File: single.cs

package info (click to toggle)
mono 6.8.0.105%2Bdfsg-3.3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,284,512 kB
  • sloc: cs: 11,172,132; xml: 2,850,069; ansic: 671,653; cpp: 122,091; perl: 59,366; javascript: 30,841; asm: 22,168; makefile: 20,093; sh: 15,020; python: 4,827; pascal: 925; sql: 859; sed: 16; php: 1
file content (489 lines) | stat: -rw-r--r-- 17,289 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// ==++==
//
//   Copyright (c) Microsoft Corporation.  All rights reserved.
//
// ==--==
/*============================================================
**
** Class:  Single
**
**
** Purpose: A wrapper class for the primitive type float.
**
**
===========================================================*/
namespace System {

    using System.Globalization;
    using System;
///#if GENERICS_WORK
///    using System.Numerics;
///#endif
    using System.Runtime.InteropServices;
    using System.Runtime.CompilerServices;
    using System.Runtime.ConstrainedExecution;
    using System.Diagnostics.Contracts;

[Serializable]
[System.Runtime.InteropServices.StructLayout(LayoutKind.Sequential)]
[System.Runtime.InteropServices.ComVisible(true)]
#if GENERICS_WORK
    public struct Single : IComparable, IFormattable, IConvertible
        , IComparable<Single>, IEquatable<Single> 
///     , IArithmetic<Single>
#else
    public struct Single : IComparable, IFormattable, IConvertible
#endif
    {
        internal float m_value;

        //
        // Public constants
        //
        public const float MinValue = (float)-3.40282346638528859e+38;
        public const float Epsilon = (float)1.4e-45;
        public const float MaxValue = (float)3.40282346638528859e+38;
        public const float PositiveInfinity = (float)1.0 / (float)0.0;
        public const float NegativeInfinity = (float)-1.0 / (float)0.0;
        public const float NaN = (float)0.0 / (float)0.0;

        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated
        public unsafe static bool IsInfinity(float f) {
            return (*(int*)(&f) & 0x7FFFFFFF) == 0x7F800000;
        }

        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated
        public unsafe static bool IsPositiveInfinity(float f) {
            return *(int*)(&f) == 0x7F800000;
        }

        [Pure]
        [System.Security.SecuritySafeCritical]  // auto-generated
        [System.Runtime.Versioning.NonVersionable]
        public unsafe static bool IsNegativeInfinity(float f) {
            return *(int*)(&f) == unchecked((int)0xFF800000);
        }

        [Pure]
        [ReliabilityContract(Consistency.WillNotCorruptState, Cer.Success)]
        [System.Security.SecuritySafeCritical]
        [System.Runtime.Versioning.NonVersionable]
        public unsafe static bool IsNaN(float f) {
            return (*(int*)(&f) & 0x7FFFFFFF) > 0x7F800000;
        }

#if MONO
        [Pure]
        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public unsafe static bool IsFinite(float f) {
            return (*(int*)(&f) & 0x7FFFFFFF) < 0x7F800000;
        }

        [MethodImpl(MethodImplOptions.AggressiveInlining)]
        public static unsafe bool IsNegative(float f)
        {
            var bits = unchecked((uint)BitConverter.SingleToInt32Bits(f));
            return (bits & 0x80000000) == 0x80000000;
        }
        internal const float NegativeZero = (float)-0.0;

#endif

        // Compares this object to another object, returning an integer that
        // indicates the relationship.
        // Returns a value less than zero if this  object
        // null is considered to be less than any instance.
        // If object is not of type Single, this method throws an ArgumentException.
        //
        public int CompareTo(Object value) {
            if (value == null) {
                return 1;
            }
            if (value is Single) {
                float f = (float)value;
                if (m_value < f) return -1;
                if (m_value > f) return 1;
                if (m_value == f) return 0;

                // At least one of the values is NaN.
                if (IsNaN(m_value))
                    return (IsNaN(f) ? 0 : -1);
                else // f is NaN.
                    return 1;
            }
            throw new ArgumentException (Environment.GetResourceString("Arg_MustBeSingle"));
        }


        public int CompareTo(Single value) {
            if (m_value < value) return -1;
            if (m_value > value) return 1;
            if (m_value == value) return 0;

            // At least one of the values is NaN.
            if (IsNaN(m_value))
                return (IsNaN(value) ? 0 : -1);
            else // f is NaN.
                return 1;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator ==(Single left, Single right) {
            return left == right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator !=(Single left, Single right) {
            return left != right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator <(Single left, Single right) {
            return left < right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator >(Single left, Single right) {
            return left > right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator <=(Single left, Single right) {
            return left <= right;
        }

