1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
|
// ==++==
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
// ==--==
namespace System {
using System;
using System.Globalization;
using System.Runtime;
using System.Runtime.CompilerServices;
using System.Runtime.Versioning;
using System.Security;
using System.Text;
using System.Diagnostics.Contracts;
// The Number class implements methods for formatting and parsing
// numeric values. To format and parse numeric values, applications should
// use the Format and Parse methods provided by the numeric
// classes (Byte, Int16, Int32, Int64,
// Single, Double, Currency, and Decimal). Those
// Format and Parse methods share a common implementation
// provided by this class, and are thus documented in detail here.
//
// Formatting
//
// The Format methods provided by the numeric classes are all of the
// form
//
// public static String Format(XXX value, String format);
// public static String Format(XXX value, String format, NumberFormatInfo info);
//
// where XXX is the name of the particular numeric class. The methods convert
// the numeric value to a string using the format string given by the
// format parameter. If the format parameter is null or
// an empty string, the number is formatted as if the string "G" (general
// format) was specified. The info parameter specifies the
// NumberFormatInfo instance to use when formatting the number. If the
// info parameter is null or omitted, the numeric formatting information
// is obtained from the current culture. The NumberFormatInfo supplies
// such information as the characters to use for decimal and thousand
// separators, and the spelling and placement of currency symbols in monetary
// values.
//
// Format strings fall into two categories: Standard format strings and
// user-defined format strings. A format string consisting of a single
// alphabetic character (A-Z or a-z), optionally followed by a sequence of
// digits (0-9), is a standard format string. All other format strings are
// used-defined format strings.
//
// A standard format string takes the form Axx, where A is an
// alphabetic character called the format specifier and xx is a
// sequence of digits called the precision specifier. The format
// specifier controls the type of formatting applied to the number and the
// precision specifier controls the number of significant digits or decimal
// places of the formatting operation. The following table describes the
// supported standard formats.
//
// C c - Currency format. The number is
// converted to a string that represents a currency amount. The conversion is
// controlled by the currency format information of the NumberFormatInfo
// used to format the number. The precision specifier indicates the desired
// number of decimal places. If the precision specifier is omitted, the default
// currency precision given by the NumberFormatInfo is used.
//
// D d - Decimal format. This format is
// supported for integral types only. The number is converted to a string of
// decimal digits, prefixed by a minus sign if the number is negative. The
// precision specifier indicates the minimum number of digits desired in the
// resulting string. If required, the number will be left-padded with zeros to
// produce the number of digits given by the precision specifier.
//
// E e Engineering (scientific) format.
// The number is converted to a string of the form
// "-d.ddd...E+ddd" or "-d.ddd...e+ddd", where each
// 'd' indicates a digit (0-9). The string starts with a minus sign if the
// number is negative, and one digit always precedes the decimal point. The
// precision specifier indicates the desired number of digits after the decimal
// point. If the precision specifier is omitted, a default of 6 digits after
// the decimal point is used. The format specifier indicates whether to prefix
// the exponent with an 'E' or an 'e'. The exponent is always consists of a
// plus or minus sign and three digits.
//
// F f Fixed point format. The number is
// converted to a string of the form "-ddd.ddd....", where each
// 'd' indicates a digit (0-9). The string starts with a minus sign if the
// number is negative. The precision specifier indicates the desired number of
// decimal places. If the precision specifier is omitted, the default numeric
// precision given by the NumberFormatInfo is used.
//
// G g - General format. The number is
// converted to the shortest possible decimal representation using fixed point
// or scientific format. The precision specifier determines the number of
// significant digits in the resulting string. If the precision specifier is
// omitted, the number of significant digits is determined by the type of the
// number being converted (10 for int, 19 for long, 7 for
// float, 15 for double, 19 for Currency, and 29 for
// Decimal). Trailing zeros after the decimal point are removed, and the
// resulting string contains a decimal point only if required. The resulting
// string uses fixed point format if the exponent of the number is less than
// the number of significant digits and greater than or equal to -4. Otherwise,
// the resulting string uses scientific format, and the case of the format
// specifier controls whether the exponent is prefixed with an 'E' or an
// 'e'.
//
// N n Number format. The number is
// converted to a string of the form "-d,ddd,ddd.ddd....", where
// each 'd' indicates a digit (0-9). The string starts with a minus sign if the
// number is negative. Thousand separators are inserted between each group of
// three digits to the left of the decimal point. The precision specifier
// indicates the desired number of decimal places. If the precision specifier
// is omitted, the default numeric precision given by the
// NumberFormatInfo is used.
