTime. The result is computed by rounding the
// fractional number of days given by value to the nearest
// millisecond, and adding that interval to the specified DateTime. The
// value argument is permitted to be negative.
//
public virtual DateTime AddDays(DateTime time, int days) {
return (Add(time, days, MillisPerDay));
}
// Returns the DateTime resulting from adding a fractional number of
// hours to the specified DateTime. The result is computed by rounding the
// fractional number of hours given by value to the nearest
// millisecond, and adding that interval to the specified DateTime. The
// value argument is permitted to be negative.
//
public virtual DateTime AddHours(DateTime time, int hours) {
return (Add(time, hours, MillisPerHour));
}
// Returns the DateTime resulting from adding a fractional number of
// minutes to the specified DateTime. The result is computed by rounding the
// fractional number of minutes given by value to the nearest
// millisecond, and adding that interval to the specified DateTime. The
// value argument is permitted to be negative.
//
public virtual DateTime AddMinutes(DateTime time, int minutes) {
return (Add(time, minutes, MillisPerMinute));
}
// Returns the DateTime resulting from adding the given number of
// months to the specified DateTime. The result is computed by incrementing
// (or decrementing) the year and month parts of the specified DateTime by
// value months, and, if required, adjusting the day part of the
// resulting date downwards to the last day of the resulting month in the
// resulting year. The time-of-day part of the result is the same as the
// time-of-day part of the specified DateTime.
//
// In more precise terms, considering the specified DateTime to be of the
// form y / m / d + t, where y is the
// year, m is the month, d is the day, and t is the
// time-of-day, the result is y1 / m1 / d1 + t,
// where y1 and m1 are computed by adding value months
// to y and m, and d1 is the largest value less than
// or equal to d that denotes a valid day in month m1 of year
// y1.
//
public abstract DateTime AddMonths(DateTime time, int months);
// Returns the DateTime resulting from adding a number of
// seconds to the specified DateTime. The result is computed by rounding the
// fractional number of seconds given by value to the nearest
// millisecond, and adding that interval to the specified DateTime. The
// value argument is permitted to be negative.
//
public virtual DateTime AddSeconds(DateTime time, int seconds) {
return Add(time, seconds, MillisPerSecond);
}
// Returns the DateTime resulting from adding a number of
// weeks to the specified DateTime. The
// value argument is permitted to be negative.
//
public virtual DateTime AddWeeks(DateTime time, int weeks) {
return (AddDays(time, weeks * 7));
}
// Returns the DateTime resulting from adding the given number of
// years to the specified DateTime. The result is computed by incrementing
// (or decrementing) the year part of the specified DateTime by value
// years. If the month and day of the specified DateTime is 2/29, and if the
// resulting year is not a leap year, the month and day of the resulting
// DateTime becomes 2/28. Otherwise, the month, day, and time-of-day
// parts of the result are the same as those of the specified DateTime.
//
public abstract DateTime AddYears(DateTime time, int years);
// Returns the day-of-month part of the specified DateTime. The returned
// value is an integer between 1 and 31.
//
public abstract int GetDayOfMonth(DateTime time);
// Returns the day-of-week part of the specified DateTime. The returned value
// is an integer between 0 and 6, where 0 indicates Sunday, 1 indicates
// Monday, 2 indicates Tuesday, 3 indicates Wednesday, 4 indicates
// Thursday, 5 indicates Friday, and 6 indicates Saturday.
//
public abstract DayOfWeek GetDayOfWeek(DateTime time);
// Returns the day-of-year part of the specified DateTime. The returned value
// is an integer between 1 and 366.
//
public abstract int GetDayOfYear(DateTime time);
// Returns the number of days in the month given by the year and
// month arguments.
//
public virtual int GetDaysInMonth(int year, int month)
{
return (GetDaysInMonth(year, month, CurrentEra));
}
// Returns the number of days in the month given by the year and
// month arguments for the specified era.
//
public abstract int GetDaysInMonth(int year, int month, int era);
// Returns the number of days in the year given by the year argument for the current era.