        [System.Runtime.Versioning.NonVersionable]
        public static bool operator >=(Single left, Single right) {
            return left >= right;
        }

        public override bool Equals(Object obj) {
            if (!(obj is Single)) {
                return false;
            }
            float temp = ((Single)obj).m_value;
            if (temp == m_value) {
                return true;
            }

            return IsNaN(temp) && IsNaN(m_value);
        }

        public bool Equals(Single obj)
        {
            if (obj == m_value) {
                return true;
            }

            return IsNaN(obj) && IsNaN(m_value);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public unsafe override int GetHashCode() {
            float f = m_value;
            if (f == 0) {
                // Ensure that 0 and -0 have the same hash code
                return 0;
            }
            int v = *(int*)(&f);
            return v;
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public override String ToString() {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatSingle(m_value, null, NumberFormatInfo.CurrentInfo);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public String ToString(IFormatProvider provider) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatSingle(m_value, null, NumberFormatInfo.GetInstance(provider));
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public String ToString(String format) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatSingle(m_value, format, NumberFormatInfo.CurrentInfo);
        }

        [System.Security.SecuritySafeCritical]  // auto-generated
        public String ToString(String format, IFormatProvider provider) {
            Contract.Ensures(Contract.Result<String>() != null);
            return Number.FormatSingle(m_value, format, NumberFormatInfo.GetInstance(provider));
        }

        // Parses a float from a String in the given style.  If
        // a NumberFormatInfo isn't specified, the current culture's
        // NumberFormatInfo is assumed.
        //
        // This method will not throw an OverflowException, but will return
        // PositiveInfinity or NegativeInfinity for a number that is too
        // large or too small.
        //
        public static float Parse(String s) {
            return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo);
        }

        public static float Parse(String s, NumberStyles style) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Parse(s, style, NumberFormatInfo.CurrentInfo);
        }

        public static float Parse(String s, IFormatProvider provider) {
            return Parse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.GetInstance(provider));
        }

        public static float Parse(String s, NumberStyles style, IFormatProvider provider) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return Parse(s, style, NumberFormatInfo.GetInstance(provider));
        }
        
        private static float Parse(String s, NumberStyles style, NumberFormatInfo info) {
            return Number.ParseSingle(s, style, info);
        }

        public static Boolean TryParse(String s, out Single result) {
            return TryParse(s, NumberStyles.Float | NumberStyles.AllowThousands, NumberFormatInfo.CurrentInfo, out result);
        }

        public static Boolean TryParse(String s, NumberStyles style, IFormatProvider provider, out Single result) {
            NumberFormatInfo.ValidateParseStyleFloatingPoint(style);
            return TryParse(s, style, NumberFormatInfo.GetInstance(provider), out result);
        }
        
        private static Boolean TryParse(String s, NumberStyles style, NumberFormatInfo info, out Single result) {
            if (s == null) {
                result = 0;
                return false;
            }
            bool success = Number.TryParseSingle(s, style, info, out result);
            if (!success) {
                String sTrim = s.Trim();
                if (sTrim.Equals(info.PositiveInfinitySymbol)) {
                    result = PositiveInfinity;
                } else if (sTrim.Equals(info.NegativeInfinitySymbol)) {
                    result = NegativeInfinity;
                } else if (sTrim.Equals(info.NaNSymbol)) {
                    result = NaN;
                } else
                    return false; // We really failed
            }
            return true;

        }

        //
        // IConvertible implementation
        //

        public TypeCode GetTypeCode() {
            return TypeCode.Single;
        }


        /// <internalonly/>
        bool IConvertible.ToBoolean(IFormatProvider provider) {
            return Convert.ToBoolean(m_value);
        }

        /// <internalonly/>
        char IConvertible.ToChar(IFormatProvider provider) {
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Single", "Char"));
        }

        /// <internalonly/>
        sbyte IConvertible.ToSByte(IFormatProvider provider) {
            return Convert.ToSByte(m_value);
        }

        /// <internalonly/>
        byte IConvertible.ToByte(IFormatProvider provider) {
            return Convert.ToByte(m_value);
        }

        /// <internalonly/>
        short IConvertible.ToInt16(IFormatProvider provider) {
            return Convert.ToInt16(m_value);
        }

        /// <internalonly/>
        ushort IConvertible.ToUInt16(IFormatProvider provider) {
            return Convert.ToUInt16(m_value);
        }

        /// <internalonly/>
        int IConvertible.ToInt32(IFormatProvider provider) {
            return Convert.ToInt32(m_value);
        }