//
// X x - Hexadecimal format. This format is
// supported for integral types only. The number is converted to a string of
// hexadecimal digits. The format specifier indicates whether to use upper or
// lower case characters for the hexadecimal digits above 9 ('X' for 'ABCDEF',
// and 'x' for 'abcdef'). The precision specifier indicates the minimum number
// of digits desired in the resulting string. If required, the number will be
// left-padded with zeros to produce the number of digits given by the
// precision specifier.
//
// Some examples of standard format strings and their results are shown in the
// table below. (The examples all assume a default NumberFormatInfo.)
//
// Value Format Result
// 12345.6789 C $12,345.68
// -12345.6789 C ($12,345.68)
// 12345 D 12345
// 12345 D8 00012345
// 12345.6789 E 1.234568E+004
// 12345.6789 E10 1.2345678900E+004
// 12345.6789 e4 1.2346e+004
// 12345.6789 F 12345.68
// 12345.6789 F0 12346
// 12345.6789 F6 12345.678900
// 12345.6789 G 12345.6789
// 12345.6789 G7 12345.68
// 123456789 G7 1.234568E8
// 12345.6789 N 12,345.68
// 123456789 N4 123,456,789.0000
// 0x2c45e x 2c45e
// 0x2c45e X 2C45E
// 0x2c45e X8 0002C45E
//
// Format strings that do not start with an alphabetic character, or that start
// with an alphabetic character followed by a non-digit, are called
// user-defined format strings. The following table describes the formatting
// characters that are supported in user defined format strings.
//
//
// 0 - Digit placeholder. If the value being
// formatted has a digit in the position where the '0' appears in the format
// string, then that digit is copied to the output string. Otherwise, a '0' is
// stored in that position in the output string. The position of the leftmost
// '0' before the decimal point and the rightmost '0' after the decimal point
// determines the range of digits that are always present in the output
// string.
//
// # - Digit placeholder. If the value being
// formatted has a digit in the position where the '#' appears in the format
// string, then that digit is copied to the output string. Otherwise, nothing
// is stored in that position in the output string.
//
// . - Decimal point. The first '.' character
// in the format string determines the location of the decimal separator in the
// formatted value; any additional '.' characters are ignored. The actual
// character used as a the decimal separator in the output string is given by
// the NumberFormatInfo used to format the number.
//
// , - Thousand separator and number scaling.
// The ',' character serves two purposes. First, if the format string contains
// a ',' character between two digit placeholders (0 or #) and to the left of
// the decimal point if one is present, then the output will have thousand
// separators inserted between each group of three digits to the left of the
// decimal separator. The actual character used as a the decimal separator in
// the output string is given by the NumberFormatInfo used to format the
// number. Second, if the format string contains one or more ',' characters
// immediately to the left of the decimal point, or after the last digit
// placeholder if there is no decimal point, then the number will be divided by
// 1000 times the number of ',' characters before it is formatted. For example,
// the format string '0,,' will represent 100 million as just 100. Use of the
// ',' character to indicate scaling does not also cause the formatted number
// to have thousand separators. Thus, to scale a number by 1 million and insert
// thousand separators you would use the format string '#,##0,,'.
//
// % - Percentage placeholder. The presence of
// a '%' character in the format string causes the number to be multiplied by
// 100 before it is formatted. The '%' character itself is inserted in the
// output string where it appears in the format string.
//
// E+ E- e+ e- - Scientific notation.
// If any of the strings 'E+', 'E-', 'e+', or 'e-' are present in the format
// string and are immediately followed by at least one '0' character, then the
// number is formatted using scientific notation with an 'E' or 'e' inserted
// between the number and the exponent. The number of '0' characters following
// the scientific notation indicator determines the minimum number of digits to
// output for the exponent. The 'E+' and 'e+' formats indicate that a sign
// character (plus or minus) should always precede the exponent. The 'E-' and
// 'e-' formats indicate that a sign character should only precede negative
// exponents.
//
// \ - Literal character. A backslash character
// causes the next character in the format string to be copied to the output
// string as-is. The backslash itself isn't copied, so to place a backslash
// character in the output string, use two backslashes (\\) in the format
// string.
//
// 'ABC' "ABC" - Literal string. Characters
// enclosed in single or double quotation marks are copied to the output string
// as-is and do not affect formatting.
//
// ; - Section separator. The ';' character is
// used to separate sections for positive, negative, and zero numbers in the
// format string.
//
// Other - All other characters are copied to
// the output string in the position they appear.
//
// For fixed point formats (formats not containing an 'E+', 'E-', 'e+', or
// 'e-'), the number is rounded to as many decimal places as there are digit
// placeholders to the right of the decimal point. If the format string does
// not contain a decimal point, the number is rounded to the nearest
// integer. If the number has more digits than there are digit placeholders to
// the left of the decimal point, the extra digits are copied to the output
// string immediately before the first digit placeholder.