//
public virtual int GetDaysInYear(int year)
{
return (GetDaysInYear(year, CurrentEra));
}
// Returns the number of days in the year given by the year argument for the current era.
//
public abstract int GetDaysInYear(int year, int era);
// Returns the era for the specified DateTime value.
public abstract int GetEra(DateTime time);
/*=================================Eras==========================
**Action: Get the list of era values.
**Returns: The int array of the era names supported in this calendar.
** null if era is not used.
**Arguments: None.
**Exceptions: None.
============================================================================*/
public abstract int[] Eras {
get;
}
// Returns the hour part of the specified DateTime. The returned value is an
// integer between 0 and 23.
//
public virtual int GetHour(DateTime time) {
return ((int)((time.Ticks / TicksPerHour) % 24));
}
// Returns the millisecond part of the specified DateTime. The returned value
// is an integer between 0 and 999.
//
public virtual double GetMilliseconds(DateTime time) {
return (double)((time.Ticks / TicksPerMillisecond) % 1000);
}
// Returns the minute part of the specified DateTime. The returned value is
// an integer between 0 and 59.
//
public virtual int GetMinute(DateTime time) {
return ((int)((time.Ticks / TicksPerMinute) % 60));
}
// Returns the month part of the specified DateTime. The returned value is an
// integer between 1 and 12.
//
public abstract int GetMonth(DateTime time);
// Returns the number of months in the specified year in the current era.
public virtual int GetMonthsInYear(int year)
{
return (GetMonthsInYear(year, CurrentEra));
}
// Returns the number of months in the specified year and era.
public abstract int GetMonthsInYear(int year, int era);
// Returns the second part of the specified DateTime. The returned value is
// an integer between 0 and 59.
//
public virtual int GetSecond(DateTime time) {
return ((int)((time.Ticks / TicksPerSecond) % 60));
}
/*=================================GetFirstDayWeekOfYear==========================
**Action: Get the week of year using the FirstDay rule.
**Returns: the week of year.
**Arguments:
** time
** firstDayOfWeek the first day of week (0=Sunday, 1=Monday, ... 6=Saturday)
**Notes:
** The CalendarWeekRule.FirstDay rule: Week 1 begins on the first day of the year.
** Assume f is the specifed firstDayOfWeek,
** and n is the day of week for January 1 of the specified year.
** Assign offset = n - f;
** Case 1: offset = 0
** E.g.
** f=1
** weekday 0 1 2 3 4 5 6 0 1
** date 1/1
** week# 1 2
** then week of year = (GetDayOfYear(time) - 1) / 7 + 1
**
** Case 2: offset < 0
** e.g.
** n=1 f=3
** weekday 0 1 2 3 4 5 6 0
** date 1/1
** week# 1 2
** This means that the first week actually starts 5 days before 1/1.
** So week of year = (GetDayOfYear(time) + (7 + offset) - 1) / 7 + 1
** Case 3: offset > 0
** e.g.
** f=0 n=2
** weekday 0 1 2 3 4 5 6 0 1 2
** date 1/1
** week# 1 2
** This means that the first week actually starts 2 days before 1/1.
** So Week of year = (GetDayOfYear(time) + offset - 1) / 7 + 1
============================================================================*/
internal int GetFirstDayWeekOfYear(DateTime time, int firstDayOfWeek) {
int dayOfYear = GetDayOfYear(time) - 1; // Make the day of year to be 0-based, so that 1/1 is day 0.
// Calculate the day of week for the first day of the year.
// dayOfWeek - (dayOfYear % 7) is the day of week for the first day of this year. Note that
// this value can be less than 0. It's fine since we are making it positive again in calculating offset.
int dayForJan1 = (int)GetDayOfWeek(time) - (dayOfYear % 7);
int offset = (dayForJan1 - firstDayOfWeek + 14) % 7;
Contract.Assert(offset >= 0, "Calendar.GetFirstDayWeekOfYear(): offset >= 0");
return ((dayOfYear + offset) / 7 + 1);
}
private int GetWeekOfYearFullDays(DateTime time, int firstDayOfWeek, int fullDays) {
int dayForJan1;
int offset;
int day;
int dayOfYear = GetDayOfYear(time) - 1; // Make the day of year to be 0-based, so that 1/1 is day 0.