        /// <internalonly/>
        uint IConvertible.ToUInt32(IFormatProvider provider) {
            return Convert.ToUInt32(m_value);
        }

        /// <internalonly/>
        long IConvertible.ToInt64(IFormatProvider provider) {
            return Convert.ToInt64(m_value);
        }

        /// <internalonly/>
        ulong IConvertible.ToUInt64(IFormatProvider provider) {
            return Convert.ToUInt64(m_value);
        }

        /// <internalonly/>
        float IConvertible.ToSingle(IFormatProvider provider) {
            return m_value;
        }

        /// <internalonly/>
        double IConvertible.ToDouble(IFormatProvider provider) {
            return Convert.ToDouble(m_value);
        }

        /// <internalonly/>
        Decimal IConvertible.ToDecimal(IFormatProvider provider) {
            return Convert.ToDecimal(m_value);
        }

        /// <internalonly/>
        DateTime IConvertible.ToDateTime(IFormatProvider provider) {
            throw new InvalidCastException(Environment.GetResourceString("InvalidCast_FromTo", "Single", "DateTime"));
        }

        /// <internalonly/>
        Object IConvertible.ToType(Type type, IFormatProvider provider) {
            return Convert.DefaultToType((IConvertible)this, type, provider);
        }
///#if GENERICS_WORK
///        //
///        // IArithmetic<Single> implementation
///        //
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.AbsoluteValue(out bool overflowed) {
///            Single abs = (m_value < 0 ? -m_value : m_value);
///            overflowed = IsInfinity(abs) || IsNaN(abs);
///            return abs;
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Negate(out bool overflowed) {
///            Single neg= -m_value;
///            overflowed = IsInfinity(neg) || IsNaN(neg);
///            return neg;
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Sign(out bool overflowed) {
///            overflowed = IsNaN(m_value);
///            if (overflowed) {
///                return m_value;
///            }
///            return (m_value >= 0 ? (m_value == 0 ? 0 : 1) : -1);
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Add(Single addend, out bool overflowed) {
///            Single s = m_value + addend;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s;
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Subtract(Single subtrahend, out bool overflowed) {
///            Single s = m_value - subtrahend;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s;
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Multiply(Single multiplier, out bool overflowed) {
///            Single s = m_value * multiplier;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s;
///        }
///
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Divide(Single divisor, out bool overflowed) {
///            Single s = m_value / divisor;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s;
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.DivideRemainder(Single divisor, out Single remainder, out bool overflowed) {
///            remainder = m_value % divisor;
///            Single s = m_value / divisor;
///            overflowed = IsInfinity(s) || IsInfinity(remainder) || IsNaN(s) || IsNaN(remainder);
///            return s;
///        }
///
///        /// <internalonly/>
///        Single IArithmetic<Single>.Remainder(Single divisor, out bool overflowed) {
///            Single s = m_value % divisor;
///            overflowed = IsInfinity(s) || IsNaN(s);
///            return s;
///        }
///
///        /// <internalonly/>
///        ArithmeticDescriptor<Single> IArithmetic<Single>.GetDescriptor() {
///            if (s_descriptor == null) {
///                s_descriptor = new SingleArithmeticDescriptor( ArithmeticCapabilities.One
///                                                             | ArithmeticCapabilities.Zero
///                                                             | ArithmeticCapabilities.MaxValue
///                                                             | ArithmeticCapabilities.MinValue
///                                                             | ArithmeticCapabilities.PositiveInfinity
///                                                             | ArithmeticCapabilities.NegativeInfinity);
///            }
///            return s_descriptor;
///        }
///
///        private static SingleArithmeticDescriptor s_descriptor;
/// 
///        class SingleArithmeticDescriptor : ArithmeticDescriptor<Single> {
///            public SingleArithmeticDescriptor(ArithmeticCapabilities capabilities) : base(capabilities) {}
///            public override Single One {
///                get {
///                    return (Single) 1;
///                }
///            }
///
///            public override Single Zero {
///                get {
///                    return (Single) 0;
///                }
///            }
///
///            public override Single MinValue {
///                get {
///                    return Single.MinValue;
///                }
///            }
///
///            public override Single MaxValue {
///                get {
///                    return Single.MaxValue;
///                }
///            }
///
///            public override Single PositiveInfinity {
///                get {
///                    return Single.PositiveInfinity;
///                }
///            }
///
///            public override Single NegativeInfinity {
///                get {
///                    return Single.NegativeInfinity;
///                }
///            }
///
///        }
///#endif // #if GENERICS_WORK
    }
}