//
// For scientific formats, the number is rounded to as many significant digits
// as there are digit placeholders in the format string.
//
// To allow for different formatting of positive, negative, and zero values, a
// user-defined format string may contain up to three sections separated by
// semicolons. The results of having one, two, or three sections in the format
// string are described in the table below.
//
// Sections:
//
// One - The format string applies to all values.
//
// Two - The first section applies to positive values
// and zeros, and the second section applies to negative values. If the number
// to be formatted is negative, but becomes zero after rounding according to
// the format in the second section, then the resulting zero is formatted
// according to the first section.
//
// Three - The first section applies to positive
// values, the second section applies to negative values, and the third section
// applies to zeros. The second section may be left empty (by having no
// characters between the semicolons), in which case the first section applies
// to all non-zero values. If the number to be formatted is non-zero, but
// becomes zero after rounding according to the format in the first or second
// section, then the resulting zero is formatted according to the third
// section.
//
// For both standard and user-defined formatting operations on values of type
// float and double, if the value being formatted is a NaN (Not
// a Number) or a positive or negative infinity, then regardless of the format
// string, the resulting string is given by the NaNSymbol,
// PositiveInfinitySymbol, or NegativeInfinitySymbol property of
// the NumberFormatInfo used to format the number.
//
// Parsing
//
// The Parse methods provided by the numeric classes are all of the form
//
// public static XXX Parse(String s);
// public static XXX Parse(String s, int style);
// public static XXX Parse(String s, int style, NumberFormatInfo info);
//
// where XXX is the name of the particular numeric class. The methods convert a
// string to a numeric value. The optional style parameter specifies the
// permitted style of the numeric string. It must be a combination of bit flags
// from the NumberStyles enumeration. The optional info parameter
// specifies the NumberFormatInfo instance to use when parsing the
// string. If the info parameter is null or omitted, the numeric
// formatting information is obtained from the current culture.
//
// Numeric strings produced by the Format methods using the Currency,
// Decimal, Engineering, Fixed point, General, or Number standard formats
// (the C, D, E, F, G, and N format specifiers) are guaranteed to be parseable
// by the Parse methods if the NumberStyles.Any style is
// specified. Note, however, that the Parse methods do not accept
// NaNs or Infinities.
//
//This class contains only static members and does not need to be serializable
[System.Runtime.CompilerServices.FriendAccessAllowed]
internal class Number
{
private Number() {
}
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public unsafe static extern Boolean NumberBufferToDecimal(byte* number, ref Decimal value);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
internal unsafe static extern Boolean NumberBufferToDouble(byte* number, ref Double value);
#if !MONO
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatDecimal(Decimal value, String format, NumberFormatInfo info);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatDouble(double value, String format, NumberFormatInfo info);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatInt32(int value, String format, NumberFormatInfo info);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatUInt32(uint value, String format, NumberFormatInfo info);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatInt64(long value, String format, NumberFormatInfo info);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatUInt64(ulong value, String format, NumberFormatInfo info);
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
[MethodImplAttribute(MethodImplOptions.InternalCall)]
public static extern String FormatSingle(float value, String format, NumberFormatInfo info);
[MethodImplAttribute(MethodImplOptions.InternalCall)]
[System.Runtime.CompilerServices.FriendAccessAllowed]
[System.Security.SecurityCritical] // auto-generated
[ResourceExposure(ResourceScope.None)]
internal static extern unsafe string FormatNumberBuffer(byte* number, string format, NumberFormatInfo info, char* allDigits);
#else
public static String FormatDecimal(Decimal value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
public static String FormatDouble(double value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
public static String FormatInt32(int value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
public static String FormatUInt32(uint value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
public static String FormatInt64(long value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
public static String FormatUInt64(ulong value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
public static String FormatSingle(float value, String format, NumberFormatInfo info)
{
return NumberFormatter.NumberToString (format, value, info);
}
internal static unsafe string FormatNumberBuffer(byte* number, string format, NumberFormatInfo info, char* allDigits)
{
throw new NotImplementedException ();
}
#endif
// Constants used by number parsing
private const Int32 NumberMaxDigits = 50;
private const Int32 Int32Precision = 10;
private const Int32 UInt32Precision = Int32Precision;
private const Int32 Int64Precision = 19;
private const Int32 UInt64Precision = 20;
// NumberBuffer is a partial wrapper around a stack pointer that maps on to
// the native NUMBER struct so that it can be passed to native directly. It
// must be initialized with a stack Byte * of size NumberBufferBytes.
// For performance, this structure should attempt to be completely inlined.