//
// Calculate the number of days between the first day of year (1/1) and the first day of the week.
// This value will be a positive value from 0 ~ 6. We call this value as "offset".
//
// If offset is 0, it means that the 1/1 is the start of the first week.
// Assume the first day of the week is Monday, it will look like this:
// Sun Mon Tue Wed Thu Fri Sat
// 12/31 1/1 1/2 1/3 1/4 1/5 1/6
// +--> First week starts here.
//
// If offset is 1, it means that the first day of the week is 1 day ahead of 1/1.
// Assume the first day of the week is Monday, it will look like this:
// Sun Mon Tue Wed Thu Fri Sat
// 1/1 1/2 1/3 1/4 1/5 1/6 1/7
// +--> First week starts here.
//
// If offset is 2, it means that the first day of the week is 2 days ahead of 1/1.
// Assume the first day of the week is Monday, it will look like this:
// Sat Sun Mon Tue Wed Thu Fri Sat
// 1/1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
// +--> First week starts here.
// Day of week is 0-based.
// Get the day of week for 1/1. This can be derived from the day of week of the target day.
// Note that we can get a negative value. It's ok since we are going to make it a positive value when calculating the offset.
dayForJan1 = (int)GetDayOfWeek(time) - (dayOfYear % 7);
// Now, calculate the offset. Subtract the first day of week from the dayForJan1. And make it a positive value.
offset = (firstDayOfWeek - dayForJan1 + 14) % 7;
if (offset != 0 && offset >= fullDays)
{
//
// If the offset is greater than the value of fullDays, it means that
// the first week of the year starts on the week where Jan/1 falls on.
//
offset -= 7;
}
//
// Calculate the day of year for specified time by taking offset into account.
//
day = dayOfYear - offset;
if (day >= 0) {
//
// If the day of year value is greater than zero, get the week of year.
//
return (day/7 + 1);
}
//
// Otherwise, the specified time falls on the week of previous year.
// Call this method again by passing the last day of previous year.
//
// the last day of the previous year may "underflow" to no longer be a valid date time for
// this calendar if we just subtract so we need the subclass to provide us with
// that information
if (time <= MinSupportedDateTime.AddDays(dayOfYear))
{
return GetWeekOfYearOfMinSupportedDateTime(firstDayOfWeek, fullDays);
}
return (GetWeekOfYearFullDays(time.AddDays(-(dayOfYear + 1)), firstDayOfWeek, fullDays));
}
private int GetWeekOfYearOfMinSupportedDateTime(int firstDayOfWeek, int minimumDaysInFirstWeek)
{
int dayOfYear = GetDayOfYear(MinSupportedDateTime) - 1; // Make the day of year to be 0-based, so that 1/1 is day 0.
int dayOfWeekOfFirstOfYear = (int)GetDayOfWeek(MinSupportedDateTime) - dayOfYear % 7;
// Calculate the offset (how many days from the start of the year to the start of the week)
int offset = (firstDayOfWeek + 7 - dayOfWeekOfFirstOfYear) % 7;
if (offset == 0 || offset >= minimumDaysInFirstWeek)
{
// First of year falls in the first week of the year
return 1;
}
int daysInYearBeforeMinSupportedYear = DaysInYearBeforeMinSupportedYear - 1; // Make the day of year to be 0-based, so that 1/1 is day 0.
int dayOfWeekOfFirstOfPreviousYear = dayOfWeekOfFirstOfYear - 1 - (daysInYearBeforeMinSupportedYear % 7);
// starting from first day of the year, how many days do you have to go forward
// before getting to the first day of the week?