//
// It should always be initialized like so:
//
// Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
// NumberBuffer number = new NumberBuffer(numberBufferBytes);
//
// For performance, when working on the buffer in managed we use the values in this
// structure, except for the digits, and pack those values into the byte buffer
// if called out to managed.
[System.Runtime.CompilerServices.FriendAccessAllowed]
internal unsafe struct NumberBuffer {
// Enough space for NumberMaxDigit characters plus null and 3 32 bit integers and a pointer
public static readonly Int32 NumberBufferBytes = 12 + ((NumberMaxDigits + 1) * 2) + IntPtr.Size;
[SecurityCritical]
private Byte * baseAddress;
[SecurityCritical]
public Char * digits;
public Int32 precision;
public Int32 scale;
public Boolean sign;
[System.Security.SecurityCritical] // auto-generated
public NumberBuffer(Byte* stackBuffer) {
this.baseAddress = stackBuffer;
this.digits = (((Char*) stackBuffer) + 6);
this.precision = 0;
this.scale = 0;
this.sign = false;
}
[System.Security.SecurityCritical] // auto-generated
public Byte* PackForNative() {
Int32* baseInteger = (Int32*) baseAddress;
baseInteger[0] = precision;
baseInteger[1] = scale;
baseInteger[2] = sign ? 1 : 0;
return baseAddress;
}
}
private static Boolean HexNumberToInt32(ref NumberBuffer number, ref Int32 value) {
UInt32 passedValue = 0;
Boolean returnValue = HexNumberToUInt32(ref number, ref passedValue);
value = (Int32)passedValue;
return returnValue;
}
private static Boolean HexNumberToInt64(ref NumberBuffer number, ref Int64 value) {
UInt64 passedValue = 0;
Boolean returnValue = HexNumberToUInt64(ref number, ref passedValue);
value = (Int64)passedValue;
return returnValue;
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static Boolean HexNumberToUInt32(ref NumberBuffer number, ref UInt32 value) {
Int32 i = number.scale;
if (i > UInt32Precision || i < number.precision) {
return false;
}
Char* p = number.digits;
Contract.Assert(p != null, "");
UInt32 n = 0;
while (--i >= 0) {
if (n > ((UInt32)0xFFFFFFFF / 16)) {
return false;
}
n *= 16;
if (*p != '\0') {
UInt32 newN = n;
if (*p != '\0') {
if (*p >= '0' && *p <= '9') {
newN += (UInt32)(*p - '0');
}
else {
if (*p >= 'A' && *p <= 'F') {
newN += (UInt32)((*p - 'A') + 10);
}
else {
Contract.Assert(*p >= 'a' && *p <= 'f', "");
newN += (UInt32)((*p - 'a') + 10);
}
}
p++;
}
// Detect an overflow here...
if (newN < n) {
return false;
}
n = newN;
}
}
value = n;
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static Boolean HexNumberToUInt64(ref NumberBuffer number, ref UInt64 value) {
Int32 i = number.scale;
if (i > UInt64Precision || i < number.precision) {
return false;
}
Char* p = number.digits;
Contract.Assert(p != null, "");
UInt64 n = 0;
while (--i >= 0) {
if (n > (0xFFFFFFFFFFFFFFFF / 16)) {
return false;
}
n *= 16;
if (*p != '\0') {
UInt64 newN = n;
if (*p != '\0') {
if (*p >= '0' && *p <= '9') {
newN += (UInt64)(*p - '0');
}
else {
if (*p >= 'A' && *p <= 'F') {
newN += (UInt64)((*p - 'A') + 10);
}
else {
Contract.Assert(*p >= 'a' && *p <= 'f', "");
newN += (UInt64)((*p - 'a') + 10);
}
}
p++;
}
// Detect an overflow here...
if (newN < n) {
return false;
}
n = newN;
}
}
value = n;
return true;
}
private static Boolean IsWhite(char ch) {
return (((ch) == 0x20) || ((ch) >= 0x09 && (ch) <= 0x0D));
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static Boolean NumberToInt32(ref NumberBuffer number, ref Int32 value) {
Int32 i = number.scale;
if (i > Int32Precision || i < number.precision) {
return false;
}
char * p = number.digits;
Contract.Assert(p != null, "");
Int32 n = 0;
while (--i >= 0) {
if ((UInt32)n > (0x7FFFFFFF / 10)) {
return false;
}
n *= 10;
if (*p != '\0') {
n += (Int32)(*p++ - '0');
}
}
if (number.sign) {
n = -n;
if (n > 0) {
return false;
}
}
else {
if (n < 0) {
return false;
}
}
value = n;
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static Boolean NumberToInt64(ref NumberBuffer number, ref Int64 value) {
Int32 i = number.scale;
if (i > Int64Precision || i < number.precision) {
return false;
}
char* p = number.digits;
Contract.Assert(p != null, "");
Int64 n = 0;
while (--i >= 0) {
if ((UInt64)n > (0x7FFFFFFFFFFFFFFF / 10)) {
return false;
}
n *= 10;
if (*p != '\0') {
n += (Int32)(*p++ - '0');
}
}
if (number.sign) {
n = -n;
if (n > 0) {
return false;
}
}
else {
if (n < 0) {
return false;
}
}
value = n;
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static Boolean NumberToUInt32(ref NumberBuffer number, ref UInt32 value) {
Int32 i = number.scale;
if (i > UInt32Precision || i < number.precision || number.sign ) {
return false;
}
char* p = number.digits;
Contract.Assert(p != null, "");
UInt32 n = 0;
while (--i >= 0) {
if (n > (0xFFFFFFFF / 10)) {
return false;
}
n *= 10;
if (*p != '\0') {
UInt32 newN = n + (UInt32)(*p++ - '0');
// Detect an overflow here...
if (newN < n) {
return false;
}
n = newN;
}
}
value = n;
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static Boolean NumberToUInt64(ref NumberBuffer number, ref UInt64 value) {
Int32 i = number.scale;
if (i > UInt64Precision || i < number.precision || number.sign) {
return false;
}
char * p = number.digits;
Contract.Assert(p != null, "");
UInt64 n = 0;
while (--i >= 0) {
if (n > (0xFFFFFFFFFFFFFFFF / 10)) {
return false;
}
n *= 10;
if (*p != '\0') {
UInt64 newN = n + (UInt64)(*p++ - '0');
// Detect an overflow here...
if (newN < n) {
return false;
}
n = newN;
}
}
value = n;
return true;
}
[System.Security.SecurityCritical] // auto-generated
private unsafe static char * MatchChars(char* p, string str) {
fixed (char* stringPointer = str) {
return MatchChars(p, stringPointer);
}
}
[System.Security.SecurityCritical] // auto-generated
private unsafe static char * MatchChars(char* p, char* str) {
Contract.Assert(p != null && str != null, "");
if (*str == '\0') {
return null;
}
for (; (*str != '\0'); p++, str++) {
if (*p != *str) { //We only hurt the failure case
if ((*str == '\u00A0') && (*p == '\u0020')) {// This fix is for French or Kazakh cultures. Since a user cannot type 0xA0 as a
// space character we use 0x20 space character instead to mean the same.
continue;
}
return null;
}
}
return p;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Decimal ParseDecimal(String value, NumberStyles options, NumberFormatInfo numfmt) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
Decimal result = 0;
StringToNumber(value, options, ref number, numfmt, true);
if (!NumberBufferToDecimal(number.PackForNative(), ref result)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Decimal"));
}
return result;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Double ParseDouble(String value, NumberStyles options, NumberFormatInfo numfmt) {
if (value == null) {
throw new ArgumentNullException("value");
}
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
Double d = 0;
if (!TryStringToNumber(value, options, ref number, numfmt, false)) {
//If we failed TryStringToNumber, it may be from one of our special strings.
//Check the three with which we're concerned and rethrow if it's not one of
//those strings.
String sTrim = value.Trim();
if (sTrim.Equals(numfmt.PositiveInfinitySymbol)) {
return Double.PositiveInfinity;
}
if (sTrim.Equals(numfmt.NegativeInfinitySymbol)) {
return Double.NegativeInfinity;
}
if (sTrim.Equals(numfmt.NaNSymbol)) {
return Double.NaN;
}
throw new FormatException(Environment.GetResourceString("Format_InvalidString"));
}
if (!NumberBufferToDouble(number.PackForNative(), ref d)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Double"));
}
return d;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Int32 ParseInt32(String s, NumberStyles style, NumberFormatInfo info) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
Int32 i = 0;
StringToNumber(s, style, ref number, info, false);
if ((style & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToInt32(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int32"));
}
}
else {
if (!NumberToInt32(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int32"));
}
}
return i;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Int64 ParseInt64(String value, NumberStyles options, NumberFormatInfo numfmt) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
Int64 i = 0;
StringToNumber(value, options, ref number, numfmt, false);
if ((options & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToInt64(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int64"));
}
}
else {
if (!NumberToInt64(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Int64"));
}
}
return i;
}
[System.Security.SecurityCritical] // auto-generated
private unsafe static Boolean ParseNumber(ref char * str, NumberStyles options, ref NumberBuffer number, StringBuilder sb, NumberFormatInfo numfmt, Boolean parseDecimal) {
const Int32 StateSign = 0x0001;
const Int32 StateParens = 0x0002;
const Int32 StateDigits = 0x0004;
const Int32 StateNonZero = 0x0008;
const Int32 StateDecimal = 0x0010;
const Int32 StateCurrency = 0x0020;
number.scale = 0;
number.sign = false;
string decSep; // decimal separator from NumberFormatInfo.
string groupSep; // group separator from NumberFormatInfo.
string currSymbol = null; // currency symbol from NumberFormatInfo.