int daysInInitialPartialWeek = (firstDayOfWeek - dayOfWeekOfFirstOfPreviousYear + 14) % 7;
int day = daysInYearBeforeMinSupportedYear - daysInInitialPartialWeek;
if (daysInInitialPartialWeek >= minimumDaysInFirstWeek)
{
// If the offset is greater than the minimum Days in the first week, it means that
// First of year is part of the first week of the year even though it is only a partial week
// add another week
day += 7;
}
return (day / 7 + 1);
}
// it would be nice to make this abstract but we can't since that would break previous implementations
protected virtual int DaysInYearBeforeMinSupportedYear
{
get
{
return 365;
}
}
// Returns the week of year for the specified DateTime. The returned value is an
// integer between 1 and 53.
//
public virtual int GetWeekOfYear(DateTime time, CalendarWeekRule rule, DayOfWeek firstDayOfWeek)
{
if ((int)firstDayOfWeek < 0 || (int)firstDayOfWeek > 6) {
throw new ArgumentOutOfRangeException(
"firstDayOfWeek", Environment.GetResourceString("ArgumentOutOfRange_Range",
DayOfWeek.Sunday, DayOfWeek.Saturday));
}
Contract.EndContractBlock();
switch (rule) {
case CalendarWeekRule.FirstDay:
return (GetFirstDayWeekOfYear(time, (int)firstDayOfWeek));
case CalendarWeekRule.FirstFullWeek:
return (GetWeekOfYearFullDays(time, (int)firstDayOfWeek, 7));
case CalendarWeekRule.FirstFourDayWeek:
return (GetWeekOfYearFullDays(time, (int)firstDayOfWeek, 4));
}
throw new ArgumentOutOfRangeException(
"rule", Environment.GetResourceString("ArgumentOutOfRange_Range",
CalendarWeekRule.FirstDay, CalendarWeekRule.FirstFourDayWeek));
}
// Returns the year part of the specified DateTime. The returned value is an
// integer between 1 and 9999.
//
public abstract int GetYear(DateTime time);
// Checks whether a given day in the current era is a leap day. This method returns true if
// the date is a leap day, or false if not.
//
public virtual bool IsLeapDay(int year, int month, int day)
{
return (IsLeapDay(year, month, day, CurrentEra));
}
// Checks whether a given day in the specified era is a leap day. This method returns true if
// the date is a leap day, or false if not.
//
public abstract bool IsLeapDay(int year, int month, int day, int era);
// Checks whether a given month in the current era is a leap month. This method returns true if
// month is a leap month, or false if not.
//
public virtual bool IsLeapMonth(int year, int month) {
return (IsLeapMonth(year, month, CurrentEra));
}
// Checks whether a given month in the specified era is a leap month. This method returns true if
// month is a leap month, or false if not.
//
public abstract bool IsLeapMonth(int year, int month, int era);
// Returns the leap month in a calendar year of the current era. This method returns 0
// if this calendar does not have leap month, or this year is not a leap year.
//
[System.Runtime.InteropServices.ComVisible(false)]
public virtual int GetLeapMonth(int year)
{
return (GetLeapMonth(year, CurrentEra));
}
// Returns the leap month in a calendar year of the specified era. This method returns 0
// if this calendar does not have leap month, or this year is not a leap year.
//
[System.Runtime.InteropServices.ComVisible(false)]
public virtual int GetLeapMonth(int year, int era)
{
if (!IsLeapYear(year, era))
return 0;
int monthsCount = GetMonthsInYear(year, era);
for (int month=1; month<=monthsCount; month++)
{
if (IsLeapMonth(year, month, era))
return month;
}
return 0;
}
// Checks whether a given year in the current era is a leap year. This method returns true if
// year is a leap year, or false if not.
//
public virtual bool IsLeapYear(int year)
{
return (IsLeapYear(year, CurrentEra));
}
// Checks whether a given year in the specified era is a leap year. This method returns true if
// year is a leap year, or false if not.
//
public abstract bool IsLeapYear(int year, int era);
// Returns the date and time converted to a DateTime value. Throws an exception if the n-tuple is invalid.