// The alternative currency symbol used in ANSI codepage, that can not roundtrip between ANSI and Unicode.
// Currently, only ja-JP and ko-KR has non-null values (which is U+005c, backslash)
string ansicurrSymbol = null; // currency symbol from NumberFormatInfo.
string altdecSep = null; // decimal separator from NumberFormatInfo as a decimal
string altgroupSep = null; // group separator from NumberFormatInfo as a decimal
Boolean parsingCurrency = false;
if ((options & NumberStyles.AllowCurrencySymbol) != 0) {
currSymbol = numfmt.CurrencySymbol;
if (numfmt.ansiCurrencySymbol != null) {
ansicurrSymbol = numfmt.ansiCurrencySymbol;
}
// The idea here is to match the currency separators and on failure match the number separators to keep the perf of VB's IsNumeric fast.
// The values of decSep are setup to use the correct relevant separator (currency in the if part and decimal in the else part).
altdecSep = numfmt.NumberDecimalSeparator;
altgroupSep = numfmt.NumberGroupSeparator;
decSep = numfmt.CurrencyDecimalSeparator;
groupSep = numfmt.CurrencyGroupSeparator;
parsingCurrency = true;
}
else {
decSep = numfmt.NumberDecimalSeparator;
groupSep = numfmt.NumberGroupSeparator;
}
Int32 state = 0;
Boolean signflag = false; // Cache the results of "options & PARSE_LEADINGSIGN && !(state & STATE_SIGN)" to avoid doing this twice
Boolean bigNumber = (sb != null); // When a StringBuilder is provided then we use it in place of the number.digits char[50]
Boolean bigNumberHex = (bigNumber && ((options & NumberStyles.AllowHexSpecifier) != 0));
Int32 maxParseDigits = bigNumber ? Int32.MaxValue : NumberMaxDigits;
char* p = str;
char ch = *p;
char* next;
while (true) {
// Eat whitespace unless we've found a sign which isn't followed by a currency symbol.
// "-Kr 1231.47" is legal but "- 1231.47" is not.
if (IsWhite(ch) && ((options & NumberStyles.AllowLeadingWhite) != 0) && (((state & StateSign) == 0) || (((state & StateSign) != 0) && (((state & StateCurrency) != 0) || numfmt.NumberNegativePattern == 2)))) {
// Do nothing here. We will increase p at the end of the loop.
}
else if ((signflag = (((options & NumberStyles.AllowLeadingSign) != 0) && ((state & StateSign) == 0))) && ((next = MatchChars(p, numfmt.PositiveSign)) != null)) {
state |= StateSign;
p = next - 1;
} else if (signflag && (next = MatchChars(p, numfmt.NegativeSign)) != null) {
state |= StateSign;
number.sign = true;
p = next - 1;
}
else if (ch == '(' && ((options & NumberStyles.AllowParentheses) != 0) && ((state & StateSign) == 0)) {
state |= StateSign | StateParens;
number.sign = true;
}
else if ((currSymbol != null && (next = MatchChars(p, currSymbol)) != null) || (ansicurrSymbol != null && (next = MatchChars(p, ansicurrSymbol)) != null)) {
state |= StateCurrency;
currSymbol = null;
ansicurrSymbol = null;
// We already found the currency symbol. There should not be more currency symbols. Set
// currSymbol to NULL so that we won't search it again in the later code path.
p = next - 1;
}
else {
break;
}
ch = *++p;
}
Int32 digCount = 0;
Int32 digEnd = 0;
while (true) {
if ((ch >= '0' && ch <= '9') || (((options & NumberStyles.AllowHexSpecifier) != 0) && ((ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F')))) {
state |= StateDigits;
if (ch != '0' || (state & StateNonZero) != 0 || bigNumberHex) {
if (digCount < maxParseDigits) {
if (bigNumber)
sb.Append(ch);
else
number.digits[digCount++] = ch;
if (ch != '0' || parseDecimal) {
digEnd = digCount;
}
}
if ((state & StateDecimal) == 0) {
number.scale++;
}
state |= StateNonZero;
}
else if ((state & StateDecimal) != 0) {
number.scale--;
}
}
else if (((options & NumberStyles.AllowDecimalPoint) != 0) && ((state & StateDecimal) == 0) && ((next = MatchChars(p, decSep)) != null || ((parsingCurrency) && (state & StateCurrency) == 0) && (next = MatchChars(p, altdecSep)) != null)) {
state |= StateDecimal;
p = next - 1;
}
else if (((options & NumberStyles.AllowThousands) != 0) && ((state & StateDigits) != 0) && ((state & StateDecimal) == 0) && ((next = MatchChars(p, groupSep)) != null || ((parsingCurrency) && (state & StateCurrency) == 0) && (next = MatchChars(p, altgroupSep)) != null)) {
p = next - 1;
}
else {
break;
}
ch = *++p;
}
Boolean negExp = false;
number.precision = digEnd;
if (bigNumber)
sb.Append('\0');
else
number.digits[digEnd] = '\0';
if ((state & StateDigits) != 0) {
if ((ch == 'E' || ch == 'e') && ((options & NumberStyles.AllowExponent) != 0)) {
char* temp = p;
ch = *++p;
if ((next = MatchChars(p, numfmt.PositiveSign)) != null) {
ch = *(p = next);
}
else if ((next = MatchChars(p, numfmt.NegativeSign)) != null) {
ch = *(p = next);
negExp = true;
}
if (ch >= '0' && ch <= '9') {
Int32 exp = 0;
do {
exp = exp * 10 + (ch - '0');
ch = *++p;
if (exp > 1000) {
exp = 9999;
while (ch >= '0' && ch <= '9') {
ch = *++p;
}
}
} while (ch >= '0' && ch <= '9');
if (negExp) {
exp = -exp;
}
number.scale += exp;
}
else {
p = temp;
ch = *p;
}
}
while (true) {
if (IsWhite(ch) && ((options & NumberStyles.AllowTrailingWhite) != 0)) {
}
else if ((signflag = (((options & NumberStyles.AllowTrailingSign) != 0) && ((state & StateSign) == 0))) && (next = MatchChars(p, numfmt.PositiveSign)) != null) {
state |= StateSign;
p = next - 1;
} else if (signflag && (next = MatchChars(p, numfmt.NegativeSign)) != null) {
state |= StateSign;
number.sign = true;
p = next - 1;
}
else if (ch == ')' && ((state & StateParens) != 0)) {
state &= ~StateParens;
}
else if ((currSymbol != null && (next = MatchChars(p, currSymbol)) != null) || (ansicurrSymbol != null && (next = MatchChars(p, ansicurrSymbol)) != null)) {
currSymbol = null;
ansicurrSymbol = null;
p = next - 1;
}
else {
break;
}
ch = *++p;
}
if ((state & StateParens) == 0) {
if ((state & StateNonZero) == 0) {
if (!parseDecimal) {
number.scale = 0;
}
if ((state & StateDecimal) == 0) {
number.sign = false;
}
}
str = p;
return true;
}
}
str = p;
return false;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Single ParseSingle(String value, NumberStyles options, NumberFormatInfo numfmt) {
if (value == null) {
throw new ArgumentNullException("value");
}
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
Double d = 0;
if (!TryStringToNumber(value, options, ref number, numfmt, false)) {
//If we failed TryStringToNumber, it may be from one of our special strings.
//Check the three with which we're concerned and rethrow if it's not one of
//those strings.
String sTrim = value.Trim();
if (sTrim.Equals(numfmt.PositiveInfinitySymbol)) {
return Single.PositiveInfinity;
}
if (sTrim.Equals(numfmt.NegativeInfinitySymbol)) {
return Single.NegativeInfinity;
}
if (sTrim.Equals(numfmt.NaNSymbol)) {
return Single.NaN;
}
throw new FormatException(Environment.GetResourceString("Format_InvalidString"));
}
if (!NumberBufferToDouble(number.PackForNative(), ref d)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Single"));
}
Single castSingle = (Single)d;
if (Single.IsInfinity(castSingle)) {
throw new OverflowException(Environment.GetResourceString("Overflow_Single"));
}
return castSingle;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static UInt32 ParseUInt32(String value, NumberStyles options, NumberFormatInfo numfmt) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
UInt32 i = 0;
StringToNumber(value, options, ref number, numfmt, false);
if ((options & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToUInt32(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_UInt32"));
}
}
else {
if (!NumberToUInt32(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_UInt32"));
}
}
return i;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static UInt64 ParseUInt64(String value, NumberStyles options, NumberFormatInfo numfmt) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
UInt64 i = 0;
StringToNumber(value, options, ref number, numfmt, false);
if ((options & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToUInt64(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_UInt64"));
}
}
else {
if (!NumberToUInt64(ref number, ref i)) {