//
public virtual DateTime ToDateTime(int year, int month, int day, int hour, int minute, int second, int millisecond)
{
return (ToDateTime(year, month, day, hour, minute, second, millisecond, CurrentEra));
}
// Returns the date and time converted to a DateTime value. Throws an exception if the n-tuple is invalid.
//
public abstract DateTime ToDateTime(int year, int month, int day, int hour, int minute, int second, int millisecond, int era);
internal virtual Boolean TryToDateTime(int year, int month, int day, int hour, int minute, int second, int millisecond, int era, out DateTime result) {
result = DateTime.MinValue;
try {
result = ToDateTime(year, month, day, hour, minute, second, millisecond, era);
return true;
}
catch (ArgumentException) {
return false;
}
}
internal virtual bool IsValidYear(int year, int era) {
return (year >= GetYear(MinSupportedDateTime) && year <= GetYear(MaxSupportedDateTime));
}
internal virtual bool IsValidMonth(int year, int month, int era) {
return (IsValidYear(year, era) && month >= 1 && month <= GetMonthsInYear(year, era));
}
internal virtual bool IsValidDay(int year, int month, int day, int era)
{
return (IsValidMonth(year, month, era) && day >= 1 && day <= GetDaysInMonth(year, month, era));
}
// Returns and assigns the maximum value to represent a two digit year. This
// value is the upper boundary of a 100 year range that allows a two digit year
// to be properly translated to a four digit year. For example, if 2029 is the
// upper boundary, then a two digit value of 30 should be interpreted as 1930
// while a two digit value of 29 should be interpreted as 2029. In this example
// , the 100 year range would be from 1930-2029. See ToFourDigitYear().
public virtual int TwoDigitYearMax
{
get
{
return (twoDigitYearMax);
}
set
{
VerifyWritable();
twoDigitYearMax = value;
}
}
// Converts the year value to the appropriate century by using the
// TwoDigitYearMax property. For example, if the TwoDigitYearMax value is 2029,
// then a two digit value of 30 will get converted to 1930 while a two digit
// value of 29 will get converted to 2029.
public virtual int ToFourDigitYear(int year) {
if (year < 0) {
throw new ArgumentOutOfRangeException("year",
Environment.GetResourceString("ArgumentOutOfRange_NeedNonNegNum"));
}
Contract.EndContractBlock();
if (year < 100) {
return ((TwoDigitYearMax/100 - ( year > TwoDigitYearMax % 100 ? 1 : 0))*100 + year);
}
// If the year value is above 100, just return the year value. Don't have to do
// the TwoDigitYearMax comparison.
return (year);
}
// Return the tick count corresponding to the given hour, minute, second.
// Will check the if the parameters are valid.
internal static long TimeToTicks(int hour, int minute, int second, int millisecond)
{
if (hour >= 0 && hour < 24 && minute >= 0 && minute < 60 && second >=0 && second < 60)
{
if (millisecond < 0 || millisecond >= MillisPerSecond) {
throw new ArgumentOutOfRangeException(
"millisecond",
String.Format(
CultureInfo.InvariantCulture,
Environment.GetResourceString("ArgumentOutOfRange_Range"), 0, MillisPerSecond - 1));
}
return TimeSpan.TimeToTicks(hour, minute, second) + millisecond * TicksPerMillisecond;
}
throw new ArgumentOutOfRangeException(null, Environment.GetResourceString("ArgumentOutOfRange_BadHourMinuteSecond"));
}
[System.Security.SecuritySafeCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[ResourceConsumption(ResourceScope.Machine, ResourceScope.Machine)]
internal static int GetSystemTwoDigitYearSetting(int CalID, int defaultYearValue)
{
// Call nativeGetTwoDigitYearMax
int twoDigitYearMax = CalendarData.nativeGetTwoDigitYearMax(CalID);
if (twoDigitYearMax < 0)
{
twoDigitYearMax = defaultYearValue;
}
return (twoDigitYearMax);
}
}
}
|