throw new OverflowException(Environment.GetResourceString("Overflow_UInt64"));
}
}
return i;
}
[System.Security.SecuritySafeCritical] // auto-generated
private unsafe static void StringToNumber(String str, NumberStyles options, ref NumberBuffer number, NumberFormatInfo info, Boolean parseDecimal) {
if (str == null) {
throw new ArgumentNullException("String");
}
Contract.EndContractBlock();
Contract.Assert(info != null, "");
fixed (char* stringPointer = str) {
char * p = stringPointer;
if (!ParseNumber(ref p, options, ref number, null, info , parseDecimal)
|| (p - stringPointer < str.Length && !TrailingZeros(str, (int)(p - stringPointer)))) {
throw new FormatException(Environment.GetResourceString("Format_InvalidString"));
}
}
}
private static Boolean TrailingZeros(String s, Int32 index) {
// For compatability, we need to allow trailing zeros at the end of a number string
for (int i = index; i < s.Length; i++) {
if (s[i] != '\0') {
return false;
}
}
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseDecimal(String value, NumberStyles options, NumberFormatInfo numfmt, out Decimal result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
if (!TryStringToNumber(value, options, ref number, numfmt, true)) {
return false;
}
if (!NumberBufferToDecimal(number.PackForNative(), ref result)) {
return false;
}
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseDouble(String value, NumberStyles options, NumberFormatInfo numfmt, out Double result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
if (!TryStringToNumber(value, options, ref number, numfmt, false)) {
return false;
}
if (!NumberBufferToDouble(number.PackForNative(), ref result)) {
return false;
}
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseInt32(String s, NumberStyles style, NumberFormatInfo info, out Int32 result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
if (!TryStringToNumber(s, style, ref number, info, false)) {
return false;
}
if ((style & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToInt32(ref number, ref result)) {
return false;
}
}
else {
if (!NumberToInt32(ref number, ref result)) {
return false;
}
}
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseInt64(String s, NumberStyles style, NumberFormatInfo info, out Int64 result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
if (!TryStringToNumber(s, style, ref number, info, false)) {
return false;
}
if ((style & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToInt64(ref number, ref result)) {
return false;
}
}
else {
if (!NumberToInt64(ref number, ref result)) {
return false;
}
}
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseSingle(String value, NumberStyles options, NumberFormatInfo numfmt, out Single result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
Double d = 0;
if (!TryStringToNumber(value, options, ref number, numfmt, false)) {
return false;
}
if (!NumberBufferToDouble(number.PackForNative(), ref d)) {
return false;
}
Single castSingle = (Single)d;
if (Single.IsInfinity(castSingle)) {
return false;
}
result = castSingle;
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseUInt32(String s, NumberStyles style, NumberFormatInfo info, out UInt32 result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
if (!TryStringToNumber(s, style, ref number, info, false)) {
return false;
}
if ((style & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToUInt32(ref number, ref result)) {
return false;
}
}
else {
if (!NumberToUInt32(ref number, ref result)) {
return false;
}
}
return true;
}
[System.Security.SecuritySafeCritical] // auto-generated
internal unsafe static Boolean TryParseUInt64(String s, NumberStyles style, NumberFormatInfo info, out UInt64 result) {
Byte * numberBufferBytes = stackalloc Byte[NumberBuffer.NumberBufferBytes];
NumberBuffer number = new NumberBuffer(numberBufferBytes);
result = 0;
if (!TryStringToNumber(s, style, ref number, info, false)) {
return false;
}
if ((style & NumberStyles.AllowHexSpecifier) != 0) {
if (!HexNumberToUInt64(ref number, ref result)) {
return false;
}
}
else {
if (!NumberToUInt64(ref number, ref result)) {
return false;
}
}
return true;
}
internal static Boolean TryStringToNumber(String str, NumberStyles options, ref NumberBuffer number, NumberFormatInfo numfmt, Boolean parseDecimal) {
return TryStringToNumber(str, options, ref number, null, numfmt, parseDecimal);
}
[System.Security.SecuritySafeCritical] // auto-generated
[System.Runtime.CompilerServices.FriendAccessAllowed]
internal unsafe static Boolean TryStringToNumber(String str, NumberStyles options, ref NumberBuffer number, StringBuilder sb, NumberFormatInfo numfmt, Boolean parseDecimal) {
if (str == null) {
return false;
}
Contract.Assert(numfmt != null, "");
fixed (char* stringPointer = str) {
char * p = stringPointer;
if (!ParseNumber(ref p, options, ref number, sb, numfmt, parseDecimal)
|| (p - stringPointer < str.Length && !TrailingZeros(str, (int)(p - stringPointer)))) {
return false;
}
}
return true;
}
}
}
|